Optimization of Fermentation Conditions for Production of Hungarian Sour Cherry Spirit Using Response Surface Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fruit Juices
2.2. Inoculum Preparation
2.3. Alcoholic Fermentation
2.4. Distillation
2.5. Chemical Analysis
2.5.1. Measurement of Total Soluble Solid and pH
2.5.2. Alcohol Content
2.5.3. Volatile Compound
2.6. Experimental Design and Data Analysis
3. Results and Discussion
3.1. Optimization of Fermentation Conditions
3.2. Validation of the Optimized Conditions
3.3. Volatile Compound of Hungarian Spirits from Sour Cherry
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- László, Z.; Hodúr, C.; Csanádi, J. “Pálinka”: Hungarian Distilled Fruit. In Traditional Foods: Gerneral and Consumer Aspects; Kristbergsson, K., Oliveira, J., Eds.; Springer: Boston, MA, USA, 2016; pp. 313–318. [Google Scholar]
- European Parliament. EC Regulation No 110/2008. Regulation (EC) No 110/2008 of the European Parliament and of the Council of 15 January 2008 on the Definition, Description, Presentation, Labelling and the Protection of Geographical Indications of Spirit Drinks and Repealing Council Regulation (EEC) No 1576/89; OJEU L39/16: Luxembourg, 2018; Volume 39, pp. 16–54. [Google Scholar]
- Kovács, A.G.; Szöllősi, A.; Szöllősi, D.; Panyik, I.A.; Nagygyörgy, L.; Hoschke, Á.; Nguyen, Q.D. Classification and Identification of Three Vintage Designated Hungarian Spirits by Their Volatile Compounds. Period. Polytech. Chem. Eng. 2018, 62, 175–181. [Google Scholar] [CrossRef]
- Harcsa, I.M.; Nábrádi, A.; Tar, I. Hungarian spirits pálinka as a “Hungaricum” I. Literature review and practical approaches. Appl. Stud. Agribus. Commer. 2014, 8, 133–140. [Google Scholar] [CrossRef] [PubMed]
- López, F.; Rodríguez-Bencomo, J.J.; Orriols, I.; Pérez-Correa, J.R. Fruit Brandies. In Science and Technology of Fruit Wine Production; Kosseva, M., Joshi, V.K., Panesar, P.S., Eds.; Academic Press: London, UK, 2017; pp. 531–556. [Google Scholar]
- Zlatić, E.; Pichler, A.; Lončarić, A.; Vidrih, R.; Požrl, T.; Hribar, J.; Piližota, V.; Kopjar, M. Volatile compounds of freeze-dried sour cherry puree affected by the addition of sugars. J. Int. J. Food Prop. 2017, 20, S449–S456. [Google Scholar] [CrossRef] [Green Version]
- Serradilla, M.J.; Akšic, M.F.; Manganaris, G.A.; Ercisli, S.; González-Gómez, D.; Valero, D. 17 Fruit Chemistry, Nutritional Benefits and Social Aspects of Cherries. In Cherries: Botany Production and Uses; Quero-García, J., Iezzoni, A., Pulawska, J., Lang, G., Eds.; CABI International: Boston, MA, USA, 2017; pp. 420–441. [Google Scholar]
- Nikićević, N.; Velickovic, M.; Jadranin, M.; Vučković, I.; Novaković, M.; Vujisić, L.; Stanković, V.M.; Urosevic, I.; Tešević, V. The effects of the cherry variety on the chemical and sensorial characteristics of cherry brandy. J. Serb. Chem. Soc. 2011, 76, 1219–1228. [Google Scholar] [CrossRef]
- Januszek, M.; Satora, P.; Tarko, T. Oenological characteristics of fermented apple musts and volatile profile of brandies obtained from different apple cultivars. Biomolecules 2020, 10, 853. [Google Scholar] [CrossRef]
