Peculiar Response in the Co-Culture Fermentation of Leuconostoc mesenteroides and Lactobacillus plantarum for the Production of ABE Solvents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Samples
2.2. Microbiological Isolation and Screening
2.3. Molecular Characterization
2.3.1. DNA Extraction and Sequencing of Bacteria Isolates
2.3.2. Phylogenetic Analysis
2.4. Fermentation Experiment Setup
2.4.1. Measurement of Glucose Levels during Fermentation
2.4.2. Measurement of Alcohols and Acids during Fermentation
3. Results
3.1. Phylogenetic Analysis
3.2. Ethanol Production by Lactobacillus plantarum
3.3. Comparison of ABE Production for Leuconostoc mesenteroides and Weissella Cibari
3.4. Co-Culture Fermentation Using Lactobacillus plantarum and Leuconostoc mesenteroides
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Panoutsou, C.; Germer, S.; Karka, P.; Papadokostantakis, S.; Kroyan, Y.; Wojcieszyk, M.; Landalv, I. Advanced biofuels to decarbonise European transport by 2030: Markets, challenges and policies that impact their successful market uptake. Energy Strategy Rev. 2021, 34, 100633. [Google Scholar] [CrossRef]
- Amiri, H.; Karimi, K. Biobutanol production. In Advanced Bioprocessing of Alternative Fuels, Biobased Chemicals, and Bioproducts; Majid, H., Ed.; Woodhead Publishing: Cambridge, MA, USA, 2019; pp. 109–133. [Google Scholar]
- Barr, M.R.; Volpe, R.; Kandiyoti, R. Liquid biofuels from food crops in transportation—A balance sheet of outcomes. Chem. Eng. Sci. X 2021, 10, 100090. [Google Scholar]
- Hagos, D.A.; Ahlgren, E.O. Exploring cost-effective transitions to fossil independent transportation in the future energy system of Denmark. Appl. Energy 2020, 261, 114389. [Google Scholar] [CrossRef]
- Mekonnen, M.; Romanelli, T.L.; Ray, C.; Hoekstra, A.Y.; Liska, A.J.; Neale, C.M.U. Water, energy and carbon footprint of bioethanol from the US and Brazil. Environ. Sci. Technol. 2018, 52, 14508–14518. [Google Scholar] [CrossRef] [Green Version]
- Lalander, C.-A.; Outram, V.; Lee, J.G.; Davies, T.E.; Harvey, A.P. Applied in situ product recovery in ABE fermentation. Biotechnol. Prog. 2017, 33, 563–579. [Google Scholar]
- Sarangi, P.K.; Nanda, S. Recent developments and challenges of Acetone-Butanol-Ethanol fermentation. In Recent Advancements in Biofuels and Boenergy Utilization; Sarangi, P., Nanda, P., Mohanty, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Aron, N.S.M.; Khoo, K.S.; Chew, K.W.; Show, P.L.; Chen, W.-H.; Nguyen, T.H.P. Sustainability of the four generations of biofuels—A review. Int. J. Energy Res. 2020, 44, 9266–9282. [Google Scholar] [CrossRef]
- Ho, D.P.; Ngo, H.H.; Guo, W. A mini review on renewable sources for fuel. Bioresour. Technol. 2014, 169, 742–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hedstrom, L. Enzyme Specificity and Selectivity. Encyclopedia of Life Sciences (ELS); John Wiley & Sons, Ltd.: Chichester, UK, 2010. [Google Scholar]
- Bleuven, C.; Landry, C.R. Molecular and cellular bases of adaptation to a changing environment in microorganisms. Proc. R. Soc. B Biol. Sci. 2016, 283, 1841. [Google Scholar] [CrossRef] [PubMed]
- Ab Mutalib, N.-S.; Wong, S.H.; Ser, H.-L.; Duangjai, A.; Law, J.W.-F.; Ratnakomala, S.; Letchumanan, V. Bioprospecting of microbes for valuable compounds to mankind. Prog. Microbes Mol. Biol. 2020, 3, 1–8. [Google Scholar] [CrossRef]
- Kumar, M.; Goyal, Y.; Sarkar, A.; Gayen, K. Comparative economic assessment of ABE fermentation based on cellulosis and non-cellulosis feedstocks. Appl. Energy 2012, 93, 193–204. [Google Scholar] [CrossRef]
- Montoya, D.; Spitia, S.; Silva, E.; Schwarz, W.H. Isolation of mesophilic solvent-producing clostridia from Colombian sources: Physiological characterisation, solvent production and polysaccharide hydrolysis. J. Biotechnol. 2000, 79, 117–126. [Google Scholar] [CrossRef]
