Extractive Fermentation as A Novel Strategy for High Cell Mass Production of Hetero-Fermentative Probiotic Strain Limosilactobacillus reuteri
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain and Culture Medium
2.2. Batch Fermentation
2.3. Constant Fed-Batch Fermentation
2.4. Preparation of Resins
2.5. Anion-Exchange Resin Selectivity
2.6. Anion-Exchange Resin in Batch and Fed-Batch Fermentation
2.7. Recovery of the Anion-Exchange Resins
2.8. Analytical Procedure
3. Results and Discussion
3.1. Selection of Anion-Exchange Resins, Conditions to Use, and Their Adsorption Capacity
3.2. Flask Cultivation of L. reuteri with Anio-Exchange Resins
3.3. Batch Fermentation with and without Anion-Exchange Resins
3.4. Fed-Batch Fermentation with and without Anion-Exchange Resins
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El Hage, R.; Hernandez-Sanabria, E.; Van de Wiele, T. Emerging trends in “smart probiotics”: Functional consideration for the development of novel health and industrial applications. Front. Microbiol. 2017, 8, 1889. [Google Scholar] [CrossRef] [PubMed]
- O’Toole, P.W.; Marchesi, J.R.; Hill, C. Next-generation probiotics: The spectrum from probiotics to live biotherapeutics. Nat. Microbiol. 2017, 2, 17057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galdeano, C.M.; Cazorla, S.I.; Dumit, J.M.L.; Vélez, E.; Perdigón, G. Beneficial effects of probiotic consumption on the immune system. Ann. Nutr. Metab. 2019, 74, 115–124. [Google Scholar]
- Buckley, M.; Lacey, S.; Doolan, A.; Goodbody, E.; Seamans, K. The effect of Lactobacillus reuteri supplementation in Helicobacter pylori infection: A placebo-controlled, single-blind study. BMC Nutr. 2018, 4, 48. [Google Scholar] [CrossRef]
- Selvamani, S.; Mehta, V.; El Enshasy, H.A.; Thevarajoo, S.; El Adawi, H.; Zeini, I.; Pham, K.; Varzakas, T.; Abomoelak, B. Efficacy of Probiotics-Based Interventions as Therapy for Inflammatory Bowel Disease: A Recent Update. Saudi J. Biol. Sci. 2022, 29, 3546–3567. [Google Scholar] [CrossRef]
- Selvamani, S.; Dailin, D.; Rostom, M.; Malek, R.; Gupta, V.; El-Enshasy, H. Optimizing medium components to enhance high cell mass production of biotherapeutic strain Lactobacillus reuteri DSM 20016T by statistical method. J. Sci. Ind. Res. 2020, 79, 798–803. [Google Scholar]
- Othman, M.; Ariff, A.B.; Wasoh, H.; Kapri, M.R.; Halim, M. Strategies for improving production performance of probiotic Pediococcus acidilactici viable cell by overcoming lactic acid inhibition. AMB Express 2017, 7, 215. [Google Scholar] [CrossRef] [Green Version]
- Cui, S.; Zhao, J.; Zhang, H.; Chen, W. High-density culture of Lactobacillus plantarum coupled with a lactic acid removal system with anion-exchange resins. Biochem. Eng. J. 2016, 115, 80–84. [Google Scholar] [CrossRef]
- Wang, T.; Lu, Y.; Yan, H.; Li, X.; Wang, X.; Shan, Y.; Yi, Y.; Liu, B.; Zhou, Y.; Lü, X. Fermentation optimization and kinetic model for high cell density culture of a probiotic microorganism: Lactobacillus rhamnosus LS-8. Bioprocess Biosyst. Eng. 2020, 43, 515–528. [Google Scholar] [CrossRef]