- Januszek, M.; Satora, P.; Wajda, Ł.; Tarko, T. Saccharomyces bayanus Enhances Volatile Profile of Apple Brandies. Molecules 2020, 25, 3127. [Google Scholar] [CrossRef] [PubMed]
- Ramsay, C.M.; Berry, D.R. Effect of temperature and pH on the formation of higher alcohols, fatty acids and esters in the malt whisky fermentation. Food Microbiol. 1984, 1, 117–121. [Google Scholar] [CrossRef]
- Peng, B.; Li, F.; Cui, L.; Guo, Y. Effects of fermentation temperature on key aroma compounds and sensory properties of apple wine. J. Food Sci. 2015, 80, S2937–S2943. [Google Scholar] [CrossRef]
- Mallouchos, A.; Komaitis, M.; Koutinas, A.; Kanellaki, M. Wine fermentations by immobilized and free cells at different temperatures. Effect of immobilization and temperature on volatile by-products. Food Chem. 2003, 80, 109–113. [Google Scholar] [CrossRef]
- Gómez, L.F.H.; Úbeda, J.; Briones, A. Characterisation of wines and distilled spirits from melon (Cucumis melo L.). Int. J. Food Sci. Technol. 2008, 43, 644–650. [Google Scholar] [CrossRef]
- Charoenchai, C.; Fleet, G.H.; Henschke, P.A. Effects of temperature, pH, and sugar concentration on the growth rates and cell biomass of wine yeasts. Am. J. Enol. Vitic. 1998, 49, 283–288. [Google Scholar]
- Nwabueze, T.U. Basic steps in adapting response surface methodology as mathematical modelling for bioprocess optimisation in the food systems. Int. J. Food Sci. Technol. 2010, 45, 1768–1776. [Google Scholar] [CrossRef]
- Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Duarte, W.F.; Amorim, J.C.; de Assis Lago, L.; Dias, D.R.; Schwan, R.F. Optimization of fermentation conditions for production of the jabuticaba (Myrciaria cauliflora) spirit using the response surface methodology. J. Food Sci. 2011, 76, C782–C790. [Google Scholar] [CrossRef] [PubMed]
- Tsegay, Z.T.; Sathyanarayana, C.B.; Lemma, S.M. Optimization of Cactus Pear Fruit Fermentation Process for Wine Production. Foods 2018, 7, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banks, D.; Birke, M.; Flem, B.; Reimann, C. Inorganic chemical quality of European tap-water: 1. Distribution of parameters and regulatory compliance. Appl. Geochem. 2015, 59, 200–210. [Google Scholar] [CrossRef]
- Walker, G.M.; Stewart, G.G. Saccharomyces cerevisiae in the production of fermented beverages. Beverages 2016, 2, 30. [Google Scholar] [CrossRef]
- Ratnam, B.V.V.; Rao, S.S.; Mendu, D.R.; Rao, M.N.; Ayyanna, C. Optimization of medium constituents and fermentation conditions for the production of ethanol from palmyra jaggery using response surface methodology. World J. Microbiol. Biotechnol. 2005, 21, 399–404. [Google Scholar] [CrossRef]
- Ishmayana, S.; Learmonth, R.P.; Kennedy, U.J. Fermentation performance of the yeast Saccharomyces cerevisiae in media with high sugar concentration. In Proceedings of the 2nd International Seminar on Chemistry (ISC 2011), the 2nd International Seminar on Chemistry (ISC 2011), Bandung, Indonesia, 24–25 November 2011; pp. 379–385. [Google Scholar]
