Anti-Oxidative and Anti-Inflammatory Activities of Astragalus membranaceus Fermented by Lactiplantibacillus plantarum on LPS-Induced RAW 264.7 Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Fermentation Sample
2.2. Anti-Oxidative Activity of A. membranaceus Extract Fermented by L. plantarum (AM-LP)
2.2.1. DPPH Radical Scavenging Assay
2.2.2. Total Phenolic Content (TPC) Assay
2.2.3. Reducing Power Assay
2.2.4. Hydrogen Peroxide (H2O2) Content Assay
2.3. UPLC-ESI-MS/MS Analysis
2.3.1. Preparation of Sample and Standard Solution
2.3.2. Conditions of Analysis
2.4. Cell Culture
2.5. Cell Viability
2.6. Anti-Inflammatory Activity of AM-LP
2.6.1. Determination of NO Production
2.6.2. mRNA Extraction and Quantitative Real Time-PCR
2.7. Statistical Analysis
3. Results & Discussion
3.1. Anti-Oxidative Activity of AM-NF and AM-LP
3.2. Method Validation of Calycosin for AM-NF and AM-LP Analysis by UPLC
3.3. Analysis of Calycosin in AM-NF and AM-LP Using UPLC-ESI-MS/MS
3.4. Viability of AM‒LP in LPS-Induced RAW 264.7 Cells
3.5. AM‒LP Inhibits TNF-α, iNOS, COX-2, NF- κB Levels in LPS-Induced RAW 264.7 Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rhee, S.G.; Bae, Y.S.; Lee, S.-R.; Kwon, J. Hydrogen peroxide: A key messenger that modulates protein phosphorylation through cysteine oxidation. Sci. Signal. 2000, 2000, pe1. [Google Scholar] [CrossRef] [PubMed]
- Guha, M.; Mackman, N. LPS induction of gene expression in human monocytes. Cell. Signal. 2001, 13, 85–94. [Google Scholar] [CrossRef]
- Koh, T.J.; DiPietro, L.A. Inflammation and wound healing: The role of the macrophage. Expert Rev. Mol. Med. 2011, 13, E23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tak, P.P.; Firestein, G.S. NF-κB: A key role in inflammatory diseases. J. Clin. Investig. 2001, 107, 7–11. [Google Scholar] [CrossRef]
- Sorci-Thomas, M.G.; Thomas, M.J. Microdomains, inflammation, and atherosclerosis. Circ. Res. 2016, 118, 679–691. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Jiang, H.; Ren, H.; Hu, X.; Wang, X.; Han, C. AGEs and chronic subclinical inflammation in diabetes: Disorders of immune system. Diabetes Metab. Res. 2015, 31, 127–137. [Google Scholar] [CrossRef]
- Lee, K.-J.; Park, M.-H.; Park, Y.-H.; Lim, S.-H.; Kim, K.-H.; Kim, Y.-G.; Ahn, Y.-S.; Kim, H.-Y. Antioxidant activity and nitric oxide production of ethanol extracts from Astragali membranaceus Bunge and A. membranaceus Bunge var mongholicus Hisiao. Korean J. Food Nutr. 2011, 40, 1793–1796. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.X.; Zhao, G.D.; Xiong, W.; Linghu, K.G.; Ma, Q.S.; San Cheang, W.; Yu, H.; Wang, Y. Immunomodulatory effects of a new whole ingredients extract from Astragalus: A combined evaluation on chemistry and pharmacology. Chin. Med. 2019, 14, 12. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.J.; Lim, K.R.; Jung, T.K.; Yoon, K.-S. Anti-aging effect of Astragalus membranaceus root extract. J. Soc. Cosmet. Sci. Korea 2007, 33, 33–40. [Google Scholar]
- Kim, M.-J.; Kim, J.-Y.; Jung, T.-K.; Choi, S.-W.; Yoon, K.-S. Skin anti-aging effect of Forsythia viridissima L. extract. KSBB J. 2006, 21, 444–450. [Google Scholar]
- Jung, S. Cosmetic Application of Sprouts of Scutellaria baicalensis and Astragalus membranaceus. Ph.D. Thesis, Kyung Hee University, Seoul, Korea, 2018. [Google Scholar]
- Bae, E.-A.; Han, M.J.; Kim, E.-J.; Kim, D.-H. Transformation of ginseng saponins to ginsenoside Rh 2 by acids and human intestinal bacteria and biological activities of their transformants. Arch. Pharm. Res. 2004, 27, 61–67. [Google Scholar] [CrossRef]
- Tannock, G.W. Probiotic properties of lactic-acid bacteria: Plenty of scope for fundamental R & D. Trends Biotechnol. 1997, 15, 270–274. [Google Scholar]
- Jeon, J.-M.; Choi, S.-K.; Kim, Y.-J.; Jang, S.-J.; Cheon, J.-W.; Lee, H.-S. Antioxidant and antiaging effect of ginseng berry extract fermented by lactic acid bacteria. J. Soc. Cosmet. Sci. Korea 2011, 37, 75–81. [Google Scholar]