- Hemkemeyer, M.; Christensen, B.T.; Martens, R.; Tebbe, C.C. Soil particle size fractions harbour distinct microbial communities and differ in potential for microbial mineralisation of organic pollutants. Soil Biol. Biochem. 2015, 90, 255–265. [Google Scholar] [CrossRef]
- Lin, Y.; Tanaka, S. Ethanol fermentation from biomass resources: Current state and prospects. Appl. Microbiol. Biotechnol. 2006, 69, 627–642. [Google Scholar] [CrossRef] [PubMed]
- Evcan, E.; Tari, C. Production of bioethanol from apple pomace by using cocultures: Conversion of agro-industrial waste to value added product. Energy 2015, 88, 775–782. [Google Scholar] [CrossRef] [Green Version]
- Van Wyk, N.; Pretorius, I.S.; von Wallbrunn, C. Assessing the Oenological potential of Nakazawaea ishiwadae, Candida railenensis and Debaryomyces hansenii strains in mixed-culture grape must fermentation with Saccharomyces cerevisiae. Fermentation 2020, 6, 49. [Google Scholar] [CrossRef]
- Zhang, S.; Qu, C.; Huang, X.; Suo, Y.; Liao, Z.; Wang, J. Enhanced isopropanol and n-butanol production by supplying exogenous acetic acid via co-culturing two clostridium strains from cassava bagasse hydrolysate. J. Ind. Microbiol. Biotechnol. 2016, 43, 915–925. [Google Scholar] [CrossRef]
- Comstock, J.P. Clinical Methods: The History, Physical, and Laboratory Examinations, 3rd ed.; Walker, H.K., Hall, W.D., Eds.; Butterworths: Boston, MA, USA, 1990. [Google Scholar]
- Dennis, R.T.; Young, T.W. A simple, rapid method for the detection of subspecies of Zymomonas Mobilis. J. Inst. Brew. 1982, 88, 25–29. [Google Scholar] [CrossRef]
- Altschul, S.F.; Madden, T.L.; Scaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [Green Version]
- Naruya, S.; Masatoshi, N. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Tamura, K.; Nei, M.; Kumar, S. Prospects for inferring very large phylogenies by using the neihbor-joining method. Proc. Natl. Acad. Sci. USA 2004, 101, 11030–11035. [Google Scholar] [CrossRef] [Green Version]
- Itelima, J.; Ogbonna, A.; Pandukur, S.; Egbere, J.; Salami, A. Simultaneous saccharification and fermentation of corn cobs to bioethanol by co-culture of Aspergillus Niger and Saccharomyces Cerevisiae. Int. J. Environ. Sci. Dev. 2013, 4, 239–242. [Google Scholar] [CrossRef] [Green Version]
- Albalasmeh, A.A.; Berhe, A.A.; Ghezzehei, T.A. A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydr. Polym. 2013, 97, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Lin, L.; Liu, T.; Ouyang, P.; He, B.; Liu, S. Reducing sugar content in hemicellulose hydrolysate by DNS method: A Revisit. J. Biobased Mater. Bioenergy 2008, 2, 156–161. [Google Scholar] [CrossRef]
- Al-Shorgani, N.K.N.; Isa, M.H.M.; Yusoff, W.M.W.; Kalil, M.S.; Hamid, A.A. Isolation of a Clostridium acetobutylicum strain and characterisation of its fermentation performance on agricultural wastes. Renew. Energy 2016, 86, 459–465. [Google Scholar] [CrossRef]
- Beigbeder, J.B.; de Dantas Medeiros, J.M.; Lavoie, J.M. Optimisation of yeast, sugar and nutrient concentrations for high ethanol production rate using industrial sugar beet molasses and responnse surface methodology. Fermentation 2021, 7, 86. [Google Scholar] [CrossRef]
- Krishnan, M.S.; Ho, N.W.Y.; Tsao, G.T. Fermentation kinetics of ethanol production from glucose and xylose by recombinant Saccharomyces 1400(pLNH33). Appl. Biochem. Biotechnol. 1999, 77–79, 373–388. [Google Scholar] [CrossRef]
