Methods for Intensifying Biogas Production from Waste: A Scientometric Review of Cavitation and Electrolysis Treatments
Abstract
:1. Introduction
2. Methodological Approach for the Analytical Review of Intensification Anaerobic Digestion
- Reviewing the subject area of research on anaerobic digestion intensification technologies;
- Keywords search;
- Most current methods to improve the quality and quantity of biogas for their combination, which are most beneficial.
3. Results and Discussion
3.1. Cavitation Processes for Intensification of Biogas Yield
3.2. Electrolysis Treatment in Processes of Stimulation of the Ecological and Trophic Groups of Microorganisms Required in Biogas Production
- The microbial electrolysis cell can increase the methane content;
- Electrokinetic decomposition deforms the cell walls of substrates, making their contents easily accessible to bacteria for anaerobic digestion [13];
- Treatment of liquid media with high-voltage electric pulses leads to inactivation of microorganisms at lower temperatures and in a shorter soaking time [15];
- The same increase in the yield and production of methane is associated with changes in the microbial community resulting in a difference in methane production [50].
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fritsche, U.; Brunori, G.; Chiaramonti, D.; Galanakis, C.; Matthews, R.; Panoutsou, C.; Borzacchiello, M.T.; Lopez, J.S.; Raamides, M.A. Future Transitions for the Bioeconomy towards Sustainable Development and a Climate-Neutral Economy—Bioeconomy Opportunities for a Green Recovery and Enhanced System Resilience; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar]
- Dobrowolski, J.W.; Bedla, D.; Czech, T.; Gambuś, F.; Górecka, K.; Kiszczak, W.; Kuźniar, T.; Mazur, R.; Nowak, A.; Śliwka, M.; et al. Integrated Innovative Biotechnology for Optimization of Environmental Bioprocesses and a Green Economy. In Optimization and Applicability of Bioprocesses; Springer: Singapore, 2017; pp. 27–71. [Google Scholar] [CrossRef]
- Chernysh, Y.; Balintova, M.; Plyatsuk, L.; Holub, M.; Demcak, S. The Influence of Phosphogypsum Addition on Phosphorus Release in Biochemical Treatment of Sewage Sludge. Int. J. Environ. Res. Public Health 2018, 15, 1269. [Google Scholar] [CrossRef] [Green Version]
- Prasad, R.D. Empirical Study on Factors Affecting Biogas Production. ISRN Renew. Energy 2012, 2012, 136959. [Google Scholar] [CrossRef] [Green Version]
- Saraswat, M.; Garg, M.; Bhardwaj, M.; Mehrotra, M.; Singhal, R. Impact of Variables Affecting Biogas Production from Biomass. IOP Conf. Ser. Mater. Sci. Eng. 2019, 691, 12043. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Shafy, H.I.; Mansour, M.S.M. Biogas Production as Affected by Heavy Metals in the Anaerobic Digestion of Sludge. Egypt. J. Pet. 2014, 23, 409–417. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, A.; Björn, A.; Yekta, S.S.; Svensson, B.H. Improvement of the Biogas Production Process; Biogas Research Center (BRC) Report; Linköping University: Linköping, Sweden, 2014; Available online: http://www.diva-portal.org/smash/get/diva2:776575/FULLTEXT01.pdf (accessed on 19 October 2022).
- Zablodsky, N.; Klendiy, G.; Klendiy, P. Influence of Low-Frequency Electromagnetic Field on Biophone Explosion Dynamic. Energy Autom. 2019, 2019, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Biogas, Z. Available online: https://zorg-biogas.com/ (accessed on 1 August 2022).
