Adaptive Network Fuzzy Inference System and Particle Swarm Optimization of Biohydrogen Production Process
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Savelenko, V.D.; Ershov, M.A.; Kapustin, V.M.; Chernysheva, E.A.; Abdellatief, T.M.; Makhova, U.A.; Makhmudova, A.E.; Abdelkareem, M.A.; Olabi, A. Pathways resilient future for developing a sustainable E85 fuel and prospects towards its applications. Sci. Total Environ. 2022, 844, 157069. [Google Scholar] [CrossRef] [PubMed]
- Atilhan, S.; Park, S.; El-Halwagi, M.M.; Atilhan, M.; Moore, M.; Nielsen, R.B. Green hydrogen as an alternative fuel for the shipping industry. Curr. Opin. Chem. Eng. 2021, 31, 100668. [Google Scholar] [CrossRef]
- Posso, F.; Galeano, M.; Baranda, C.; Franco, D.; Rincón, A.; Zambrano, J.; Cavaliero, C.; Lópes, D. Towards the Hydrogen Economy in Paraguay: Green hydrogen production potential and end-uses. Int. J. Hydrogen Energy 2022, 47, 30027–30049. [Google Scholar] [CrossRef]
- Nikolaidis, P.; Poullikkas, A. A comparative overview of hydrogen production processes. Renew. Sustain. Energy Rev. 2017, 67, 597–611. [Google Scholar] [CrossRef]
- Acar, C.; Dincer, I. Review and evaluation of hydrogen production options for better environment. J. Clean. Prod. 2019, 218, 835–849. [Google Scholar] [CrossRef]
- Nassef, A.M.; Fathy, A.; Abdelkareem, M.A.; Olabi, A. Increasing bio-hydrogen production-based steam reforming ANFIS based model and metaheuristics. Eng. Anal. Bound. Elem. 2022, 138, 202–210. [Google Scholar] [CrossRef]
- Miftah, A.K.; Sittijunda, S.; Imai, T.; Salakkam, A.; Reungsang, A. Biohydrogen and Methane Production from Sugarcane Leaves Pretreated by Deep Eutectic Solvents and Enzymatic Hydrolysis by Cellulolytic Consortia. Fermentation 2022, 8, 396. [Google Scholar] [CrossRef]
- Argun, H.; Kargi, F. Bio-hydrogen production by different operational modes of dark and photo-fermentation: An overview. Int. J. Hydrogen Energy 2011, 36, 7443–7459. [Google Scholar] [CrossRef]
- Okonkwo, O.; Papirio, S.; Trably, E.; Escudie, R.; Lakaniemi, A.-M.; Esposito, G. Enhancing thermophilic dark fermentative hydrogen production at high glucose concentrations via bioaugmentation with Thermotoga neapolitana. Int. J. Hydrogen Energy 2020, 45, 17241–17249. [Google Scholar] [CrossRef]
- Patel, S.K.; Kumar, P.; Mehariya, S.; Purohit, H.J.; Lee, J.-K.; Kalia, V.C. Enhancement in hydrogen production by co-cultures of Bacillus and Enterobacter. Int. J. Hydrogen Energy 2014, 39, 14663–14668. [Google Scholar] [CrossRef]
- Wu, X.-B.; Huang, G.; Bai, L.-P.; Long, M.-N.; Chen, Q.-X. Enhanced hydrogen production from xylose and bamboo stalk hydrolysate by overexpression of xylulokinase and xylose isomerase in Klebsiella oxytoca HP1. Int. J. Hydrogen Energy 2014, 39, 221–230. [Google Scholar] [CrossRef]
- Dessì, P.; Lakaniemi, A.-M.; Lens, P.N. Biohydrogen production from xylose by fresh and digested activated sludge at 37, 55 and 70 °C. Water Res. 2017, 115, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Mäkinen, A.E.; Nissilä, M.E.; Puhakka, J.A. Dark fermentative hydrogen production from xylose by a hot spring enrichment culture. Int. J. Hydrogen Energy 2012, 37, 12234–12240. [Google Scholar] [CrossRef]
