Effects of Different Forage Types on Rumen Fermentation, Microflora, and Production Performance in Peak-Lactation Dairy Cows
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials
2.1.1. Experimental Animals
2.1.2. Experimental Feed
2.2. Animal Feeding and Experimental Design
2.2.1. Feeding and Management
2.2.2. Experimental Design
2.3. Sample Collection and Index Determination
2.3.1. Collection, Preservation and Pretreatment of Rumen Fluid
2.3.2. Collection and Preservation of Feed, Milk and Fecal Samples, and Recording of Feed Intake and Rumination Data
2.4. Data Processing
2.4.1. Data Acquisition and Processing of Rumen Microflora
2.4.2. Data Significance Analysis
3. Results
3.1. Effects of TMR with Different Forage Types on Intake, Rumination, Milk Production Performance, and Apparent Digestibility
3.1.1. Effects of TMR with Different Forage Sources on Feed Intake and Rumination
3.1.2. Effects of TMR with Different Forage Types on Feed Apparent Digestibility
3.1.3. Effects of TMR with Different Forage Sources on Milk Yield, Milk Composition, and Conversion Efficiency
3.2. Effects of TMR with Different Forage Types on Rumen Fermentation Indices
3.2.1. Effects of Diets with Different Forage Types on Rumen Fermentation Index in 12 h
3.2.2. Effects of Diets with Different Forage Types on Rumen Fermentation at Different Time Points
3.3. Effects of Different Diets on Rumen Microflora
3.3.1. OTU of Rumen Samples in Different Treatment Groups
3.3.2. Single Sample Sequencing Depth Analysis (Rarefaction Curve)
3.3.3. Microbial Community Structure Map
3.3.4. Principal Component Analysis of 16S rRNA Gene of Rumen Microorganisms
3.3.5. Effects of Diets from Different Forages on the Percentage of Total Bacteria in Different Genera
4. Discussion
4.1. Feeding Effects of Different Forage Types
Dietary Intake and Rumination
4.2. Effects of TMR with Different Forage Types on Rumen Fermentation of Dairy Cows
4.2.1. Rumen pH and NH3-N
4.2.2. Volatile Fatty Acids
4.3. Effects of TMR with Different Forage Types on Rumen Microflora of Dairy Cows
4.3.1. Changes in Rumen Microbial Diversity
4.3.2. Changes in Rumen Cellulolytic Bacteria
4.3.3. Changes in Rumen Amylolytic Bacteria
4.3.4. Changes in Rumen Other Bacteria
4.3.5. Possible Factors Affecting Rumen Microflora
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cammack, K.M.; Austin, K.J.; Lamberson, W.R.; Conant, G.C.; Cunningham, H.C. Ruminant nutrition symposium: Tiny but mighty: The role of the rumen microbes in livestock production. J. Anim. Sci. 2018, 96, 752–770. [Google Scholar] [CrossRef] [PubMed]
- Fraga, M.; Perelmuter, K.; Valencia, M.J.; Martínez, M.; Abin-Carriquiry, A.; Cajarville, C.; Zunino, P. Evaluation of native potential probiotic bacteria using an in vitro ruminal fermentation system. Ann. Microbiol. 2014, 64, 1149–1156. [Google Scholar] [CrossRef]
- Colman, E.; Fokkink, W.B.; Craninx, M.; Newbold, J.R.; De Baets, B.; Fievez, V. Effect of induction of subacute ruminal acidosis on milk fat profile and rumen parameters. J. Dairy Sci. 2010, 93, 4759–4773. [Google Scholar] [CrossRef] [Green Version]
- Kmicikewycz, A.D.; Harvatine, K.J.; Heinrichs, A.J. Effects of corn silage particle size, supplemental hay, and forage-to-concentrate ratio on rumen pH, feed preference, and milk fat profile of dairy cattle. J. Dairy Sci. 2015, 98, 4850–4868. [Google Scholar] [CrossRef]