- Park, S.-J.; Kim, D.-H.; Paek, N.-S.; Kim, S.-S. Preparation and quality characteristics of the fermentation product of ginseng by lactic acid bacteria (FGL). J. Ginseng Res. 2006, 30, 88–94. [Google Scholar]
- Gupta, S.; Abu-Ghannam, N. Probiotic fermentation of plant based products: Possibilities and opportunities. Crit. Rev. Food Sci. Nutr. 2012, 52, 183–199. [Google Scholar] [CrossRef]
- Kim, S.; Lim, S. Functionality and research trend of probiotics. Food Ind. Nutr. 2018, 23, 18–24. [Google Scholar]
- Kim, H.; Kim, J.-S.; Kim, Y.; Jeong, Y.; Kim, J.-E.; Paek, N.-S.; Kang, C.-H. Antioxidant and probiotic properties of Lactobacilli and Bifidobacteria of human origins. Biotechnol. Bioprocess. Eng. 2020, 25, 421–430. [Google Scholar] [CrossRef]
- Abe, N.; Nemoto, A.; Tsuchiya, Y.; Hojo, H.; Hirota, A. Studies on the 1, 1-diphenyl-2-picrylhydrazyl radical scavenging mechanism for a 2-pyrone compound. Biosci. Biotechnol. Biochem. 2000, 64, 306–313. [Google Scholar] [CrossRef]
- Ak, T.; Gülçin, İ. Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact. 2008, 174, 27–37. [Google Scholar] [CrossRef]
- Cheung, L.; Cheung, P.C.; Ooi, V.E. Antioxidant activity and total phenolics of edible mushroom extracts. Food Chem. 2003, 81, 249–255. [Google Scholar] [CrossRef]
- Han, J.M.; Chung, H.-J. Quality characteristics of Yanggaeng added with blueberry powder. Korean J. Food Preserv. 2013, 20, 265–271. [Google Scholar] [CrossRef] [Green Version]
- Oyaizu, M. Antioxidative activities of browning reaction prepared from glucosamine. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Reissig, J.L.; Strominger, J.L.; Leloir, L.F. A modified colorimetric method for the estimation of N-acetylamino sugars. J. Biol. Chem. 1955, 217, 959–966. [Google Scholar] [CrossRef]
- Baumann, J. Prostaglandin synthetase inhibiting O_2-radical scavenging properties of some flavonoids and related phenolic compounds. Naunyn Schmiedebergs Arch. Pharmacol. 1979, 308, 27–32. [Google Scholar]
- Kim, Y.-M.; Jeong, H.-J.; Chung, H.-S.; Seong, J.-H.; Kim, H.-S.; Kim, D.-S.; Lee, Y.-G. Anti-oxidative activity of the extracts from Houttuynia cordata Thunb. fermented by lactic acid bacteria. J. Life Sci. 2016, 26, 468–474. [Google Scholar] [CrossRef]
- Song, B.N.; Lee, D.B.; Lee, S.H.; Park, B.R.; Choi, J.H.; Kim, Y.S.; Park, S.Y. Physicochemical properties and Antioxidant Activity of Extract from Astragalus membranaceus Bunge Leaf Fermented with Lactic Acid Bacteria. Korean J. Crop. Sci. 2020, 28, 428–434. [Google Scholar] [CrossRef]
- Guideline, I.H.T. Validation of analytical procedures: Text and methodology. Q2 (R1) 2005, 1, 05. [Google Scholar]
- Wang, F.; Zhao, S.; Li, F.; Zhang, B.; Qu, Y.; Sun, T.; Luo, T.; Li, D. Investigation of antioxidant interactions between Radix Astragali and Cimicifuga foetida and identification of synergistic antioxidant compounds. PLoS ONE 2014, 9, e87221. [Google Scholar] [CrossRef]
- Ko, J.K.-S.; Lam, F.Y.-L.; Cheung, A.P.-L. Amelioration of experimental colitis by Astragalus membranaceus through anti-oxidation and inhibition of adhesion molecule synthesis. World J. Gastroenterol. 2005, 11, 5787. [Google Scholar] [CrossRef]
- Ma, R.; Yuan, F.; Wang, S.; Liu, Y.; Fan, T.; Wang, F. Calycosin alleviates cerulein-induced acute pancreatitis by inhibiting the inflammatory response and oxidative stress via the p38 MAPK and NF-κB signal pathways in mice. Biomed. Pharmacother. 2018, 105, 599–605. [Google Scholar] [CrossRef]
- MacMicking, J.; Xie, Q.-W.; Nathan, C. Nitric oxide and macrophage function. Annu. Rev. Immunol. 1997, 15, 323–350. [Google Scholar] [CrossRef] [PubMed]
- Nathan, C.; Xie, Q.-W. Nitric oxide synthases: Roles, tolls, and controls. Cell 1994, 78, 915–918. [Google Scholar] [CrossRef]