- Kongjan, P.; Min, B.; Angelidaki, I. Biohydrogen production from xylose at extreme thermophilic temperatures (70 °C) by mixed culture fermentation. Water Res. 2009, 43, 1414–1424. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, H.; Tang, Z.; Wang, X.; Bai, J. Effects of pH value and substrate concentration on hydrogen production from the anaerobic fermentation of glucose. Int. J. Hydrogen Energy 2008, 33, 7413–7418. [Google Scholar] [CrossRef]
- Hamilton, C.; Calusinska, M.; Baptiste, S.; Masset, J.; Beckers, L.; Thonart, P.; Hiligsmann, S. Effect of the nitrogen source on the hydrogen production metabolism and hydrogenases of Clostridium butyricum CWBI1009. Int. J. Hydrogen Energy 2018, 43, 5451–5462. [Google Scholar] [CrossRef]
- Amon, J.; Titgemeyer, F.; Burkovski, A. Common patterns—Unique features: Nitrogen metabolism and regulation in Gram-positive bacteria. FEMS Microbiol. Rev. 2010, 34, 588–605. [Google Scholar] [CrossRef]
- Lin, C.; Lay, C. Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. Int. J. Hydrogen Energy 2004, 29, 41–45. [Google Scholar] [CrossRef]
- Lin, C.; Cheng, C. Fermentative hydrogen production from xylose using anaerobic mixed microflora. Int. J. Hydrogen Energy 2006, 31, 832–840. [Google Scholar] [CrossRef]
- Lee, D.-J.; Show, K.-Y.; Su, A. Dark fermentation on biohydrogen production: Pure culture. Bioresour. Technol. 2011, 102, 8393–8402. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Hung, C.-H.; Chen, C.-H.; Cheng, L.-H. Effects of initial cultivation pH on fermentative hydrogen production from xylose using natural mixed cultures. Process Biochem. 2006, 41, 1383–1390. [Google Scholar] [CrossRef]
- Nassef, A.M.; Fathy, A.; Sayed, E.T.; Abdelkareem, M.A.; Rezk, H.; Tanveer, W.H.; Olabi, A. Maximizing SOFC performance through optimal parameters identification by modern optimization algorithms. Renew. Energy 2019, 138, 458–464. [Google Scholar] [CrossRef]
- Nassef, A.M.; Sayed, E.T.; Rezk, H.; Abdelkareem, M.A.; Rodriguez, C.; Olabi, A. Fuzzy-modeling with Particle Swarm Optimization for enhancing the production of biodiesel from Microalga. Energy Sources Part A Recover. Util. Environ. Eff. 2018, 41, 2094–2103. [Google Scholar] [CrossRef]
- Inayat, A.; Nassef, A.M.; Rezk, H.; Sayed, E.T.; Abdelkareem, M.A.; Olabi, A. Fuzzy modeling and parameters optimization for the enhancement of biodiesel production from waste frying oil over montmorillonite clay K-30. Sci. Total Environ. 2019, 666, 821–827. [Google Scholar] [CrossRef]
- Salameh, T.; Kumar, P.P.; Sayed, E.T.; Abdelkareem, M.A.; Rezk, H.; Olabi, A.G. Fuzzy modeling and particle swarm optimization of Al2O3/SiO2 nanofluid. Int. J. Thermofluids 2021, 10, 100084. [Google Scholar] [CrossRef]
- Abdellatief, T.M.; Ershov, M.A.; Kapustin, V.M.; Chernysheva, E.A.; Savelenko, V.D.; Salameh, T.; Abdelkareem, M.A.; Olabi, A. Novel promising octane hyperboosting using isoolefinic gasoline additives and its application on fuzzy modeling. Int. J. Hydrogen Energy 2021, 47, 4932–4942. [Google Scholar] [CrossRef]
- Abdellatief, T.M.; Ershov, M.A.; Kapustin, V.M.; Chernysheva, E.A.; Savelenko, V.D.; Salameh, T.; Abdelkareem, M.A.; Olabi, A. Uniqueness technique for introducing high octane environmental gasoline using renewable oxygenates and its formulation on Fuzzy modeling. Sci. Total Environ. 2021, 802, 149863. [Google Scholar] [CrossRef]