- Schiraldi, C.; Adduci, V.; Valli, V.; Maresca, C.; Giuliano, M.; Lamberti, M.; Cartenì, M.; De Rosa, M. High cell density cultivation of probiotics and lactic acid production. Biotechnol. Bioeng. 2003, 82, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Dailin, D.J.; Elsayed, E.A.; Malek, R.A.; Hanapi, S.Z.; Selvamani, S.; Ramli, S.; Sukmawati, D.; Sayyed, R.; El Enshasy, H.A. Efficient kefiran production by Lactobacillus kefiranofaciens ATCC 43761 in submerged cultivation: Influence of osmotic stress and nonionic surfactants, and potential bioactivities. Arab. J. Chem. 2020, 13, 8513–8523. [Google Scholar] [CrossRef]
- Gao, X.; Kong, J.; Zhu, H.; Mao, B.; Cui, S.; Zhao, J. Lactobacillus, Bifidobacterium and Lactococcus response to environmental stress: Mechanisms and application of cross-protection to improve resistance against freeze-drying. J. Appl. Microbiol. 2022, 132, 802–821. [Google Scholar] [CrossRef] [PubMed]
- Lobeda, K.; Jin, Q.; Wu, J.; Zhang, W.; Huang, H. Lactic acid production from food waste hydrolysate by Lactobacillus pentosus: Focus on nitrogen supplementation, initial sugar concentration, pH, and fed-batch fermentation. J. Food Sci. 2022, 87, 3071–3083. [Google Scholar] [CrossRef]
- Machado, J.; Rossi, D.M.; Ayub, M.A.Z. Batch and fed-batch strategies of lactic acid production by Lactobacillus plantarum BL011 using soybean hull hydrolysates as substrate. Biomass Convers. Biorefin. 2022. [Google Scholar] [CrossRef]
- Gao, M.-T.; Shimamura, T.; Ishida, N.; Takahashi, H. pH-uncontrolled lactic acid fermentation with activated carbon as an adsorbent. Enzym. Microb. Technol. 2011, 48, 526–530. [Google Scholar] [CrossRef]
- Yang, P.-B.; Tian, Y.; Wang, Q.; Cong, W. Effect of different types of calcium carbonate on the lactic acid fermentation performance of Lactobacillus lactis. Biochem. Eng. J. 2015, 98, 38–46. [Google Scholar] [CrossRef]
- Komesu, A.; Wolf Maciel, M.R.; Rocha de Oliveira, J.A.; da Silva Martins, L.H.; Maciel Filho, R. Purification of lactic acid produced by fermentation: Focus on non-traditional distillation processes. Sep. Purif. Rev. 2017, 46, 241–254. [Google Scholar] [CrossRef]
- Chen, G.Q.; Eschbach, F.I.I.; Weeks, M.; Gras, S.L.; Kentish, S.E. Removal of lactic acid from acid whey using electrodialysis. Sep. Purif. Technol. 2016, 158, 230–237. [Google Scholar] [CrossRef]
- Jianlong, W.; Xianghua, W.; Ding, Z. Production of citric acid from molasses integrated with in-situ product separation by ion-exchange resin adsorption. Bioresour. Technol. 2000, 75, 231–234. [Google Scholar] [CrossRef]
- Bae, J.; Moon, H.; Oh, K.-K.; Kim, C.-H.; Sil Lee, D.; Kim, S.-W.; Hong, S.-I. A novel bioreactor with an internal adsorbent for integrated fermentation and recovery of prodigiosin-like pigment produced from Serratia sp. KH-95. Biotechnol. Lett. 2001, 23, 1315–1319. [Google Scholar] [CrossRef]
- Zhang, Y.; Qian, Z.; Liu, P.; Liu, L.; Zheng, Z.; Ouyang, J. Efficient in situ separation and production of l-lactic acid by Bacillus coagulans using weak basic anion-exchange resin. Bioprocess Biosyst. Eng. 2018, 41, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Jatoi, A.S.; Baloch, H.A.; Mazari, S.A.; Mubarak, N.; Sabzoi, N.; Aziz, S.; Soomro, S.A.; Abro, R.; Shah, S.F. A review on extractive fermentation via ion exchange adsorption resins opportunities, challenges, and future prospects. Biomass Convers. Biorefin. 2021. [Google Scholar] [CrossRef]
