A Method for WWTP Sludge Valorization through Hygienization by Electron Beam Treatment
Abstract
:1. Introduction
2. Materials and Methods
Sample Preparation and Irradiation
3. Results and Discussion
3.1. Results of Sludge Hygienization—Pathogenic Bacteria
3.2. Results of Sludge Hygienization—Helminths Eggs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Dymaczewski, Z.; Oleszkiewicz, J.A.; Sozański, M.M. Manual for Treatment Plant Operators. (Poradnik Eksploatatora Oczyszczalni Ścieków), 2nd ed.; Polskie Zrzeszenie Inżynierów i Techników Sanitarnych: Poznań, Poland, 1997. (In Polish) [Google Scholar]
- Chahal, C.; van den Akker, B.; Young, F.; Fran-co, C.; Blackbeard, J.; Monis, P. Pathogen and Particle Associations in Wastewater: Significance and Implications for-Treatment and Disinfection Processes. Adv. Appl. Microbiol. 2016, 97, 63–119. [Google Scholar] [PubMed]
- Central Statistical Office of Poland. Statistical Yearbook of the Republic of Poland; Statistics Poland: Warsaw, Poland, 2006; 2011, p. 2015. Available online: stat.gov.pl (accessed on 1 August 2021).
- Regulation of Minister of Environment of 16th of July 2015 on Admission of Wastes to Storage on Landfills. Available online: http://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20150001277/O/D20151277.pdf (accessed on 16 August 2021).
- Regulation of Minister of Environment of 6th of February 2015 on Municipal Sewage Sludge. Available online: http://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20150000257/O/D20150257.pdf (accessed on 15 August 2021).
- Amahmid, O.; Asmama, S.; Bouhoum, K. Urban wastewater treatment in stabilization ponds: Occurrence and removal of pathogens. Urban Water J. 2002, 4, 255–262. [Google Scholar] [CrossRef]
- Chaouaa, S.; Boussaaa, S.; Khadraa, A.; Boumezzougha, A. Efficiency of two sewage treatment systems (activated sludge and natural lagoons) for helminth egg removal in Morocco. J. Infect. Public Health 2018, 11, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Zdybel, J.; Cencek, T.; Karamon, J.; Kłapeć, T. Effectiveness of selected stages of wastewater treatment in elimination of eggs of intestinal parasites. Bull. Vet. Inst. Pulawy 2015, 59, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Zdybel, J.; Karamon, J.; Dąbrowska, M.; Różycki, E.; Bilska-Zając, T.; Kłapeć, T.; Cencek, T. Parasitological contamination with eggs Ascaris spp., Trichuris spp. and Toxocara spp. of dehydrated municipal sewage sludge in Poland. Environ. Pol. 2019, 248, 621–626. [Google Scholar] [CrossRef] [PubMed]
- Hudzik, G.; Wodzisławska-Czapla, D. Threats related to the presence of eggs of intestinal parisites in sludge. Przegl. Epidemiol. 2011, 65, 459–461. (In Polish) [Google Scholar] [PubMed]
- Bobrowski, K. Radiation chemistry of liquid systems. In Applications of Ionizing Radiation in Material Processing; Sun, Y., Chmielewski, A.G., Eds.; Institute of Nuclear Chemistry and Technology: Warsaw, Poland, 2017; pp. 81–88. [Google Scholar]
- Bacq, Z.M.; Alexander, P. Fundamentals of Radiobiology; Pergamon Press: London, UK, 1966. [Google Scholar]
- Garg, N.K.; Varshney, L. Gamma Radiation Technology for Hygienization of Municipal Dry Sewage Sludge. Energy Environ. 2018, 80, 103–106. [Google Scholar]
- Priyadarshini, J.; Roy, P.K.; Mazumdar, A. Qualitative and quantitative assessment of sewage sludge by gamma irradiation with pasteurization as a tool for hygienization. J. Inst. Eng. (India) 2014, 95, 49–54. [Google Scholar] [CrossRef]
- Lessel, T.; Hennig, E. The Pilot Plant in Geiselbullach for the Gamma Irradiation, Operation, Experience and Cost Calculations. Available online: https://inis.iaea.org/collection/NCLCollectionStore/_Public/08/330/8330700.pdf (accessed on 21 September 2021).