- Ab Rasid, N.S.; Shamjuddin, A.; Rahman, A.Z.A.; Amin, N.A.S. Recent Advances in Green Pre-Treatment Methods of Lignocellulosic Biomass for Enhanced Biofuel Production. J. Clean. Prod. 2021, 321, 129038. [Google Scholar] [CrossRef]
- Appels, L.; Dewil, R.; Baeyens, J.; Degrève, J. Ultrasonically Enhanced Anaerobic Digestion of Waste Activated Sludge. Int. J. Sustain. Eng. 2008, 1, 94–104. [Google Scholar] [CrossRef]
- Oh, G.G.; Song, Y.C.; Bae, B.U.; Lee, C.Y. Electric Field-Driven Direct Interspecies Electron Transfer for Bioelectrochemical Methane Production from Fermentable and Non-Fermentable Substrates. Processes 2020, 8, 1293. [Google Scholar] [CrossRef]
- Zieliński, M.; Dębowski, M.; Krzemieniewski, M.; Dudek, M.; Grala, A. Effect of Constant Magnetic Field (CMF) with Various Values of Magnetic Induction on Effectiveness of Dairy Wastewater Treatment under Anaerobic Conditions. Pol. J. Environ. Stud. 2014, 23, 255–261. [Google Scholar]
- Bo, T.; Zhu, X.; Zhang, L.; Tao, Y.; He, X.; Li, D.; Yan, Z. A New Upgraded Biogas Production Process: Coupling Microbial Electrolysis Cell and Anaerobic Digestion in Single-Chamber, Barrel-Shape Stainless Steel Reactor. Electrochem. Commun. 2014, 45, 67–70. [Google Scholar] [CrossRef]
- Capodaglio, A.G. Pulse Electric Field Technology for Wastewater and Biomass Residues’ Improved Valorization. Processes 2021, 9, 736. [Google Scholar] [CrossRef]
- He, C.; Zhang, B.; Jiang, Y.; Liu, H.; Zhao, H.-P. Microbial Electrolysis Cell Produced Biogas as Sustainable Electron Donor for Microbial Chromate Reduction. Chem. Eng. J. 2021, 403, 126429. [Google Scholar] [CrossRef]
- Alvarez-Melgarejo, M.; Torres-Barreto, M.L. Resources and Capabilities from Their Very Outset: A Bibliometric Comparison Between Scopus and the Web of Science. Rev. Eur. Stud. 2018, 10, 1. [Google Scholar] [CrossRef]
- Pranckutė, R. Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, W. A Tale of Two Databases: The Use of Web of Science and Scopus in Academic Papers. Scientometrics 2020, 123, 321–335. [Google Scholar] [CrossRef] [Green Version]
- Zieliński, M.; Dębowski, M.; Kisielewska, M.; Nowicka, A.; Rokicka, M.; Szwarc, K. Comparison of Ultrasonic and Hydrothermal Cavitation Pretreatments of Cattle Manure Mixed with Straw Wheat on Fermentative Biogas Production. Waste Biomass Valorization 2019, 10, 747–754. [Google Scholar] [CrossRef] [Green Version]
- Pilli, S.; Bhunia, P.; Yan, S.; LeBlanc, R.J.; Tyagi, R.D.; Surampalli, R.Y. Ultrasonic Pretreatment of Sludge: A Review. Ultrason. Sonochemistry 2011, 18, 226–230. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.S.; Kassaveti, A.; Stefanatos, S. Olive Oil Waste Treatment: A Comparative and Critical Presentation of Methods, Advantages Disadvantages. Crit. Rev. Food Sci. Nutr. 2007, 47, 187–229. [Google Scholar] [CrossRef]
- Limback, L. Accelerating Commercialization of Renewable Hydrogen Technologies. Biocycle 2006, 47, 41–45. [Google Scholar]
- Tartakovsky, B.; Mehta, P.; Bourque, J.-S.; Guiot, S.R. Electrolysis-Enhanced Anaerobic Digestion of Wastewater. Bioresour. Technol. 2011, 102, 5685–5691. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Ren, Z.J.; Huang, C.; Liu, B.; Ren, N.; Xing, D. Multiple Syntrophic Interactions Drive Biohythane Production from Waste Sludge in Microbial Electrolysis Cells. Biotechnol. Biofuels 2016, 9, 162. [Google Scholar] [CrossRef] [PubMed]
- Hassanein, A.; Witarsa, F.; Lansing, S.; Qiu, L.; Liang, Y. Bio-Electrochemical Enhancement of Hydrogen and Methane Production in a Combined Anaerobic Digester (AD) and Microbial Electrolysis Cell (MEC) from Dairy Manure. Sustainability 2020, 12, 8491. [Google Scholar] [CrossRef]