- Almarsdottir, A.R.; Sigurbjornsdottir, M.A.; Orlygsson, J. Effect of various factors on ethanol yields from lignocellulosic biomass by Thermoanaerobacterium AK17. Biotechnol. Bioeng. 2012, 109, 100. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, L.; Xu, M.; Yang, S.T.; Yan, Q.; Lin, M.; Tang, I.C. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production from sugarcane juice. Appl. Microbiol. Biotechnol. 2017, 101, 4327–4337. [Google Scholar] [CrossRef]
- Jiang, W.; Zhao, J.; Wang, Z.; Yang, S.T. Stable high titer n-butanol production from sucrose and sugarcane juice by Clostridium acetobutylicum JB200 in repeated batch fermentations. Bioresour. Technolol. 2014, 163, 172–179. [Google Scholar] [CrossRef]
- Barnes, R.J.; Bandi, R.R.; Wong, W.S.; Barraud, N.; McDougald, D.; Fane, A.; Rice, S.A. Optimal dosing regimen of nitric oxide donor compounds for the reduction of Pseudomonas aeruginosa biofilm and isolates from wastewater membranes. Biofouling 2013, 29, 203–212. [Google Scholar] [CrossRef]
- Barraud, N.; Hassett, D.J.; Hwang, S.-H.; Rice, S.A.; Kjelleberg, S.; Webb, J.S. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J. Bacteriol. 2006, 188, 7344–7353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, C.M.; Nakano, M.M.; Wang, T.; Ye, R.W.; Helmann, J.D. Response of Bacillus subtilis to nitric oxide and the nitrosating agent sodium nitroprussade. J. Bactereol. 2004, 186, 4655–4664. [Google Scholar] [CrossRef] [Green Version]
- Joannou, C.L.; Cui, X.-Y.; Rogers, N.; Vielotte, N.; Torres Martinez, C.L.; Vugman, N.V.; Cammack, R. Characterization of the bactericidal effect of sodium nitroprusside and other pentacyanonitrosyl complexes on the food spoilage bacterium Clostridium sporogenes. Appl. Environ. Microbiol. 1998, 64, 3195–3201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fida, T.T.; Voordouw, J.; Ataeian, M.; Kleiner, M.; Okpala, G.; Mand, J.; Voordouw, G. Synergy of sodium nitroprusside and nitrate in inhibiting the activity of sulphate reducing bacteria in oil-cotaining reactors. Front. Microbiol. 2018, 9, 1–11. [Google Scholar] [CrossRef]
- Tharmalinggam, S.; Alhasawi, A.; Appanna, V.P.; Lemire, J.; Appanna, V.D. Reactive nitrogen species (RNS) resistant microbes: Adaptation and medical implications. Biol. Chem. 2017, 11, 1193–1208. [Google Scholar] [CrossRef]
- Ndaba, B.; Chiyanzu, I.; Marx, S. n-Butanol derived from biochemical and chemical routes: A review. Biotechnol. Rep. 2015, 8, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garvie, E.I. Genus Leuconostoc. In Bergey’s Manual of Systematic Bacteriology; Sneath, P.H.A., Mair, N.S., Sharpe, M.E., Holt, J.G., Eds.; The Williams and Wilkins Co.: Baltimore, MD, USA, 1986. [Google Scholar]
- Gottschalk, G. Bacterial Metabolism, 2nd ed.; Springer: New York, NY, USA, 1986. [Google Scholar]
- Cogan, T.M.; O’dowd, M.; Mellerick, D. Effects of pH and sugar on acetoin production from citrate by leuconostoc lactis. Appl. Environ. Microbiol. 1981, 41, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johanningsmeier, S.; Mcfeeters, R.F.; Fleming, H.P.; Thompson, R.L. Effects of Leuconostoc mesenteroides starter culture on fermentation of cabbage with reduced salt concentrations. Food Microbiol. Saf. 2007, 72, M166–M172. [Google Scholar] [CrossRef]
- Collins, M.D.; Samells, J.; Metaxopoulos, J.; Wallbanks, S. Taxonomic studies on some leuconostoc-like organisms from fermented sausages: Description of a new genus Weissela for the Leuconostoc paramesenteroides group of species. J. Appl. Bacteriol. 1993, 75, 595–603. [Google Scholar] [CrossRef]
- Bjorkroth, J.K.; Schillinger, U.; Geisen, R.; Weiss, N.; Hoste, B.; Holzapfel, W.H.; Vandamme, P. Taxonomic study of Weissella confusa and description of Weissella cibara sp. nov., detected in food and clinical samples. Int. J. Syst. Evol. Microbiol. 2002, 52, 141–148. [Google Scholar] [CrossRef]