- Nassef, A.M.; Olabi, A.; Rodriguez, C.; Abdelkareem, M.A.; Rezk, H. Optimal operating parameter determination and modeling to enhance methane production from macroalgae. Renew. Energy 2020, 163, 2190–2197. [Google Scholar] [CrossRef]
- Rezk, H.; Ferahtia, S.; Sayed, E.T.; Abdelkareem, M.A.; Olabi, A.G. Robust parameter identification strategy of solid oxide fuel cells using bald eagle search optimization algorithm. Int. J. Energy Res. 2022, 46, 10535–10552. [Google Scholar] [CrossRef]
- Rezk, H.; Olabi, A.G.; Abdelkareem, M.A.; Sayed, E.T. Boosting the power density of two-chamber microbial fuel cell: Modeling and optimization. Int. J. Energy Res. 2022, in press. [Google Scholar] [CrossRef]
- Sistrom, W.R. A Requirement for Sodium in the Growth of Rhodopseudomonas spheroides. J. Gen. Microbiol. 1960, 22, 778–785. [Google Scholar] [CrossRef]
- Li, Q.; An, D.; Feng, J.; Hu, J.; Cao, W.; Guo, L. Response surface methodology to optimize the conditions for Enterococcus faecium YA002 producing H2 from xylose. Int. J. Hydrogen Energy 2020, 46, 6310–6320. [Google Scholar] [CrossRef]
- An, D.; Li, Q.; Wang, X.; Yang, H.; Guo, L. Characterization on hydrogen production performance of a newly isolated Clostridium beijerinckii YA001 using xylose. Int. J. Hydrogen Energy 2014, 39, 19928–19936. [Google Scholar] [CrossRef]
- Long, C.; Cui, J.; Liu, Z.; Liu, Y.; Long, M.; Hu, Z. Statistical optimization of fermentative hydrogen production from xylose by newly isolated Enterobacter sp. CN1. Int. J. Hydrogen Energy 2010, 35, 6657–6664. [Google Scholar] [CrossRef]
- Hall, B.G. Building Phylogenetic Trees from Molecular Data with MEGA. Mol. Biol. Evol. 2013, 30, 1229–1235. [Google Scholar] [CrossRef]
- Gao, D.; Li, X.; Chen, H. Application of Improved Particle Swarm Optimization in Vehicle Crashworthiness. Math. Probl. Eng. 2019, 2019, 8164609. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salameh, T.; Sayed, E.T.; Olabi, A.G.; Hdaib, I.I.; Allan, Y.; Alkasrawi, M.; Abdelkareem, M.A. Adaptive Network Fuzzy Inference System and Particle Swarm Optimization of Biohydrogen Production Process. Fermentation 2022, 8, 483. https://doi.org/10.3390/fermentation8100483
Salameh T, Sayed ET, Olabi AG, Hdaib II, Allan Y, Alkasrawi M, Abdelkareem MA. Adaptive Network Fuzzy Inference System and Particle Swarm Optimization of Biohydrogen Production Process. Fermentation. 2022; 8(10):483. https://doi.org/10.3390/fermentation8100483
Chicago/Turabian StyleSalameh, Tareq, Enas Taha Sayed, A. G. Olabi, Ismail I. Hdaib, Yazeed Allan, Malek Alkasrawi, and Mohammad Ali Abdelkareem. 2022. "Adaptive Network Fuzzy Inference System and Particle Swarm Optimization of Biohydrogen Production Process" Fermentation 8, no. 10: 483. https://doi.org/10.3390/fermentation8100483
APA StyleSalameh, T., Sayed, E. T., Olabi, A. G., Hdaib, I. I., Allan, Y., Alkasrawi, M., & Abdelkareem, M. A. (2022). Adaptive Network Fuzzy Inference System and Particle Swarm Optimization of Biohydrogen Production Process. Fermentation, 8(10), 483. https://doi.org/10.3390/fermentation8100483