- Wink, D.A.; Miranda, K.M.; Espey, M.G.; Pluta, R.M.; Hewett, S.J.; Colton, C.; Vitek, M.; Feelisch, M.; Grisham, M.B. Mechanisms of the antioxidant effects of nitric oxide. Antioxid. Redox Signal. 2001, 3, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Gong, G.; Zheng, Y.; Yang, Y.; Sui, Y.; Wen, Z. Pharmaceutical Values of Calycosin: One Type of Flavonoid Isolated from Astragalus. Evid.-Based Complementary Altern. Med. 2021, 2021, 9952578. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Liu, Q.-M.; He, X.-W.; Huang, F.; Zhang, M.-W.; Jiang, J.-G. Identification of bioactives from Astragalus chinensis Lf and their antioxidant, anti-inflammatory and anti-proliferative effects. J. Food Sci. Technol. 2017, 54, 4315–4323. [Google Scholar] [CrossRef] [PubMed]
- Delgado, A.V.; McManus, A.T.; Chambers, J.P. Production of tumor necrosis factor-alpha, interleukin 1-beta, interleukin 2, and interleukin 6 by rat leukocyte subpopulations after exposure to substance P. Neuropeptides 2003, 37, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Park, H. Anti-Oxidant and Anti-Inflammation Activity of the Fermented Astragalus membranaceus Extract by Lactiplantibacillus plantarum. Master’s Thesis, Semyung University, Jecheon-si, Chungcheongbuk-do, Korea, 2021. [Google Scholar]
Instruments | NEXERA G2 (Shimadzu, Kyoto, Japan) | ||
Column | Zorbax Eclipse Plus C18 column (100 mm × 4.6 mm, 3.5 µm) | ||
Column temperature | 25 °C | ||
Flow rate | 0.7 mL/min | ||
Injection volume | 5.0 μL | ||
Mobil phase | A: 0.1% formic acid in water B: 0.1% formic acid in acetonitrile | ||
Gradient Conditions | Time (min) | Solvent A (%) | Solvent B (%) |
0 | 80 | 20 | |
2 | 80 | 20 | |
12 | 5 | 95 | |
14 | 5 | 95 | |
18 | 80 | 20 | |
20 | 80 | 20 | |
Mass spectrometer equipped | API3200QTRAP (Applied Biosystem, CA, USA) | ||
Ion sprey voltage (ISV): 5200 V | GS1: 40 psi | ||
Curtain gas: 10 psi | GS2: 40 psi | ||
CAD gas: medium | Capillary temperature: 500 °C |
Symbol | Gene Name | Assay ID |
---|---|---|
GAPDH | Glyceraldehyde-3-phosphate dehydrogenase | Mm99999915_g1 |
TNF-α | Tumor necrosis factor alpha | Mm00443258_m1 |
iNOS | Inducible nitic oxide synthase | Mm00440502_m1 |
COX-2 | Cyclooxygenase-2 | Mm00478374_m1 |
NF-κB | Nuclear factor kappa-light-chain-enhancer of activated B cells | Mm00476361_m1 |
Standards | Calibration Curve (1) | R (2) | LOD (3) (ng/mL) | LOQ (4) (ng/mL) |
---|---|---|---|---|
Calycosin | Y = 606.15X + 50564 | 1.00 | 169.97 | 1.94 |
Standard | Calculated Concentration (ng/mL) | ||
---|---|---|---|
AM-NF | AM-LP MG5145 | AM-LP MG5276 | |
Calycosin | 17.24 ± 0.11 | 139.94 ± 0.23 | 351.01 ± 0.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, H.M.; Lee, J.Y.; Kim, M.Y.; Kang, C.-H.; Hwang, H.S. Anti-Oxidative and Anti-Inflammatory Activities of Astragalus membranaceus Fermented by Lactiplantibacillus plantarum on LPS-Induced RAW 264.7 Cells. Fermentation 2021, 7, 252. https://doi.org/10.3390/fermentation7040252
Park HM, Lee JY, Kim MY, Kang C-H, Hwang HS. Anti-Oxidative and Anti-Inflammatory Activities of Astragalus membranaceus Fermented by Lactiplantibacillus plantarum on LPS-Induced RAW 264.7 Cells. Fermentation. 2021; 7(4):252. https://doi.org/10.3390/fermentation7040252
Chicago/Turabian StylePark, Hye Min, Ji Yeon Lee, Min Young Kim, Chang-Ho Kang, and Hyung Seo Hwang. 2021. "Anti-Oxidative and Anti-Inflammatory Activities of Astragalus membranaceus Fermented by Lactiplantibacillus plantarum on LPS-Induced RAW 264.7 Cells" Fermentation 7, no. 4: 252. https://doi.org/10.3390/fermentation7040252
APA StylePark, H. M., Lee, J. Y., Kim, M. Y., Kang, C. -H., & Hwang, H. S. (2021). Anti-Oxidative and Anti-Inflammatory Activities of Astragalus membranaceus Fermented by Lactiplantibacillus plantarum on LPS-Induced RAW 264.7 Cells. Fermentation, 7(4), 252. https://doi.org/10.3390/fermentation7040252