- Hua, T.; Li, S.; Li, F.; Zhou, Q.; Ondon, B.S. Microbial Electrolysis Cell as an Emerging Versatile Technology: A Review on Its Potential Application, Advance and Challenge. J. Chem. Technol. Biotechnol. 2019, 94, 1697–1711. [Google Scholar] [CrossRef]
- Dębowski, M.; Zieliński, M.; Kisielewska, M.; Hajduk, A. Effect of Constant Magnetic Field on Anaerobic Digestion of Algal Biomass. Environ. Technol. 2016, 37, 1656–1663. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Sheng, L.; Liu, X.; Zong, M.; Yao, D. Anaerobic Digestion Technology for Methane Production Using Deer Manure Under Different Experimental Conditions. Energies 2019, 12, 1819. [Google Scholar] [CrossRef] [Green Version]
- Chernysh, Y.; Roy, I.; Chubur, V.; Fukui, M.; Koziy, I. Stimulation of Anaerobic Fermentation of Wastewater and Sewage Sludge. In Advances in Design, Simulation and Manufacturing IV. DSMIE 2021. Lecture Notes in Mechanical Engineering; Ivanov, V., Pavlenko, I., Liaposhchenko, O., Machado, J., Eds.; Springer: Cham, Switzerland, 2021; pp. 319–328. [Google Scholar]
- Kehrein, P.; van Loosdrecht, M.; Osseweijer, P.; Garfí, M.; Dewulf, J.; Posada, J. A Critical Review of Resource Recovery from Municipal Wastewater Treatment Plants—Market Supply Potentials, Technologies and Bottlenecks. Environ. Sci. Water Res. Technol. 2020, 6, 877–910. [Google Scholar] [CrossRef] [Green Version]
- Kong, Z.; Li, L.; Wu, J.; Wang, T.; Rong, C.; Luo, Z.; Pan, Y.; Li, D.; Li, Y.; Huang, Y.; et al. Evaluation of Bio-Energy Recovery from the Anaerobic Treatment of Municipal Wastewater by a Pilot-Scale Submerged Anaerobic Membrane Bioreactor (AnMBR) at Ambient Temperature. Bioresour. Technol. 2021, 339, 125551. [Google Scholar] [CrossRef]
- Ranade, N.V.; Nagarajan, S.; Sarvothaman, V.; Ranade, V.V. ANN Based Modelling of Hydrodynamic Cavitation Processes: Biomass Pre-Treatment and Wastewater Treatment. Ultrason. Sonochemistry 2020, 72, 105428. [Google Scholar] [CrossRef]
- Nagarajan, S.; Ranade, V.V. Valorizing Waste Biomass via Hydrodynamic Cavitation and Anaerobic Digestion. Ind. Eng. Chem. Res. 2021, 60, 16577–16598. [Google Scholar] [CrossRef]
- Skripkin, S.; Tsoy, M.; Kuibin, P.; Shtork, S. Swirling Flow in a Hydraulic Turbine Discharge Cone at Different Speeds and Discharge Conditions. Exp. Therm. Fluid Sci. 2019, 100, 349–359. [Google Scholar] [CrossRef]
- Yeh, C.-P.; Tseng, K.-T.; Collicott, S.H. Manipulating Inlet Cavitation to Control Spray Properties. In Proceedings of the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, Alabama, 20–23 July 2003. [Google Scholar]
- Nykyforov, V.; Malovanyy, M.; Kozlovskaya, T.; Novokhatko, O.; Digtiar, S. The Biotechnological Ways of Blue-Green Algae Complex Processing. East. Eur. J. Enterp. Technol. 2016, 5, 11–18. [Google Scholar] [CrossRef]
- Minutillo, M.; Perna, A.; Sorce, A. Green Hydrogen Production Plants via Biogas Steam and Autothermal Reforming Processes: Energy and Exergy Analyses. Appl. Energy 2020, 277, 115452. [Google Scholar] [CrossRef]
- Boni, M.R.; Polettini, A.; Pomi, R.; Rossi, A. Effect of Ultrasonic Post-Treatment on Anaerobic Digestion of Lignocellulosic Waste. Waste Manag. Res. 2021, 39, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.M.; Gogate, P.R. Intensifying the Biogas Production from Food Waste Using Ultrasound: Understanding into Effect of Operating Parameters. Ultrason. Sonochemistry 2019, 59, 104755. [Google Scholar] [CrossRef] [PubMed]