- Kang, M.S.; Lee, D.S.; Lee, S.A.; Kim, M.S.; Nam, S.H. Effects of probiotic bacterium Weissella cibara CMU on periodontal health and microbiota: A randomised, double blind, placebo-controlled trial. BMC Oral Health 2020, 2, 1–12. [Google Scholar]
- Hong, Y.; Lee, Y.D.; Park, J.Y.; Kim, S.; Lee, Y.W.; Jeon, B.; Chung, D.K. Lipoteichoic acid isolated from Weisella increases cytokine production in human monocyte-like THP-1 cells and mouse splenocytes. J. Microbiol. Biotechnol. 2016, 26, 1198–1205. [Google Scholar] [CrossRef] [PubMed]
- Srionnual, S.; Yanagida, F.; Lin, L.-H.; Hsiao, K.N.; Chen, Y.S. Weissellicin 110, a newly discovered bacteriocin from Weissella cibaria 110, isolated from plaa-som, a fermented fish product from Thailand. Appl. Environ. Microbiol. 2007, 73, 2247–2250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gou, M.; Wang, H.; Yuan, H.; Zhang, W.; Tang, Y.; Kida, K. Characterisation of the microbial community in three types of fermentation starters used for Chinese liquor production. J. Inst. Brew. Distill. 2015, 121, 620–627. [Google Scholar] [CrossRef]
- Liu, S.; Bischoff, K.M.; Leathers, T.D.; Quresh, N.; Rich, J.O.; Hughes, S.R. Adaptation of lactic acid bacteria to butanol. Biocatal. Agric. Biotechnol. 2012, 1, 57–61. [Google Scholar] [CrossRef]
- Arena, M.P.; Silvain, A.; Normanno, G.; Grieco, F.; Drider, D.; Spano, G.; Fiocco, D. Use of Lactobacillus plantarum strains as a bio-control strategy against food borne pathogenic microorganisms. Front. Microbiol. 2016, 7, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corsetti, A.; Valmorri, S. Lactic Acid Bacteria | Lactobacillus spp.: Lactobacillus plantarum. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J., Ed.; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Behera, S.S.; Ray, R.C.; Zdolec, N. Lactobacillus plantarum with functional properties: An approach to increase safety and shelf-life of fermented foods. BioMed Res. Int. 2018, 2018, 9361614. [Google Scholar] [CrossRef] [Green Version]
- Seddik, H.A.; Bendali, F.; Gancel, F.; Fliss, I.; Spano, G.; Drider, D. Lactobacillus plantarum and its probiotic and food potentialities. Probiotics Antimicrob. Proteins 2017, 9, 111–122. [Google Scholar] [CrossRef]
- Arasu, M.V.; Al-Dhabi, N.A.; Ilavenil, S.; Choi, K.C.; Srigopalram, S. In vitro importance of probiotic Lactobacillus plantarum related to medical field. Saudi J. Biol. Sci. 2016, 23, S6–S10. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhao, J.B.; Zhao, M.; Yang, Y.L.; Jiang, W.H.; Yang, S. Screening and characterisation of butanol-tolerant micro-organisms. Lett. Appl. Microbiol. 2010, 50, 373–379. [Google Scholar] [CrossRef]
- Russmayer, H.; Marx, H.; Sauer, M. Microbial 2-butanol production with Lactobacillus diolivorans. Biotechnol. Fuels 2019, 12, 262. [Google Scholar] [CrossRef]
- Hamill, P.G.; Stevenson, A.; McMullan, P.; Williams, J.P.; Lewis, A.D.R.; Sudharsan, S.; Hallsworth, J.E. Microbial lag phase can be indicative of, or independent from, cellular stress. Sci. Rep. 2020, 10, 5948. [Google Scholar] [CrossRef] [PubMed]
- G-Alegria, E.; Lopez, I.; Ruiz, I.J.; Saenz, J.; Fernandez, E.; Zarazaga, M.; Ruiz-Larrea, F. High tolerance of wild Lactobacillus plantarum and Oenococcus oeni strains to lyophilisation and stress environmental conditions of acid pH and ethanol. FEMS Microbiol. Lett. 2004, 230, 53–61. [Google Scholar] [CrossRef]
- Benmechernene, Z.; Chentouf, H.F.; Yahia, B.; Fatima, G.; Quintela-Baluja, M.; Calo-Mata, P.; Barros-Velazquez, J. Technologoical aptitude and applications of Leuconostoc mesenteroides bioactive strains isolated from Algerian raw camel milk. BioMed Res. Int. 2013, 2013, 418132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argyri, A.A.; Zoumpopoulou, G.; Karatzas, K.A.G.; Tsakalidou, E.; Nychas, G.J.E.; Panagou, E.Z.; Tassou, C.C. Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food Microbiol. 2013, 33, 282–291. [Google Scholar] [CrossRef]