- Prusina, T.; Herjavec, S. Influence of Fermentation Temperature on the Quality of ‘Žilavka’Wines. Agric. Conspec. Sci. 2008, 73, 127–130. [Google Scholar]
- Reddy, L.V.A.; Reddy, O.V.S. Effect of fermentation conditions on yeast growth and volatile composition of wine produced from mango (Mangifera indica L.) fruit juice. Food Bioprod. Process. 2011, 89, 487–491. [Google Scholar] [CrossRef]
- Beltran, G.; Rozes, N.; Mas, A.; Guillamon, J.M. Effect of low-temperature fermentation on yeast nitrogen metabolism. World J. Microbiol. Biotechnol. 2007, 23, 809–815. [Google Scholar] [CrossRef]
- Liu, X.; Jia, B.; Sun, X.; Ai, J.; Wang, L.; Wang, C.; Huang, W. Effect of initial pH on growth characteristics and fermentation properties of Saccharomyces cerevisiae. J. Food Sci. 2015, 80, M800–M808. [Google Scholar] [CrossRef] [PubMed]
- García-Llobodanin, L.; Senn, T.; Ferrando, M.; Güell, C.; López, F. Influence of the fermentation pH on the final quality of Blanquilla pear spirits. Int. J. Food Sci. Technol. 2010, 45, 839–848. [Google Scholar] [CrossRef]
- Lu, Y.; Voon, M.K.W.; Huang, D.; Lee, P.R.; Liu, S.Q. Combined effects of fermentation temperature and pH on kinetic changes of chemical constituents of durian wine fermented with Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 2017, 101, 3005–3014. [Google Scholar] [CrossRef] [PubMed]
- Spaho, N. Distillation Techniques in the Fruit Spirits Production. In Distillation-Innovative Applications and Modeling; Mendes, M., Ed.; InTechOpen Ltd.: London, UK, 2017. [Google Scholar]
- Douady, A.; Puentes, C.; Awad, P.; Esteban-Decloux, M. Batch distillation of spirits: Experimental study and simulation of the behaviour of volatile aroma compounds. J. Inst. Brew. 2019, 125, 268–283. [Google Scholar] [CrossRef]
- Moreno, J.; Medina, M.; Garcia, M.D. Optimization of the fermentation conditions of musts from Pedro Ximénez grapes grown in Southern Spain. Production of higher alcohols and esters. S. Afr. J. Enol. Vitic. 1988, 9, 16–20. [Google Scholar] [CrossRef] [Green Version]
- Śliwińska, M.; Wiśniewska, P.; Dymerski, T.; Wardencki, W.; Namieśnik, J. The flavour of fruit spirits and fruit liqueurs: A review. Flavour Fragr. J. 2015, 30, 197–207. [Google Scholar] [CrossRef]
- Meilgaard, M.C. Flavor chemistry of beer. II. Flavor and threshold of 239 aroma volatiles. Tech. Quart. Master. Brew. Assoc. Am. 1975, 12, 151–168. [Google Scholar]
- Salo, P.; Nykänen, L.; Suomalainen, H. Odor thresholds and relative intensities of volatile aroma components in an artificial beverage imitating whisky. J. Food Sci. 1972, 37, 394–398. [Google Scholar] [CrossRef]
- García-Carpintero, E.G.; Sánchez-Palomo, E.; Gomez Gallego, M.A.; González-Viñas, M.A. Effect of cofermentation of grape varieties on aroma profiles of La Mancha red wines. J. Food Sci. 2011, 76, C1169–C1180. [Google Scholar] [CrossRef]
- Miller, G.H. Whisky Science: A Condensed Distillation; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- De Wet, P. Odour Thresholds and Their Application to Wine Flavour Studies. In Proceedings of the South African Society for Enology and Viticulture Symposium, Cape Town, South Africa, 1978; pp. 28–42.