- Li, S.; Shi, H.; Cao, Z.; Wang, Y. Scientific utilization and evaluation technology of forage. Chin. J. Anim. Nutr. 2014, 26, 3149–3158. (In Chinese) [Google Scholar]
- Yan, R.; Chen, S.; Zhang, X.; Han, J.; Zhang, Y.; Undersander, D. Short communication: Effects of replacing part of corn silage and alfalfa hay with Leymus chinensis hay on milk production and composition. J. Dairy Sci. 2011, 94, 3605–3608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, J.W.; Brown, L.D.; Emery, R.S.; Benne, E.J.; Huber, J.T. Comparisons between alfalfa silage and hay. J. Dairy Sci. 1969, 52, 195–204. [Google Scholar] [CrossRef]
- Calberry, J.M.; Plaizier, J.C.; Einarson, M.S.; McBride, B.W. Effects of replacing chopped alfalfa hay with alfalfa silage in a total mixed ration on production and rumen conditions of lactating dairy cows. J. Dairy Sci. 2003, 86, 3611–3619. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.T.; Ma, L.; Zhang, Y.D.; Wang, J.Q.; Loor, J.J.; Bu, D.P. Hepatic transcriptome perturbations in dairy cows fed different forage resources. BMC Genom. 2021, 22, 35. [Google Scholar] [CrossRef]
- Pereira, M.N.; Garrett, E.F.; Oetzel, G.R.; Armentano, L.E. Partial replacement of forage with nonforage fiber sources in lactating cow diets. I. Performance and health. J. Dairy Sci. 1999, 82, 2716–2730. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Dairy Cattle: 2001; National Academies Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Zhang, D.F.; Yang, H.J. In vitro ruminal methanogenesis of a hay-rich substrate in response to different combination supplements of nitrocompounds; pyromellitic diimide and 2-bromoethanesulphonate. Anim. Feed. Sci. Technol. 2011, 163, 20–32. [Google Scholar] [CrossRef]
- Sun, X.G.; Wang, Y.; Xie, T.; Yang, Z.T.; Wang, J.D.; Zheng, Y.H.; Guo, C.; Zhang, Y.; Wang, Q.Q.; Wang, Z.H.; et al. Effects of high-forage diets containing raw flaxseeds or soybean on in vitro ruminal fermentation, gas emission, and microbial profile. Microorganisms 2021, 9, 2304. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 19th ed.; Association of Official Analytical Chemists Inc.: Arlington, VA, USA, 2012; pp. 1048–1049. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Bal, M.A.; Shaver, R.D.; Jirovec, A.G.; Shinners, K.J.; Coors, J.G. Crop processing and chop length of corn silage: Effects on intake, digestion, and milk production by dairy cows. J. Dairy Sci. 2000, 83, 1264–1273. [Google Scholar] [CrossRef]
- Van Keulen, J.; Young, B.A. Evaluation of acid-insoluble ash as a natural marker in ruminant digestibility studies. J. Anim. Sci. 1977, 44, 282–287. [Google Scholar] [CrossRef]
- Zhong, R.Z.; Li, J.G.; Gao, Y.X.; Tan, Z.L.; Ren, G.P. Effects of substitution of different levels of steam-flaked corn for finely ground corn on lactation and digestion in early lactation dairy cows. J. Dairy Sci. 2008, 91, 3931–3937. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Wang, D.; Wang, L.; Wei, X.; Li, X.; Cai, C.; Lei, X.; Yao, J. Physically effective neutral detergent fiber improves chewing activity, rumen fermentation, plasma metabolites, and milk production in lactating dairy cows fed a high-concentrate diet. J. Dairy Sci. 2021, 104, 5631–5642. [Google Scholar] [CrossRef]