- Din, N.A.S.; Lim, S.J.; Maskat, M.Y.; Mutalib, S.A.; Zaini, N.A.M. Lactic acid separation and recovery from fermentation broth by ion-exchange resin: A review. Bioresour. Bioprocess. 2021, 8, 31. [Google Scholar] [CrossRef]
- Othman, M.; Ariff, A.B.; Rios-Solis, L.; Halim, M. Extractive fermentation of lactic acid in lactic acid bacteria cultivation: A review. Front. Microbiol. 2017, 8, 2285. [Google Scholar] [CrossRef]
- Othman, M.; Ariff, A.B.; Kapri, M.R.; Rios-Solis, L.; Halim, M. Growth enhancement of probiotic Pediococcus acidilactici by extractive fermentation of lactic acid exploiting anion-exchange resin. Front. Microbiol. 2018, 9, 2554. [Google Scholar] [CrossRef]
- Chen, G.; Lin, M.; Fang, B. Inhibition and in situ removal of organic acids during glucose/glycerol co-fermentation by Lactobacillus reuteri. Biochem. Eng. J. 2015, 99, 93–98. [Google Scholar] [CrossRef]
- Atilola, O.A.; Gyawali, R.; Aljaloud, S.O.; Ibrahim, S.A. Use of phytone peptone to optimize growth and cell density of Lactobacillus reuteri. Foods 2015, 4, 318–327. [Google Scholar] [CrossRef] [Green Version]
- Bishai, M.; De, S.; Adhikari, B.; Banerjee, R. A platform technology of recovery of lactic acid from a fermentation broth of novel substrate Zizyphus oenophlia. 3 Biotech 2015, 5, 455–463. [Google Scholar] [CrossRef] [Green Version]
- Boonmee, M.; Cotano, O.; Amnuaypanich, S.; Grisadanurak, N. Improved lactic acid production by in situ removal of lactic acid during fermentation and a proposed scheme for its recovery. Arab. J. Sci. Eng. 2016, 41, 2067–2075. [Google Scholar] [CrossRef]
- Demir, Ö.; Gök, A.; Kırbaşlar, Ş.İ. Optimization of protocatechuic acid adsorption onto weak basic anion exchange resins: Kinetic, mass transfer, isotherm, and thermodynamic study. Biomass Convers. Biorefin. 2022. [Google Scholar] [CrossRef]
- Garrett, B.G.; Srinivas, K.; Ahring, B.K. Performance and stability of Amberlite™ IRA-67 ion exchange resin for product extraction and pH control during homolactic fermentation of corn stover sugars. Biochem. Eng. J. 2015, 94, 1–8. [Google Scholar] [CrossRef]
- Bernardo, M.P.; Coelho, L.F.; Sass, D.C.; Contiero, J. L-(+)-Lactic acid production by Lactobacillus rhamnosus B103 from dairy industry waste. Braz. J. Microbiol. 2016, 47, 640–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moldes, A.; Alonso, J.; Parajo, J. Recovery of lactic acid from simultaneous saccharification and fermentation media using anion exchange resins. Bioprocess Biosyst. Eng. 2003, 25, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Zaini, N.A.B.M.; Chatzifragkou, A.; Charalampopoulos, D. Microbial production of d-lactic acid from dried distiller’s grains with solubles. Eng. Life Sci. 2019, 19, 21–30. [Google Scholar] [CrossRef]
Type of Resin | Amberlite™ IRA 67 | Amberlite™ IRA 96 |
---|---|---|
Description | Weakly basic anion resins | Weakly basic anion resins |
Co-polymer | Cross-linked acrylic | Styrene-divinylbenzene |
Matrix | Gel | Macroporous |
Functional group | Tertiary amine | Tertiary amine |
Physical form | White, translucent, spherical beads | White to tan, opaque, spherical beads |
Total exchange capacity | ≥1.6 eq/L | ≥1.3 eq/L |