- Wiśniewska, P.; Śliwińska, M.; Dymerski, T.; Wardencki, W.; Namieśnik, J. The analysis of raw spirits—A review of methodology. J. Inst. Brew. 2016, 122, 5–10. [Google Scholar] [CrossRef] [Green Version]
- Christoph, N.; Bauer-Christoph, C. Flavour of spirit drinks: Raw materials, fermentation, distillation, and ageing. In Flavours and Fragrances; Berger, R.G., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 219–239. [Google Scholar]
- Winterova, R.; Mikulikova, R.; Mazáč, J.; Havelec, P. Assessment of the authenticity of fruit spirits by gas chromatography and stable isotope ratio analyses. Czech J. Food Sci. 2008, 26, 368–375. [Google Scholar] [CrossRef] [Green Version]
- Dragone, G.; Mussatto, S.I.; Oliveira, J.M.; Teixeira, J.A. Characterisation of volatile compounds in an alcoholic beverage produced by whey fermentation. Food Chem. 2009, 112, 929–935. [Google Scholar] [CrossRef] [Green Version]
- Lambrechts, M.G.; Pretorius, I.S. Yeast and its importance to wine aroma-a review. S. Afr. J. Enol. Vitic. 2000, 21, 97–129. [Google Scholar] [CrossRef] [Green Version]
- Schehl, B.; Lachenmeier, D.; Senn, T.; Heinisch, J.J. Effect of the stone content on the quality of plum and cherry spirits produced from mash fermentations with commercial and laboratory yeast strains. J. Agric. Food Chem. 2005, 53, 8230–8238. [Google Scholar] [CrossRef] [PubMed]
- Carrau, F.M.; Medina, K.; Farina, L.; Boido, E.; Henschke, P.A.; Dellacassa, E. Production of fermentation aroma compounds by Saccharomyces cerevisiae wine yeasts: Effects of yeast assimilable nitrogen on two model strains. FEMS Yeast Res. 2008, 8, 1196–1207. [Google Scholar] [CrossRef] [Green Version]
Variables | Coded Levels | ||
---|---|---|---|
−1 | 0 | 1 | |
Temperature, X1 (°C) | 15 | 20+ | 25 |
pH, X2 | 2.75 | 3.25 | 3.75 |
Soluble solids content, X3 (°Brix) | 18 | 24 | 30 |
Run | Independent Variables | Dependent Variables | |||
---|---|---|---|---|---|
X1 (°C) | X2 | X3 (°Brix) | Y1 | Y2 | |
1 | 15 | 2.75 | 18 | 50.7 | 1801.08 |
2 | 25 | 2.75 | 18 | 56.48 | 2035.88 |
3 | 15 | 3.75 | 18 | 50.7 | 1605.58 |
4 | 25 | 3.75 | 18 | 59.79 | 1895.42 |
5 | 15 | 2.75 | 30 | 44.47 | 1789.65 |
6 | 25 | 2.75 | 30 | 50.75 | 1947.09 |
7 | 15 | 3.75 | 30 | 44.14 | 1655.82 |
8 | 25 | 3.75 | 30 | 55.22 | 1813.25 |
9 | 15 | 3.25 | 24 | 50.22 | 2032.79 |
10 | 25 | 3.25 | 24 | 59.1 | 2229.64 |
11 | 20 | 2.75 | 24 | 54.76 | 2114.66 |
12 | 20 | 3.75 | 24 | 57.04 | 1955.67 |
13 | 20 | 3.25 | 18 | 57.04 | 2008.55 |
14 | 20 | 3.25 | 30 | 54.06 | 1897.68 |
15 | 20 | 3.25 | 24 | 58.48 | 2149.30 |
16 | 20 | 3.25 | 24 | 58.9 | 2140.80 |
17 | 20 | 3.25 | 24 | 57.86 | 2174.91 |
Parameters | Y1 | Y2 | ||
---|---|---|---|---|
Coefficient Values | p-Values | Coefficient Values | p-Values | |
Constant | 57.91 | <0.0001 *** | 2153.09 | <0.0001 *** |
X1 | 4.11 | <0.0001 *** | 103.64 | <0.0001 *** |
X2 | 0.97 | 0.0128 * | −76.26 | <0.0001 *** |
X3 | −2.61 | <0.0001 *** | −24.30 | 0.0113 * |
X12 | −2.87 | 0.0015 ** | −20.44 | 0.1809 ns |
X22 | −1.63 | 0.0239 * | −116.49 | 0.0001 *** |
X32 | −1.98 | 0.0101 * | −198.54 | <0.0001 *** |
X1X2 | 1.01 | 0.0175 * | 6.88 | 0.4163 ns |