- Marino, R.; Petrera, F.; Speroni, M.; Rutigliano, T.; Galli, A.; Abeni, F. Unraveling the relationship between milk yield and quality at the test day with rumination time recorded by a plf technology. Animals 2021, 11, 1583. [Google Scholar] [CrossRef]
- Dhiman, T.R.; Satter, L.D. Yield response of dairy cows fed different proportions of alfalfa silage and corn silage. J. Dairy Sci. 1997, 80, 2069–2082. [Google Scholar] [CrossRef]
- Charbonneau, E.; Chouinard, P.Y.; Allard, G.; Lapierre, H.; Pellerin, D. Milk from forage as affected by carbohydrate source and degradability with alfalfa silage-based diets. J. Dairy Sci. 2006, 89, 283–293. [Google Scholar] [CrossRef]
- Khorasani, G.R.; Okine, E.K.; Kennelly, J.J. Effects of forage source and amount of concentrate on rumen and intestinal digestion of nutrients in late-lactation cows. J. Dairy Sci. 2001, 84, 1156–1165. [Google Scholar] [CrossRef]
- Tajima, K.; Arai, S.; Ogata, K.; Nagamine, T.; Matsui, H.; Nakamura, M.; Aminov, R.I.; Benno, Y. Rumen bacterial community transition during adaptation to high-grain diet. Anaerobe 2000, 6, 273–284. [Google Scholar] [CrossRef]
- Ghasemi, E.; Khorvash, M.; Ghorbani, G.R.; Elmamouz, F. Effects of straw treatment and nitrogen supplementation on digestibility, intake and physiological responses of water intake as well as urine and faecal characteristics. J. Anim. Physiol. Anim. Nutr. 2014, 98, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, P.C.; Combs, D.K.; Brehm, N.M.; Welch, D.A. Performance of lactating dairy cows fed red clover or alfalfa silage. J. Dairy Sci. 1997, 80, 3308–3315. [Google Scholar] [CrossRef]
- Brito, A.F.; Broderick, G.A. Effect of varying dietary ratios of alfalfa silage to corn silage on production and nitrogen utilization in lactating dairy cows. J. Dairy Sci. 2006, 89, 3924–3938. [Google Scholar] [CrossRef]
- Mara, F.P.; Stakelum, G.K.; Dillon, P.; Murphy, J.J.; Rath, M. Rumen fermentation and nutrient flows for cows fed grass and grass supplemented with molassed beet pulp pellets. J. Dairy Sci. 1997, 80, 2466–2474. [Google Scholar] [CrossRef]
- Carruthers, V.R.; Neil, P.G. Milk production and ruminal metabolites from cows offered two pasture diets supplemented with non-structural carbohydrate. N. Z. J. Agr. Res. 1997, 40, 513–521. [Google Scholar] [CrossRef]
- Kolver, E.S.; Muller, L.D.; Barry, M.C.; Penno, J.W. Evaluation and application of the cornell net carbohydrate and protein system for dairy cows fed diets based on pasture. J. Dairy Sci. 1998, 81, 2029–2039. [Google Scholar] [CrossRef]
- Van Vuuren, A.M.; Krol-Kramer, F.; Lee, R.A.; Corbijn, H. Protein digestion and intestinal amino acids in dairy cows fed fresh lolium perenne with different nitrogen contents. J. Dairy Sci. 1992, 75, 2215–2225. [Google Scholar] [CrossRef]
- Kolver, E.S.; Veth, M.J. Prediction of ruminal ph from pasture-based diets. J. Dairy Sci. 2002, 85, 1255–1266. [Google Scholar] [CrossRef]
- Krause, K.M.; Combs, D.K.; Beauchemin, K.A. Effects of forage particle size and grain fermentability in midlactation cows. Ii. Ruminal pH and chewing activity. J. Dairy Sci. 2002, 85, 1947–1957. [Google Scholar] [CrossRef] [Green Version]
- Pitta, D.W.; Pinchak, W.E.; Dowd, S.E.; Osterstock, J.; Gontcharova, V.; Youn, E.; Dorton, K.; Yoon, I.; Min, B.R.; Fulford, J.D.; et al. Rumen bacterial diversity dynamics associated with changing from bermudagrass hay to grazed winter wheat diets. Microb. Ecol. 2010, 59, 511–522. [Google Scholar] [CrossRef]