- Begum, S.; Anupoju, G.R.; Eshtiaghi, N. Anaerobic Co-Digestion of Food Waste and Cardboard in Different Mixing Ratios: Impact of Ultrasound Pre-Treatment on Soluble Organic Matter and Biogas Generation Potential at Varying Food to Inoculum Ratios. Biochem. Eng. J. 2021, 166, 107853. [Google Scholar] [CrossRef]
- Andreu, P.S.; Mifsut, C.L.; Antonio, A.J.; Sánchez, S.B.; García, A. Optimización de La Digestión Anaerobia Mediante La Aplicación de Ultrasonidos En Los Fangos Secundarios de La EDAR Molina de Segura (Murcia). Tecnol. Del Agua 2007, 27, 48–56. [Google Scholar]
- Martín, M.Á.; González, I.; Serrano, A.; Siles, J.Á. Evaluation of the Improvement of Sonication Pre-Treatment in the Anaerobic Digestion of Sewage Sludge. J. Environ. Manag. 2015, 147, 330–337. [Google Scholar] [CrossRef]
- Zieliński, M.; Dębowski, M.; Krzemieniewski, M.; Rusanowska, P.; Zielińska, M.; Cydzik-Kwiatkowska, A.; Głowacka-Gil, A. Application of an Innovative Ultrasound Disintegrator for Sewage Sludge Conditioning Before Methane Fermentation. J. Ecol. Eng. 2018, 19, 240–247. [Google Scholar] [CrossRef]
- Gunes, B.; Stokes, J.; Davis, P.; Connolly, C.; Lawler, J. Modelling and Optimisation of the Biogas Yield after Hybrid Alkaline-Ultrasonic Pre-Treatment in the Early Stages of Anaerobic Digestion of Pot Ale to Shorten the Processing Time. Process Saf. Environ. Prot. 2021, 146, 43–53. [Google Scholar] [CrossRef]
- Bougrier, C.; Carrère, H.; Delgenès, J.P. Solubilisation of Waste-Activated Sludge by Ultrasonic Treatment. Chem. Eng. J. 2005, 106, 163–169. [Google Scholar] [CrossRef]
- Zeynali, R.; Khojastehpour, M.; Ebrahimi-Nik, M. Effect of Ultrasonic Pre-Treatment on Biogas Yield and Specific Energy in Anaerobic Digestion of Fruit and Vegetable Wholesale Market Wastes. Sustain. Environ. Res. 2017, 27, 259–264. [Google Scholar] [CrossRef]
- Cesaro, A.; Naddeo, V.; Amodio, V.; Belgiorno, V. Enhanced Biogas Production from Anaerobic Codigestion of Solid Waste by Sonolysis. Ultrason. Sonochemistry 2012, 19, 596–600. [Google Scholar] [CrossRef] [PubMed]
- Cesaro, A.; Belgiorno, V. Sonolysis and Ozonation as Pretreatment for Anaerobic Digestion of Solid Organic Waste. Ultrason. Sonochemistry 2013, 20, 931–936. [Google Scholar] [CrossRef] [PubMed]
- Rasapoor, M.; Ajabshirchi, Y.; Adl, M.; Abdi, R.; Gharibi, A. The Effect of Ultrasonic Pretreatment on Biogas Generation Yield from Organic Fraction of Municipal Solid Waste under Medium Solids Concentration Circumstance. Energy Convers. Manag. 2016, 119, 444–452. [Google Scholar] [CrossRef]
- Závacký, M.; Ditl, P.; Prell, A.; Sobotka, M. Increasing Biogas Production from Maize Silage by Ultrasonic Treatment. Chem. Eng. Trans. 2010, 21, 439–444. [Google Scholar]
- Dudek, M.; Rusanowska, P.; Zieliński, M.; Dębowski, M. Influence of Ultrasonic Disintegration on Efficiency of Methane Fermentation of Sida Hermaphrodita Silage. J. Ecol. Eng. 2018, 19, 128–134. [Google Scholar] [CrossRef]
- Machnicka, A.; Grübel, K.; Mirota, K. Considerations of Impact of Venturi Effect on Mesophilic Digestion. Ecol. Chem. Eng. S 2016, 22, 645–658. [Google Scholar] [CrossRef] [Green Version]
- Saravanan, A.; Karishma, S.; Kumar, P.S.; Yaashikaa, P.R.; Jeevanantham, S.; Gayathri, B. Microbial Electrolysis Cells and Microbial Fuel Cells for Biohydrogen Production: Current Advances and Emerging Challenges. Biomass Convers. Biorefinery 2020, 1–21. [Google Scholar] [CrossRef]
- Policastro, G.; Cesaro, A.; Fabbricino, M. Photo-Fermentative Hydrogen Production from Cheese Whey: Engineering of a Mixed Culture Process in a Semi-Continuous, Tubular Photo-Bioreactor. Int. J. Hydrogen Energy 2022, 47, 10665–10688. [Google Scholar] [CrossRef]