X1X3 | 0.31 | 0.3753 ns | −26.22 | 0.0132 * |
X2X3 | 0.10 | 0.7615 ns | 8.54 | 0.3193 ns |
Q2 | 0.889 | 0.942 | ||
R2 | 0.984 | 0.993 | ||
R2Adj | 0.964 | 0.985 | ||
RSD | 0.926 | 22.52 | ||
pANOVA | <0.05 | <0.05 | ||
pLOF | >0.05 | >0.05 |
Volatile Compounds | Descriptive | Threshold (mg/L) | Concentration (mg/L 40% v/v) |
---|---|---|---|
methanol | Alcoholic, solvent [34] | 10,000 [34] | 650.12 |
Higher alcohol | |||
1-propanol | Alcoholic, ripe fruit [35,36] | 720 [35] | 207.29 |
2-propanol | Ethanol-odor [34] | 1500 [34] | 14.73 |
1-butanol | Alcoholic, pleasant odor [35] | 5 [35] | 0.21 |
2-butanol | Alcoholic, pleasant odor [35] | 10 [35] | 0.29 |
2-methyl-1-propanol | Malty, ethanol-odor [34] | 200 [34] | 468.08 |
2-methyl-1-butanol | Banana, malty, ethanol-odor [35,37] | 32 [35] | 268.20 |
3-methyl-1-butanol | Sweetish, malty, banana [34,37] | 70 [34] | 847.01 |
2-phenylethanol | Roses, sweetish, perfumed [35,37] | 7.5 [35] | 18.00 |
Total higher alcohol | 1823.83 | ||
Ester | |||
ethyl acetate | Ethereal, fruity, sweetish [35,37] | 17 [35] | 116.17 |
ethyl formate | Rum-like, fruity [34] | 150 [34] | 1.29 |
ethyl lactate | Artificial strawberry, perfumed [35] | 14 [35] | 1.41 |
ethyl hexanoate | Apple, fruity, sweetish [34] | 0.23 [34] | 0.92 |
butyl acetate | Banana, fruity [38] | 1.83 [38] | 0.12 |
propyl acetate | Sweetish, perfumed [34] | 30 [34] | 0.08 |
Isoamyl acetate | Banana, apple solvent [34] | 1.6 [34] | 6.72 |
Total ester | 126.72 | ||
acetaldehyde | Green leaves, fruity, sharp [34] | 10 [34] | 136.13 |
Variables | Optimum Values | Predicted Values | Experimental Values |
---|---|---|---|
Temperature, X1, (°C) | 24.71 | ||
pH, X2 | 3.25 | ||
Total soluble solid content, X3, (°Brix) | 22.49 | ||
Production yield of alcohol (%), Y1 | 59.68 | 60.86 | |
Alcohol content, (% v/v) | 9.02 | 9.20 | |
Production yield of volatile compound (%), Y2 | 2231.68 | 2339.7 | |
Volatile compounds, (mg/L) | 337.37 | 353.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pham, T.M.; Sun, W.; Bujna, E.; Hoschke, Á.; Friedrich, L.; Nguyen, Q.D. Optimization of Fermentation Conditions for Production of Hungarian Sour Cherry Spirit Using Response Surface Methodology. Fermentation 2021, 7, 209. https://doi.org/10.3390/fermentation7040209
Pham TM, Sun W, Bujna E, Hoschke Á, Friedrich L, Nguyen QD. Optimization of Fermentation Conditions for Production of Hungarian Sour Cherry Spirit Using Response Surface Methodology. Fermentation. 2021; 7(4):209. https://doi.org/10.3390/fermentation7040209
Chicago/Turabian StylePham, Tuan M., Weizhe Sun, Erika Bujna, Ágoston Hoschke, László Friedrich, and Quang D. Nguyen. 2021. "Optimization of Fermentation Conditions for Production of Hungarian Sour Cherry Spirit Using Response Surface Methodology" Fermentation 7, no. 4: 209. https://doi.org/10.3390/fermentation7040209
APA StylePham, T. M., Sun, W., Bujna, E., Hoschke, Á., Friedrich, L., & Nguyen, Q. D. (2021). Optimization of Fermentation Conditions for Production of Hungarian Sour Cherry Spirit Using Response Surface Methodology. Fermentation, 7(4), 209. https://doi.org/10.3390/fermentation7040209