- Chmielewski, A.G.; Zimek, Z.; Bryl-Sandelewska, T.; Kosmal, W.; Kalisza, L.; Kaźmierczuk, M. Disinfection of municipal sewage sludges in installation equipped with electron accelerator. Radiat. Phys. Chem. 1995, 46, 1071–1074. [Google Scholar] [CrossRef]
- Kim, Y.; Han, B.; Kim, J.K.; Ben Yaacov, N.; Jeong, K.Y. Design of electron beam sludge hygienization plant. In Proceedings of the International Topical Meeting on Nuclear Research Applications and Utilization of Accelerators, Vienna, Austria, 4–8 May 2009; Available online: https://pdfs.semanticscholar.org/81ff/f088f4e2fbea265d8faa685f83b47c53a800.pdf (accessed on 30 October 2019).
- Naign, T.T.; Lay, K.K. Utilization of gamma radiation in industrial wastewater treatment. Int. J. Mech. Prod. Eng. 2015, 3, 1–5. [Google Scholar]
- Chu, L.; Wang, J.; Wang, B. Effect of gamma irradiation on activities and physiochemical characteristics of sewage sludge. Biochem. Eng. J. 2011, 45, 34–39. [Google Scholar] [CrossRef]
- Engohang-Ndong, J.; Uribe, R.M.; Gregory, R.; Gangoda, M.; Nickelsen, M.G.; Loar, P. Effect of electron beam irradiation on bacterial and Ascaris ova loads and volatile organic compounds in municipal sewage sludge. Radiat. Phys. Chem. 2015, 112, 6–12. [Google Scholar] [CrossRef]
- Blach, M.I.; Scarpino, P.V.; O’Donnell, C.J.; Meyer, K.B.; Jones, J.V.; Kaneshiro, S.E. Survival rates of parasite eggs in sludge during aerobic and anaerobic digestion. Appl. Environ. Microbiol. 1982, 44, 1138–1143. [Google Scholar] [CrossRef] [Green Version]
- Franke-Whittle, I.H.; Insam, H. Treatment alternatives of slaughterhouse wastes, and their effect on the inactivation of different pathogens: A review. Crit. Rev. Microbiol. 2013, 39, 139–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seruga, P.; Krzywonos, M.; Paluszak, Z.; Urbanowska, A.; Pawlak-Kruczek, H.; Niedźwiecki, Ł.; Pieńkowska, H. Pathogen Reduction Potential in Anaerobic Digestion of Organic Fraction of Municipal Solid Waste and Food Waste. Molecules 2020, 25, 275. [Google Scholar] [CrossRef] [Green Version]
- El-Motaium, R.; Ezzat, H.E.M.; Et-Batanony, M.; Kreuzig, R.; Abo-El.Seoud, M. Irradiated Sewage Sludge for Increased Crop Production—I. Pathogens and Poly-Cyclic Aromatic Hydrocarbons; IAEA-TECDOC-CD—1317; International Atomic Energy Agency: Vienna, Austria, 2002; pp. 67–73. Available online: https://inis.iaea.org/search/search.aspx?orig_q=RN:34010893 (accessed on 30 October 2019).
Dose (kGy) | Detected Species | Result (CFU) |
---|---|---|
0 | Escherichia coli, | 6.2 × 104 |
Salmonella spp. | 9.2 × 102 | |
Clostridium perfringens | 1.1 × 102 | |
2 | Escherichia coli, | 9.8 × 103 |
Salmonella spp. | 1.3 × 102 | |
Clostridium perfringens | 0.9 × 102 | |
3 | Escherichia coli, | 1.4 × 102 |
Salmonella spp. | 0.4 × 102 | |
Clostridium perfringens | ca.0.2 × 102 | |
4 | Escherichia coli, | none detected |
Salmonella spp. | none detected | |
Clostridium perfringens | none detected | |
5 | Escherichia coli, | none detected |
Salmonella spp. | none detected | |
Clostridium perfringens | none detected |
Dose (kGy) | Detected Species | Result (CFU) |
---|---|---|
0 | Escherichia coli, | 4.9 × 104 |
Salmonella spp. | 7.1 × 102 | |
Clostridium perfringens | 0.6 × 102 | |
2 | Escherichia coli, | 9.8 × 103 |
Salmonella spp. | 0.8 × 102 | |
Clostridium perfringens | 0.2 × 102 | |
3 | Escherichia coli, | 0.4 × 102 |
Salmonella spp. | ca.0.1 × 102 | |
Clostridium perfringens | none detected | |