- Grummer, R.R.; Clark, J.H.; Davis, C.L.; Murphy, M.R. Effect of ruminal ammonia-nitrogen concentration on protein degradation in situ. J. Dairy Sci. 1984, 67, 2294–2301. [Google Scholar] [CrossRef]
- Leng, R.A.; Brett, D.J. Simultaneous measurements of the rates of production of acetic, propionic and butyric acids in the rumen of sheep on different diets and the correlation between production rates and concentrations of these acids in the rumen. Brit. J. Nutr. 1966, 20, 541–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chanthakhoun, V.; Wanapat, M.; Berg, J. Level of crude protein in concentrate supplements influenced rumen characteristics, microbial protein synthesis and digestibility in swamp buffaloes (Bubalus bubalis). Livest. Sci. 2012, 144, 197–204. [Google Scholar] [CrossRef]
- Saro, C.; Ranilla, M.J.; Tejido, M.L.; Carro, M.D. Influence of forage type in the diet of sheep on rumen microbiota and fermentation characteristics. Livest. Sci. 2014, 160, 52–59. [Google Scholar] [CrossRef]
- Flint, H.J.; Bayer, E.A. Plant cell wall breakdown by anaerobic microorganisms from the mammalian digestive tract. Ann. N. Y. Acad. Sci. 2008, 1125, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Petri, R.M.; Pourazad, P.; Khiaosa-ard, R.; Klevenhusen, F.; Metzler-Zebeli, B.U.; Zebeli, Q. Temporal dynamics of in-situ fiber-adherent bacterial community under ruminal acidotic conditions determined by 16S rRNA gene profiling. PLoS ONE 2017, 12, e182271. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Zheng, L.; Chen, X.; Han, X.; Cao, Y.; Yao, J. Metagenomic Analyses of Microbial and Carbohydrate-Active Enzymes in the Rumen of Dairy Goats Fed Different Rumen Degradable Starch. Front. Microbiol. 2020, 11, 1003. [Google Scholar] [CrossRef]
- Plaizier, J.C.; Li, S.; Danscher, A.M.; Derakshani, H.; Andersen, P.H.; Khafipour, E. Changes in Microbiota in Rumen Digesta and Feces Due to a Grain-Based Subacute Ruminal Acidosis (SARA) Challenge. Microb. Ecol. 2017, 74, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Colman, E.; Khafipour, E.; Vlaeminck, B.; De Baets, B.; Plaizier, J.C.; Fievez, V. Grain-based versus alfalfa-based subacute ruminal acidosis induction experiments: Similarities and differences between changes in milk fatty acids. J. Dairy Sci. 2013, 96, 4100–4111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patra, A.K.; Yu, Z. Essential oils affect populations of some rumen bacteria in vitro as revealed by microarray (RumenBactArray) analysis. Front. Microbiol. 2015, 6, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, W.; Xi, D.; Mao, H.; Wanapat, M. The use of molecular techniques based on ribosomal RNA and DNA for rumen microbial ecosystem studies: A review. Mol. Biol. Rep. 2008, 35, 265–274. [Google Scholar] [CrossRef]
- Russell, J.B.; Rychlik, J.L. Factors that alter rumen microbial ecology. Science 2001, 292, 1119–1122. [Google Scholar] [CrossRef]
- Zhu, Z.; Kristensen, L.; Difford, G.F.; Poulsen, M.; Noel, S.J.; Abu Al-Soud, W.A.; Sørensen, S.J.; Lassen, J.; Løvendahl, P.; Højberg, O. Changes in rumen bacterial and archaeal communities over the transition period in primiparous Holstein dairy cows. J. Dairy Sci. 2018, 101, 9847–9862. [Google Scholar] [CrossRef]