- Yousuf, A.; Bastidas-Oyanedel, J.-R.; Schmidt, J.E. Effect of Total Solid Content and Pretreatment on the Production of Lactic Acid from Mixed Culture Dark Fermentation of Food Waste. Waste Manag. 2018, 77, 516–521. [Google Scholar] [CrossRef]
- Khongkliang, P.; Jehlee, A.; Kongjan, P.; Reungsang, A.; Sompong, O. High Efficient Biohydrogen Production from Palm Oil Mill Effluent by Two-Stage Dark Fermentation and Microbial Electrolysis under Thermophilic Condition. Int. J. Hydrogen Energy 2019, 44, 31841–31852. [Google Scholar] [CrossRef]
- Khongkliang, P.; Kongjan, P.; Utarapichat, B.; Reungsang, A.; Sompong, O. Continuous Hydrogen Production from Cassava Starch Processing Wastewater by Two-Stage Thermophilic Dark Fermentation and Microbial Electrolysis. Int. J. Hydrogen Energy 2017, 42, 27584–27592. [Google Scholar] [CrossRef]
- Then, M.Y.; Ramesh, S.; Asrul, M.A.M.; Atan, M.F.; Yun, H.A.H.; Lai, J.C.H.; Rahman, M.R.; Abdullah, M.O.; Wahab, N.A. Dynamic Modeling of Hydrogen Production from Photo-Fermentation in Microbial Electrolysis Cell Using Sago Waste. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1101, 012040. [Google Scholar] [CrossRef]
- Amrut Pawar, A.; Karthic, A.; Lee, S.; Pandit, S.; Jung, S.P. Microbial Electrolysis Cells for Electromethanogenesis: Materials, Configurations and Operations. Environ. Eng. Res. 2020, 27, 200484. [Google Scholar] [CrossRef]
- Cai, M.; Wilkins, D.; Chen, J.; Ng, S.-K.; Lu, H.; Jia, Y.; Lee, P.K.H. Metagenomic Reconstruction of Key Anaerobic Digestion Pathways in Municipal Sludge and Industrial Wastewater Biogas-Producing Systems. Front. Microbiol. 2016, 7, 778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blasco-Gómez, R.; Batlle-Vilanova, P.; Villano, M.; Balaguer, M.D.; Colprim, J.; Puig, S. On the Edge of Research and Technological Application: A Critical Review of Electromethanogenesis. Int. J. Mol. Sci. 2017, 18, 874. [Google Scholar] [CrossRef] [Green Version]
- Cerrillo, M.; Viñas, M.; Bonmatí, A. Anaerobic Digestion and Electromethanogenic Microbial Electrolysis Cell Integrated System: Increased Stability and Recovery of Ammonia and Methane. Renew. Energy 2018, 120, 178–189. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Sun, D.; Zhao, Z.; Dang, Y.; Holmes, D.E. Methanothrix Enhances Biogas Upgrading in Microbial Electrolysis Cell via Direct Electron Transfer. Bioresour. Technol. 2019, 291, 121877. [Google Scholar] [CrossRef]
- Park, J.-G.; Lee, B.; Lee, U.-J.; Jun, H.-B. An Anaerobic Digester with Microbial Electrolysis Cell Enhances Relative Abundance of Methylotrophic Methanogens in Bulk Solution. Environ. Eng. Res. 2021, 27, 210666. [Google Scholar] [CrossRef]
Substrate | Increased Production | Pretreatment Conditions | Limiting Factors | Benefits | Reference | |
---|---|---|---|---|---|---|
Wastewater treatment plant | Sewage sludge | Increase the methane yield coefficient up to 95% | USPP: power 150 W; exposure time 15, 30, 45, and 60 min |
|
| [43] |
Sewage sludge | Increase the methane content in biogas to 68.3 ± 2.5% | USPP: power 125 W; field intensity 1.9–4.3 W cm−2 |
|
| [44] | |
High organic content wastewater | Increase the methane yield up to 60% | USPP: power 400 W; frequency 24 kHz with different amplitude ratios; exposure time 1, 2, 3 h |
|
| [45] | |
Waste-activated sludge | Increases biogas production by 25% | USPP: power 225 W, frequency 20 kHz |
|
| [46] | |