Ionic form in the packaging | Moist free basic | Moist free basic |
pH stability range | 0–6 | 0–7 |
Water retention capacity | 56–62% | 57–63% |
Temperature range | 5–60 °C | 5–60 °C |
Particle diameter | 500–700 µm | 550–750 µm |
Uniformity coefficient | ≤1.8 | ≤1.6 |
Type of Resins | Component | Adsorption Capacity (g L−1) | Percentage of Removal (%) |
---|---|---|---|
Amberlite™ IRA 67 | Lactic acid | 0.784 ± 0.002 | 77.93 ± 0.05 |
Acetic acid | 0.241 ± 0.015 | 23.80 ± 2.69 | |
Lactose | 0.060 ± 0.014 | 6.00 ± 1.41 | |
Amberlite™ IRA 96 | Lactic acid | 0.736 ± 0.011 | 77.37 ± 0.39 |
Acetic acid | 0.342 ± 0.002 | 36.80 ± 1.56 | |
Lactose | 0.117 ± 0.005 | 9.67 ± 0.94 |
Type of Resins | Viable Cells (CFU mL−1) | Lactic Acid Accumulated (g L−1) | ||
---|---|---|---|---|
Static | Agitated | Static | Agitated | |
Without resins | ||||
Control | 2.55 × 107 ± 0.18 | 1.46 × 107 ± 0.26 | 11.26 ± 0.05 | 22.32 ± 0.43 |
With resins | ||||
Amberlite™ IRA 67 | 4.31 × 108 ± 0.63 | 4.21 × 108 ± 0.13 | 8.75 ± 0.01 | 4.24 ± 0.02 |
Amberlite™ IRA 96 | 4.10 × 108 ± 1.58 | 4.07 × 108 ± 1.61 | 8.82 ± 0.02 | 4.41 ± 0.01 |
Parameters | Batch Fermentation without Resin | Batch Fermentation with Resin Column | Fed-Batch Fermentation with Resin Column |
---|---|---|---|
The highest cell mass (CDW) collected [g L−1] | 4.02 ± 0.03 | 4.38 ± 0.017 | 5.23 ± 0.03 |
Cultivation time reaching highest CDW [h] | 12 | 18 | 20 |
Viable cell count [CFU mL−1] | 5.35 × 109 ± 0.32 | 3.89 × 1011 ± 0.07 | 1.30 × 1013 ± 0.05 |
Lactic acid accumulated [g L−1] | 42.70 ± 0.03 | 36.61 ± 0.01 | 57.70 ± 0.05 |
Estimated total lactic acid production [g L−1] | 42.70 ± 0.03 | 47.31 ± 0.02 | 67.72 ± 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selvamani, S.; Ramli, S.; Dailin, D.J.; Natasya, K.H.; Varzakas, T.; Abomoelak, B.; Sukmawati, D.; Nurjayadi, M.; Liu, S.; Gupta, V.K.; et al. Extractive Fermentation as A Novel Strategy for High Cell Mass Production of Hetero-Fermentative Probiotic Strain Limosilactobacillus reuteri. Fermentation 2022, 8, 527. https://doi.org/10.3390/fermentation8100527
Selvamani S, Ramli S, Dailin DJ, Natasya KH, Varzakas T, Abomoelak B, Sukmawati D, Nurjayadi M, Liu S, Gupta VK, et al. Extractive Fermentation as A Novel Strategy for High Cell Mass Production of Hetero-Fermentative Probiotic Strain Limosilactobacillus reuteri. Fermentation. 2022; 8(10):527. https://doi.org/10.3390/fermentation8100527
Chicago/Turabian StyleSelvamani, Shanmugaprakasham, Solleh Ramli, Daniel Joe Dailin, Khairun Hani Natasya, Theodoros Varzakas, Bassam Abomoelak, Dalia Sukmawati, Muktiningsih Nurjayadi, Siqing Liu, Vijai Kumar Gupta, and et al. 2022. "Extractive Fermentation as A Novel Strategy for High Cell Mass Production of Hetero-Fermentative Probiotic Strain Limosilactobacillus reuteri" Fermentation 8, no. 10: 527. https://doi.org/10.3390/fermentation8100527
APA StyleSelvamani, S., Ramli, S., Dailin, D. J., Natasya, K. H., Varzakas, T., Abomoelak, B., Sukmawati, D., Nurjayadi, M., Liu, S., Gupta, V. K., & El Enshasy, H. A. (2022). Extractive Fermentation as A Novel Strategy for High Cell Mass Production of Hetero-Fermentative Probiotic Strain Limosilactobacillus reuteri. Fermentation, 8(10), 527. https://doi.org/10.3390/fermentation8100527