- Thoetkiattikul, H.; Mhuantong, W.; Laothanachareon, T.; Tangphatsornruang, S.; Pattarajinda, V.; Eurwilaichitr, L.; Chanperda, V. Comparative Analysis of Microbial Profiles in Cow Rumen Fed with Different Dietary Fiber by Tagged 16S rRNA Gene Pyrosequencing. Curr. Microbiol. 2013, 67, 130–137. [Google Scholar] [CrossRef]
- Wanapat, M.; Pilajun, R.; Kongmun, P. Ruminal ecology of swamp buffalo as influenced by dietary sources. Anim. Feed Sci. Tech. 2009, 151, 205–214. [Google Scholar] [CrossRef]
Item | Dietary Treatment | |||
---|---|---|---|---|
OG | CW | AS | AC | |
Feed composition (%) | ||||
Corn silage | 55 | 55 | 50.5 | 55 |
Alfalfa silage | - | - | 13.9 | - |
Alfalfa hay | 3.9 | 4.2 | - | 5.3 |
Calcium oxide straw | - | - | - | 4.1 |
Leymus chinensis | - | 5.2 | - | |
Oat hay | 5.5 | - | 0.1 | - |
Corn | 5.5 | 5.5 | 5.5 | 5.5 |
Steam-flaked corn | 9.8 | 9.8 | 9.8 | 9.8 |
Expanded soybean | 0.9 | 0.9 | 0.9 | 0.9 |
Expanded soybean meal | 6.4 | 6.4 | 6.4 | 6.4 |
Rapeseed meal | 0.9 | 0.9 | 0.9 | 0.9 |
Apple meal | 1.3 | 1.3 | 1.3 | 1.3 |
Beet residue | 2.4 | 2.4 | 2.4 | 2.4 |
Cottonseed | 5.0 | 5.0 | 5.0 | 5.0 |
BERGAFAT T-3001 | 0.9 | 0.9 | 0.9 | 0.9 |
Premix | 2.5 | 2.5 | 2.5 | 2.5 |
Nutrition level (%DM) | ||||
Forage to concentrate ratio | 62:38 | 60:40 | 62:38 | 61:39 |
DM (%) | 48.9 | 49.2 | 45.5 | 52.8 |
NE (MJ/kg) | 7.4 | 7.4 | 7.5 | 7.4 |
CP | 16.58 | 16.58 | 16.58 | 16.58 |
NDF | 29.29 | 29.49 | 29.58 | 29.66 |
ADF | 18.85 | 18.92 | 19.27 | 19.19 |
NFC | 32.08 | 31.38 | 31.10 | 31.35 |
NDF/NFC | 0.91 | 0.94 | 0.95 | 0.95 |
Starch | 31.5 | 31.3 | 31.6 | 31.8 |
EE | 6.63 | 6.63 | 6.73 | 6.56 |
Ca | 0.80 | 0.81 | 0.83 | 0.87 |
p | 0.35 | 0.35 | 0.35 | 0.34 |
Reaction System PCR | Reaction Conditions | |||
---|---|---|---|---|
Substrate | Consumption | Temperature | Band | |
ddH2O | x | 95 °C | 5′ | |
Buffer (10X Taq A with Mg) | 3 μL | |||
dNTP | 1 μL | 95 °C | 1′ | |
DNA | 100~200 ng | 50 °C | 1′ | |
Primer F Mix | 1 μL | 72 °C | 1′ | |
Primer R Mix | 1 μL | |||
Enzym | 0.5 μL | 72 °C | 7′ | |
Total | 30 μL | 4 °C |
Item | Feed Treatment | SEM | p | |||
---|---|---|---|---|---|---|
OG | CW | AS | AC | |||
DMI, kg/d | 20.04 | 20.98 | 22.08 | 19.50 | 0.998 | 0.49 |
Feeding time | ||||||
Daily intake time, min | 193.84 | 189.94 | 196.81 | 192.15 | 12.121 | 0.98 |
Feeding time per kg of DMI, min | 10.72 | 10.25 | 10.85 | 10.95 | 0.246 | 0.22 |
Rumination time, min | 315.39 b | 303.73 b | 316.86 b | 337.68 a | 10.196 | 0.18 |
Rumination time per unit DMI, min | 24.28 a | 22.59 a | 18.12 b | 24.33 a | 0.682 | 0.002 |
Item | Feed Treatment | SEM | p | |||
---|---|---|---|---|---|---|
OG | CW | AS | AC | |||
DM | 71.38 | 73.93 | 76.51 | 72.06 | 3.403 | 0.68 |
CP | 69.71 | 75.83 | 75.49 | 73.90 | 3.471 | 0.53 |
NDF | 54.07 | 56.51 | 59.23 | 53.55 | 3.207 | 0.55 |
ADF | 59.59 | 59.81 | 63.61 | 50.55 | 2.755 | 0.13 |
EE | 80.07 | 83.30 | 84.88 | 80.76 | 2.154 | 0.38 |
Item | Feed Treatment | SEM | p | |||
---|---|---|---|---|---|---|
OG | CW | AS | AC | |||
Milk yield, kg/d | 31.38 | 32.28 | 32.20 | 32.30 | 0.560 | 0.61 |
4% standard milk, kg/d | 35.58 | 32.34 | 32.90 | 34.03 | 1.614 | 0.52 |
Lactose, % | 4.93 b | 4.98 b | 5.09 a | 4.99 b | 0.033 | 0..01 |
Milk fat, % | 4.44 a | 4.04 b | 4.18 ab | 4.40 a | 0.132 | 0.03 |
Milk protein, % | 3.02 | 2.95 | 3.07 | 3.05 | 0.054 | 0.26 |