Food waste | Fruit and vegetable wastes | Increase the methane production by 29–80% | USPP: frequency 20 kHz; the amplitude of 80 μm; exposure time 9 min, 18 min, 27 min |
|
| [47] |
Food waste and cardboard | Increase the biogas yield up to 26% | USPP: power 750 kW; frequency of 20 kHz; exposure time 30 min, 45 min, 60 min |
|
| [41] | |
Organic fraction of municipal solid waste | Increase the biogas production up to 24% | USPP: density 0.1–0.4 W/mL, exposure time 30 min, 69 min |
|
| [48] | |
Increase the biogas production up to 16% | USPP: frequency 20 kHz |
|
| [49] | ||
Maximum biogas yield produced after 72 h of digestion increase | USPP: frequency 20 kHz; density 0.2, 0.4, 0.6 W/mL; exposure time 10 min, 20 min, and 30 min. |
|
| [50] | ||
Agricultural waste | Maize silage | Increase in biogas and methane production up to 29.5% | USPP: field intensity 40–50 W·cm−2; frequency 20 kHz; production ceases after 300 h |
|
| [51] |
Cattle manure mixed with straw wheat (2:1) | Increase in methane production by 1.6–4.1% Increase in biogas yield production by 8.7–64.2% | USPP: power 400 W; frequency 24 kHz; treatment time 4.41–54.14 s |
|
| [20] | |
Increase in methane production by 2.0–5.4% Increase in biogas yield production by 5.7–39.4% | HCPP: hydrosonic pump 1.2 kW; treatment time 4.41–54.14 s | |||||
Silage with bovine liquid manure | Increase in biogas yield by 23.5% | USPP: power 400 W; frequency 24 kHz; treatment time 60 s, 120 s, 180 s |
|
| [52] | |
Mixture of organic wastes | Increase in methane production by 20% | USPP: intensity 2.3, 7.7, 13.4 W·cm−2 |
|
| [39] | |
Algae | residues | Increases the methane yield by 21.5% | HCPP: 4000 rpm for 15 min |
|
| [37] |
Element to Catalyze Processes | Type of Reaction | Description | Bacterial Groups |
---|---|---|---|
Electrons from electrodes | HCO3− + H2 + H+ → CH4 + 3H2O |
| Hydrogenotrophic methanogens (i.e., Methanobacterium or Methanobrevibacter) |
Electron or hydrogen transfer | 2H+ + 2e− H2 |
| Between Desulfovibrionaceae family and the phylum Euryarcheota |
Reduction in oxygen | CH4 + 2O2 → CO2 + 2H2O |
| Hydrogenophaga caeni, Methylocystis sp. and Acidovorax caeni |
Reduced compounds (hydrogen or formate) as available substrate for other | HCO3− + H2 + H+ → CH4 + 3H2O HCOO− + 3H2 + H+ → CH4 + 2H2O |
| Methanothermobacter, Methanomicrobiales, Methanococcales, Methanocellales |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chubur, V.; Danylov, D.; Chernysh, Y.; Plyatsuk, L.; Shtepa, V.; Haneklaus, N.; Roubik, H. Methods for Intensifying Biogas Production from Waste: A Scientometric Review of Cavitation and Electrolysis Treatments. Fermentation 2022, 8, 570. https://doi.org/10.3390/fermentation8100570
Chubur V, Danylov D, Chernysh Y, Plyatsuk L, Shtepa V, Haneklaus N, Roubik H. Methods for Intensifying Biogas Production from Waste: A Scientometric Review of Cavitation and Electrolysis Treatments. Fermentation. 2022; 8(10):570. https://doi.org/10.3390/fermentation8100570
Chicago/Turabian StyleChubur, Viktoriia, Dmytro Danylov, Yelizaveta Chernysh, Leonid Plyatsuk, Vladimir Shtepa, Nils Haneklaus, and Hynek Roubik. 2022. "Methods for Intensifying Biogas Production from Waste: A Scientometric Review of Cavitation and Electrolysis Treatments" Fermentation 8, no. 10: 570. https://doi.org/10.3390/fermentation8100570
APA StyleChubur, V., Danylov, D., Chernysh, Y., Plyatsuk, L., Shtepa, V., Haneklaus, N., & Roubik, H. (2022). Methods for Intensifying Biogas Production from Waste: A Scientometric Review of Cavitation and Electrolysis Treatments. Fermentation, 8(10), 570. https://doi.org/10.3390/fermentation8100570