- Morais, S.; Shterzer, N.; Grinberg, I.R.; Mathiesen, G.; Eijisink, V.G.H.; Axelsson, L.; Lamed, R.; Bayer, E.A.; Mizrahi, I. Establishment of a simple Lactobacillus plantarum cell consortium for cellulase-xylasnase synergistic interactions. Appl. Environ. Microbiol. 2013, 79, 5242–5249. [Google Scholar] [CrossRef] [Green Version]
- Zuroff, T.R.; Xiques, S.B.; Curtis, W.R. Consortia-mediated bioprocessing of cellulose to ethanol with symbiotic Clostridium phytofermentans/yeast co-culture. Biotechnol. Biofuels 2013, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Ge, L.; Zhang, J.; Ding, J.; Chen, R.; Shi, Z. Enhancing acetone biosynthesis and acetone-butanol-ethanol fermentation performance by co-culturing Clostridium acetobutylicum/Saccharomyces cereviseae intergrated with exogenous acetate addition. Bioresour. Technol. 2016, 200, 111–120. [Google Scholar] [CrossRef]
- Liu, Y.F.; Hsieh, C.W.; Chang, Y.S.; Wung, B.S. Effect of acetic acid on ethanol production by Zymomonas mobilis mutant strains through continuos adaptation. BMC Biotechnol. 2017, 17, 63. [Google Scholar] [CrossRef] [Green Version]
Microorganism | Substrate | Product | * Yield (g/g) | Reference |
---|---|---|---|---|
Lactobacillus plantarum | Glucose | Ethanol | 0.40 (0.04) | This study |
Weissella cibari | Glucose | Ethanol | 0.06 (0.00) | This study |
Leuconostoc mesenteroides | Glucose | Ethanol | 0.03 (0.00) | This study |
Lactobacillus plantarum + Leuconostoc mesenteroides | Glucose | Ethanol | 0.45 (0.03) | This study |
Sacharomyces cerevisiae | Sugar beet molasses | Ethanol | 0.40 | [30] |
Recombinant Sacharomyces cerevisiae 1400 (pLNH33) | Glucose + Xylose | Ethanol | 0.46 | [31] |
Thermoanaerobacterium AK17 | Cellulose | Ethanol | 0.40 | [32] |
Weissella cibari | Glucose | Butanol | 0.003 (0.00) | This study |
Leuconostoc mesenteroides | Glucose | Butanol | 0.02 (0.00) | This study |
Lactobacillus plantarum + Leuconostoc mesenteroides | Glucose | Butanol | 0.0003 (0.00) | This study |
Engineered Clostridium tyrobutyricum | Sucrose | Butanol | 0.06 | [33] |
Weissella cibari | Glucose | Acetone | 0.01 (0.001) | This study |
Leuconostoc mesenteroides | Glucose | Acetone | 0.01 (0.00) | This study |
Lactobacillus plantarum + Leuconostoc mesenteroides | Glucose | Acetone | 0.001 (0.00) | This study |
Clostridium acetobutylicum JB200 | Sucrose | Acetone | 0.14 | [34] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ijoma, G.N.; Adegbenro, G.; Rashama, C.; Matambo, T.S. Peculiar Response in the Co-Culture Fermentation of Leuconostoc mesenteroides and Lactobacillus plantarum for the Production of ABE Solvents. Fermentation 2021, 7, 212. https://doi.org/10.3390/fermentation7040212
Ijoma GN, Adegbenro G, Rashama C, Matambo TS. Peculiar Response in the Co-Culture Fermentation of Leuconostoc mesenteroides and Lactobacillus plantarum for the Production of ABE Solvents. Fermentation. 2021; 7(4):212. https://doi.org/10.3390/fermentation7040212
Chicago/Turabian StyleIjoma, Grace N., Gbenga Adegbenro, Charles Rashama, and Tonderayi S. Matambo. 2021. "Peculiar Response in the Co-Culture Fermentation of Leuconostoc mesenteroides and Lactobacillus plantarum for the Production of ABE Solvents" Fermentation 7, no. 4: 212. https://doi.org/10.3390/fermentation7040212
APA StyleIjoma, G. N., Adegbenro, G., Rashama, C., & Matambo, T. S. (2021). Peculiar Response in the Co-Culture Fermentation of Leuconostoc mesenteroides and Lactobacillus plantarum for the Production of ABE Solvents. Fermentation, 7(4), 212. https://doi.org/10.3390/fermentation7040212