Somatic cell count, 1000/mL | 67.06 | 40.38 | 36.13 | 37.25 | 13.902 | 0.41 |
Lactose yield, kg/d | 1.53 | 1.61 | 1.64 | 1.61 | 0.026 | 0.19 |
Milk fat yield, kg/d | 1.53 | 1.30 | 1.33 | 1.41 | 0.102 | 0.38 |
Milk protein yield, kg/d | 0.93 | 0.93 | 0.99 | 0.97 | 0.033 | 0.26 |
MUN, mmol/L | 4.70 | 4.14 | 4.47 | 4.75 | 0.368 | 0.62 |
FE | 1.75 | 1.54 | 1.45 | 1.74 | 0.167 | 0.94 |
Item | Feed Treatment | SEM | p | |||
---|---|---|---|---|---|---|
OG | CW | AS | AC | |||
pH | 6.84 | 6.73 | 6.66 | 6.62 | 0.062 | 0.16 |
NH3-N mg/dL | 12.58 | 13.57 | 16.30 | 14.74 | 0.767 | 0.31 |
Total VFA, mmol/L | 127.47 | 123.24 | 127.21 | 126.54 | 13.589 | 0.46 |
Acetic acid, mmol/L | 71.04 | 73.34 | 75.14 | 76.21 | 2.860 | 0.62 |
Propionic acid, mmol/L | 29.48 | 29.41 | 31.84 | 31.49 | 1.963 | 0.74 |
Butyric acid, mmol/L | 11.21 b | 12.78 ab | 14.55 a | 14.08 a | 0.651 | 0.04 |
Isobutyric acid, mmol/L | 1.04 | 1.05 | 1.07 | 1.00 | 0.069 | 0.90 |
Pentanoic acid, mmol/L | 1.82 | 1.82 | 2.05 | 1.99 | 0.173 | 0.75 |
Isovaleric acid, mmol/L | 2.13 | 2.31 | 2.59 | 2.14 | 0.227 | 0.48 |
Ratio of mole | ||||||
Acetic acid, % | 61.47 | 60.22 | 59.36 | 60.44 | 0.924 | 0.51 |
Propionic acid, % | 23.59 | 24.97 | 23.93 | 24.50 | 0.552 | 0.50 |
Butyric acid, % | 10.28 | 10.05 | 10.55 | 11.20 | 0.471 | 0.38 |
Isobutyric acid, % | 10.60 a | 9.84 a | 8.51 a | 7.52 b | 0.764 | 0.11 |
Pentanoic acid, % | 1.41 | 1.64 | 1.76 | 1.46 | 0.126 | 0.60 |
Isovaleric acid, % | 2.02 | 1.95 | 2.05 | 1.74 | 0.224 | 0.69 |
Item | Feed Treatment | SEM | p | |||
---|---|---|---|---|---|---|
OG | CW | AS | AC | |||
pH | ||||||
0 h | 7.31 | 7.35 | 7.43 | 7.05 | 0.743 | 0.05 |
3 h | 6.88 | 6.97 | 6.67 | 6.68 | 0.065 | 0.03 |
6 h | 6.84 | 6.54 | 6.44 | 6.42 | 0.131 | 0.20 |
9 h | 6.75 | 6.54 | 6.53 | 6.80 | 0.109 | 0.28 |
12 h | 6.40 | 6.22 | 6.22 | 6.17 | 0.110 | 0.52 |
Mean | 6.84 | 6.73 | 6.66 | 6.62 | 0.063 | 0.16 |
NH3-N, mg/dL | ||||||
0 h | 16.03 | 16.85 | 18.43 | 16.18 | 0.606 | 0.41 |
3 h | 11.95 | 19.57 | 19.74 | 16.76 | 1.583 | 0.24 |
6 h | 8.18 | 8.36 | 11.80 | 11.46 | 1.292 | 0.54 |
9 h | 14.96 ab | 11.61 b | 17.65 a | 13.55 b | 0.599 | 0.03 |
12 h | 11.82 | 11.46 | 13.87 | 15.78 | 1.010 | 0.34 |
Mean | 12.58 | 13.57 | 16.30 | 14.74 | 0.771 | 0.31 |
Total VFA, mmol/L | ||||||
0 h | 87.57 | 66.71 | 77.83 | 97.35 | 11.373 | 0.38 |
3 h | 121.78 | 120.77 | 132.89 | 130.07 | 6.818 | 0.56 |
6 h | 126.58 | 144.04 | 150.05 | 135.10 | 11.688 | 0.52 |
9 h | 123.45 | 132.26 | 138.18 | 129.63 | 14.753 | 0.92 |
12 h | 137.92 | 154.06 | 135.68 | 140.54 | 6.767 | 0.31 |
Mean | 172.47 | 123.24 | 127.21 | 126.54 | 23.590 | 0.46 |
Acetic acid, mmol/L | ||||||
0 h | 49.65 | 40.50 | 47.73 | 59.95 | 6.063 | 0.25 |
3 h | 78.83 | 73.83 | 79.08 | 78.08 | 3.991 | 0.67 |
6 h | 77.26 | 80.83 | 88.41 | 81.21 | 6.765 | 0.71 |
9 h | 73.84 | 81.01 | 83.64 | 79.62 | 7.646 | 0.83 |
12 h | 80.62 | 90.53 | 76.81 | 81.48 | 4.079 | 0.21 |
Mean | 71.04 | 73.34 | 75.14 | 76.21 | 2.862 | 0.62 |
Propionic acid, mmol/L | ||||||
0 h | 17.05 ab | 12.52 b | 17.06 ab | 22.34 a | 2.347 | 0.12 |
3 h | 30.93 | 28.30 | 32.75 | 32.26 | 2.336 | 0.57 |
6 h | 32.36 | 32.06 | 36.56 | 34.03 | 3.589 | 0.81 |
9 h | 29.29 | 34.63 | 36.50 | 31.60 | 4.654 | 0.69 |
12 h | 37.74 | 40.48 | 36.32 | 37.24 | 2.365 | 0.66 |
Mean | 29.48 | 29.41 | 31.84 | 31.49 | 1.961 | 0.74 |
Butyric acid, mmol/L | ||||||