4 | Escherichia coli, | none detected |
Salmonella spp. | none detected | |
Clostridium perfringens | none detected | |
5 | Escherichia coli, | none detected |
Salmonella spp. | none detected | |
Clostridium perfringens | none detected |
Dose (kGy) | Detected Species | Result (CFU) |
---|---|---|
0 | Escherichia coli, | 6.1 × 104 |
Salmonella spp. | 4.2 × 103 | |
Clostridium perfringens | 0.9 × 102 | |
1.8 | Escherichia coli, | 6.4 × 103 |
Salmonella spp. | 0.3 × 103 | |
Clostridium perfringens | 0.1 × 102 | |
3.7 | Escherichia coli, | 0.2 × 103 |
Salmonella spp. | <0.1 × 102 | |
Clostridium perfringens | none detected | |
5.5 | Escherichia coli, | none detected |
Salmonella spp. | none detected | |
Clostridium perfringens | none detected | |
7.5 | Escherichia coli, | none detected |
Salmonella spp. | none detected | |
Clostridium perfringens | none detected | |
9 | Escherichia coli, | none detected |
Salmonella spp. | none detected | |
Clostridium perfringens | none detected |
Dose (kGy) | Detected Species | Result (Number of Living Eggs) |
---|---|---|
0 | Ascaris spp. | 21 |
Trichuris spp. | 9 | |
Toxocara spp. | 3 | |
2 | Ascaris spp. | 16 |
Trichuris spp. | 4 | |
Toxocara spp. | 1 | |
3 | Ascaris spp. | 4 |
Trichuris spp. | none detected | |
Toxocara spp. | none detected | |
4 | Ascaris spp. | none detected |
Trichuris spp. | none detected | |
Toxocara spp. | none detected | |
5 | Ascaris spp. | none detected |
Trichuris spp. | none detected | |
Toxocara spp. | none detected |
Dose (kGy) | Detected Species | Result (Number of Living Eggs) |
---|---|---|
0 | Ascaris spp. | 17 |
Trichuris spp. | 4 | |
Toxocara spp. | 2 | |
2 | Ascaris spp. | 11 |
Trichuris spp. | 1 | |
Toxocara spp. | none detected | |
3 | Ascaris spp. | 3 |
Trichuris spp. | none detected | |
Toxocara spp. | none detected | |
4 | Ascaris spp. | none detected |
Trichuris spp. | none detected | |
Toxocara spp. | none detected | |
5 | Ascaris spp. | none detected |
Trichuris spp. | none detected | |
Toxocara spp. | none detected |
Dose (kGy) | Detected Species | Result (CFU) |
---|---|---|
0 | Ascaris spp. | 27 |
Trichuris spp. | 9 | |
Toxocara spp. | 4 | |
1.8 | Ascaris spp. | 16 |
Trichuris spp. | 6 | |
Toxocara spp. | 1 | |
3.7 | Ascaris spp. | 7 |
Trichuris spp. | 2 | |
Toxocara spp. | none detected | |
5.5 | Ascaris spp. | none detected |
Trichuris spp. | none detected | |
Toxocara spp. | none detected | |
7.5 | Ascaris spp. | none detected |
Trichuris spp. | none detected | |
Toxocara spp. | none detected | |
9 | Ascaris spp. | none detected |
Trichuris spp. | none detected | |
Toxocara spp. | none detected |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sudlitz, M.; Chmielewski, A.G. A Method for WWTP Sludge Valorization through Hygienization by Electron Beam Treatment. Fermentation 2021, 7, 302. https://doi.org/10.3390/fermentation7040302
Sudlitz M, Chmielewski AG. A Method for WWTP Sludge Valorization through Hygienization by Electron Beam Treatment. Fermentation. 2021; 7(4):302. https://doi.org/10.3390/fermentation7040302
Chicago/Turabian StyleSudlitz, Marcin, and Andrzej G. Chmielewski. 2021. "A Method for WWTP Sludge Valorization through Hygienization by Electron Beam Treatment" Fermentation 7, no. 4: 302. https://doi.org/10.3390/fermentation7040302
APA StyleSudlitz, M., & Chmielewski, A. G. (2021). A Method for WWTP Sludge Valorization through Hygienization by Electron Beam Treatment. Fermentation, 7(4), 302. https://doi.org/10.3390/fermentation7040302