0 h | 7.76 ab | 6.80 b | 8.65 ab | 10.77 a | 0.955 | 0.10 |
3 h | 9.27 | 13.25 | 16.82 | 14.88 | 0.922 | 0.05 |
6 h | 11.78 b | 14.43 ab | 16.82 a | 14.88 ab | 0.970 | 0.05 |
9 h | 12.91 | 13.30 | 15.51 | 14.31 | 1.576 | 0.67 |
12 h | 14.35 | 17.14 | 16.96 | 16.52 | 1.295 | 0.46 |
Mean | 11.21 b | 12.78 ab | 14.55 a | 14.08 a | 0.644 | 0.04 |
Isobutyric acid, mmol/L | ||||||
0 h | 1.19 | 1.12 | 1.19 | 1.16 | 0.103 | 0.95 |
3 h | 1.22 | 1.14 | 1.16 | 1.10 | 0.084 | 0.72 |
6 h | 1.04 | 1.15 | 1.14 | 0.95 | 0.097 | 0.95 |
9 h | 0.92 | 0.91 | 0.99 | 095 | 0.099 | 0.95 |
12 h | 0.83 | 0.95 | 0.88 | 0.80 | 0.062 | 0.44 |
Mean | 1.04 | 1.05 | 1.07 | 1.00 | 0.071 | 0.90 |
Valeric acid, mmol/L | ||||||
0 h | 1.03 | 1.08 | 1.26 | 1.38 | 0.323 | 0.81 |
3 h | 1.92 | 1.66 | 2.17 | 2.00 | 0.308 | 0.72 |
6 h | 1.95 | 1.93 | 2.25 | 1.87 | 0.245 | 0.70 |
9 h | 2.01 | 2.04 | 2.13 | 1.67 | 0.189 | 0.51 |
12 h | 2.18 | 2.36 | 2.16 | 2.27 | 0.178 | 0.86 |
Mean | 1.82 | 1.82 | 2.05 | 1.88 | 0.174 | 0.75 |
Isovaleric acid, mmol/L | ||||||
0 h | 1.92 | 1.92 | 2.18 | 2.00 | 0.275 | 0.90 |
3 h | 2.35 | 2.58 | 2.65 | 2.21 | 0.330 | 0.72 |
6 h | 2.20 | 2.36 | 3.10 | 2.14 | 0.334 | 0.24 |
9 h | 1.97 | 2.11 | 2.45 | 2.11 | 0.261 | 0.61 |
12 h | 2.19 | 2.60 | 2.55 | 2.22 | 0.218 | 0.46 |
Mean | 2.13 | 2.31 | 2.59 | 2.14 | 0.223 | 0.48 |
Acetic acid/propionic acid | ||||||
0 h | 3.43 | 3.23 | 3.04 | 3.00 | 0.202 | 0.44 |
3 h | 2.51 | 2.63 | 2.45 | 2.53 | 0.103 | 0.67 |
6 h | 2.47 | 2.54 | 2.44 | 2.43 | 0.145 | 0.95 |
9 h | 2.64 | 2.55 | 2.27 | 2.53 | 0.179 | 0.57 |
12 h | 2.17 | 2.31 | 2.13 | 2.19 | 0.124 | 0.74 |
Mean | 2.64 | 2.65 | 2.47 | 2.53 | 0.122 | 0.66 |
Group | SampleID | SeqsNum | OTUsNum | EvenSeqsNum | EvenOTUsNum | Mean |
---|---|---|---|---|---|---|
Pre-feeding (0 h) | ||||||
AC | AC1.0 | 260,361 | 6990 | 16,000 | 5726 | 6119.25 |
AC2.0 | 244,209 | 7665 | 160,000 | 6444 | ||
AC3.0 | 245,685 | 7475 | 160,000 | 6258 | ||
AC4.0 | 166,804 | 6142 | 160,000 | 6049 | ||
AS | AS1.0 | 229,687 | 7114 | 160,000 | 6106 | 5979.75 |
AS2.0 | 215,149 | 7084 | 160,000 | 6207 | ||
AS3.0 | 208,640 | 6516 | 160,000 | 5857 | ||
AS4.0 | 207,145 | 6420 | 160,000 | 5749 | ||
CW | CW1.0 | 229,720 | 6432 | 160,000 | 5557 | 5847.75 |
CW2.0 | 266,161 | 7738 | 160,000 | 6201 | ||
CW3.0 | 206,982 | 6241 | 160,000 | 5650 | ||
CW4.0 | 234,814 | 6950 | 160,000 | 5983 | ||
OG. | OG1.0 | 241,574 | 6456 | 160,000 | 5478 | 6044.25 |
OG2.0 | 215,472 | 8068 | 160,000 | 7086 | ||
OG3.0 | 230,100 | 6714 | 160,000 | 5815 | ||
OG4.0 | 209,751 | 6472 | 160,000 | 5798 | ||
Total | 3,612,254 | 25241 | 2,560,000 | 19,993 | 5997.75 | |
Post-feeding (3 h) | ||||||
AC | AC1.3 | 227,604 | 6826 | 160,000 | 5898 | 5486.50 |
AC2.3 | 212,160 | 6995 | 160,000 | 6267 | ||
AC3.3 | 194,961 | 6289 | 160,000 | 5778 | ||
AC4.3 | 596,813 | 6590 | 160,000 | 4003 | ||
AS | AS1.3 | 238,845 | 7306 | 160,000 | 6172 | 5678.50 |
AS2.3 | 230,521 | 6894 | 160,000 | 5899 | ||
AS3.3 | 178,867 | 5858 | 160,000 | 5589 | ||
AS4.3 | 211,399 | 5682 | 160,000 | 5054 | ||
CW | CW1.3 | 225,105 | 7168 | 160,000 | 6210 | 6078.50 |
CW2.3 | 218,291 | 6921 | 160,000 | 6114 | ||
CW3.3 | 235,790 | 6921 | 160,000 | 5888 | ||
CW4.3 | 308,894 | 7964 | 160,000 | 6102 | ||
OG. | OG1.3 | 232,579 | 6633 | 160,000 | 5634 | 6132.50 |
OG2.3 | 241,113 | 7919 | 160,000 | 6695 | ||
OG3.3 | 224,659 | 6374 | 160,000 | 5601 | ||
OG4.3 | 315,506 | 8783 | 160,000 | 6600 | ||
Total | 4,093,107 | 25,241 | 2,560,000 | 20,348 | 5844 |
Item | Feed Treatment | SEM | p | |||
---|---|---|---|---|---|---|
OG | CW | AS | AC | |||
Pre-feeding (0 h) | ||||||
Unknown | 45.79 b | 54.63 a | 42.93 b | 46.58 ab | 0.022 | 0.06 |
Prevotella | 33.24 | 27.21 | 36.52 | 34.26 | 0.032 | 0.21 |
Ruminococcus | 6.11 | 5.02 | 6.72 | 5.59 | 0.010 | 0.75 |
Succiniclasticum | 1.86 a | 3.41 b | 3.31 ab | 3.17 ab | 0.004 | 0.11 |
Butyrivibrio | 2.26 | 1.51 | 1.77 | 1.54 | 0.005 | 0.66 |
Oscillospira | 0.68 b | 1.24 a | 0.85 ab | 0.64 b | 0.001 | 0.08 |
Treponema | 0.68 | 0.69 | 0.77 | 0.66 | 0.001 | 0.08 |
CF231 | 0.52 | 0.78 | 0.51 | 0.84 | 0.001 | 0.08 |
Fibrobacter | 0.62 | 0.49 | 0.81 | 0.54 | 0.001 | 0.18 |
YRC22 | 0.64 | 0.60 | 0.61 | 0.57 | 0.006 | 0.97 |
Mogibacterium | 0.79 | 0.65 | 0.38 | 0.44 | 0.002 | 0.62 |
Shuttleworthia | 0.82 | 0.29 | 0.31 | 0.29 | 0.003 | 0.55 |
Psychrobacter | 0.04 | 0.28 | 0.04 | 0.04 | 0.001 | 0.39 |
Others | 4.42 | 4.74 | 4.70 | 4.62 | 0.002 | 0.54 |
Post-feeding (3 h) | ||||||
Unknown | 47.71 ab | 57.06 a | 45.45 b | 38.30 b | 0.027 | 0.02 |
Prevotella | 32.64 | 24.99 | 29.74 | 26.40 | 0.048 | 0.66 |
Ruminococcus | 5.54 | 4.79 | 8.14 | 6.47 | 0.011 | 0.46 |
Pseudomonas | 0.36 | 1.04 | 5.36 | 11.93 | 0.043 | 0.31 |
Succiniclasticum | 3.87 | 2.21 | 3.14 | 2.00 | 0.009 | 0.32 |
Butyrivibrio | 1.90 | 1.10 | 1.39 | 1.25 | 0.004 | 0.61 |
Acinetobacter | 0.14 | 0.30 | 0.52 | 4.23 | 0.023 | 0.32 |
Oscillospira | 0.75 b | 1.24 a | 0.83 b | 0.64 b | 0.001 | 0.02 |
CF231 | 0.54 ab | 0.73 a | 0.42 b | 0.66 ab | 0.001 | 0.10 |
Comamonas | 0.04 | 0.12 | 0.00 | 1.86 | 0.013 | 0.45 |
Mogibacterium | 0.61 | 0.75 | 0.37 | 0.25 | 0.002 | 0.47 |
YRC22 | 0.64 | 0.48 | 0.39 | 0.39 | 0.001 | 0.48 |
Psychrobacter | 0.02 | 0.41 | 0.11 | 1.26 | 0.005 | 0.42 |
Shuttleworthia | 0.51 | 0.14 | 0.13 | 0.17 | 0.002 | 0.51 |
Solibacillus | 0.001 | 0.02 | 0.00 | 0.27 | 0.001 | 0.45 |
Others | 3.93 a | 4.00 a | 4.64 b | 4.71 b | 0.001 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, C.; Wu, Y.; Li, S.; Cao, Z.; Wang, Y.; Mao, J.; Shi, H.; Shi, R.; Sun, X.; Zheng, Y.; et al. Effects of Different Forage Types on Rumen Fermentation, Microflora, and Production Performance in Peak-Lactation Dairy Cows. Fermentation 2022, 8, 507. https://doi.org/10.3390/fermentation8100507
Guo C, Wu Y, Li S, Cao Z, Wang Y, Mao J, Shi H, Shi R, Sun X, Zheng Y, et al. Effects of Different Forage Types on Rumen Fermentation, Microflora, and Production Performance in Peak-Lactation Dairy Cows. Fermentation. 2022; 8(10):507. https://doi.org/10.3390/fermentation8100507
Chicago/Turabian StyleGuo, Cheng, Yaqi Wu, Shengli Li, Zhijun Cao, Yajing Wang, Jiang Mao, Haitao Shi, Renhuang Shi, Xiaoge Sun, Yuhui Zheng, and et al. 2022. "Effects of Different Forage Types on Rumen Fermentation, Microflora, and Production Performance in Peak-Lactation Dairy Cows" Fermentation 8, no. 10: 507. https://doi.org/10.3390/fermentation8100507
APA StyleGuo, C., Wu, Y., Li, S., Cao, Z., Wang, Y., Mao, J., Shi, H., Shi, R., Sun, X., Zheng, Y., Kong, F., Hao, Y., & Xu, X. (2022). Effects of Different Forage Types on Rumen Fermentation, Microflora, and Production Performance in Peak-Lactation Dairy Cows. Fermentation, 8(10), 507. https://doi.org/10.3390/fermentation8100507