Simultaneous Production and Immobilization of Lipase Using Pomegranate-Seed Residue: A New Biocatalyst for Hydrolysis Reactions and Structured Lipids Synthesis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Physicochemical Characterization of PSR
2.3. Lipase Production
2.3.1. Strain and Inoculum Preparation
2.3.2. Lipase Production in Erlenmeyer Flasks
2.3.3. Lipase Production in Bioreactor
2.4. Freeze-Dried Fermented-Pomegranate-Seed Residue (fermPSR) Characterization
2.4.1. Physicochemical Characterization of Freeze-Dried fermPSR
2.4.2. Kinetic-Biocatalyst Parameters of Freeze-Dried fermPSR
2.4.3. Hydrolysis and Synthesis Reactions with Freeze-Dried fermPSR as Biocatalyst
2.5. Reuse of Freeze-Dried fermPSR in Biocatalysis Reactions
2.6. Analytical Procedures
2.6.1. Cell Concentration
2.6.2. Lipolytic Activity
2.6.3. Determination of Fatty-Acid Composition by Gas Chromatography (GC)
2.7. Statistical Analysis
3. Results and Discussion
3.1. Proximate Composition of Pomegranate Seed Residue (PSR)
3.2. Lipase Production with Pomegranate-Seed Residue
3.3. Freeze-Dried Fermented-Pomegranate-Seed Residue (fermPSR) as a Biocatalyst
3.4. Hydrolysis and Synthesis Reactions with Freeze-Dried fermPSR
3.5. Reuse of Freeze-Dried fermPSR in Hydrolysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aviram, M.; Dornfeld, L.; Rosenblat, M.; Volkova, N.; Kaplan, M.; Coleman, R.; Hayek, T.; Presser, D.; Fuhrman, B. Pomegranate juice consumption reduces oxidative stress, atherogenic modifications to LDL, and platelet aggregation: Studies in humans and in atherosclerotic apolipoprotein E-deficient mice. Am. J. Clin. Nutr. 2000, 71, 1062–1076. [Google Scholar] [CrossRef] [Green Version]
- Lansky, E.P.; Newman, R.A. Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer. J. Ethnopharmacol. 2007, 109, 177–206. [Google Scholar] [CrossRef]
- Elfalleh, W.; Ying, M.; Nasri, N.; Sheng-Hua, H.; Guasmi, F.; Ferchichi, A. Fatty acids from Tunisian and Chinese pomegranate (Punica granatum L.) seeds. Int. J. Food Sci. Nutr. 2011, 62, 200–206. [Google Scholar] [CrossRef]
- Fernandes, L.; Pereira, J.A.; Lopéz-Cortés, I.; Salazar, D.M.; Ramalhosa, E.; Casal, S. Fatty acid, vitamin E and sterols composition of seed oils from nine different pomegranate (Punica granatum L.) cultivars grown in Spain. J. Food Compos. Anal. 2015, 39, 13–22. [Google Scholar] [CrossRef]
- Viladomiu, M.; Hontecillas, R.; Lu, P.; Bassaganya-Riera, J. Preventive and prophylactic mechanisms of action of pomegranate bioactive constituents. Evid. Based. Complement. Alternat. Med. 2013, 2013, 789764. [Google Scholar] [CrossRef] [Green Version]
- Goula, A.M. Ultrasound-assisted extraction of pomegranate seed oil—Kinetic modeling. J. Food Eng. 2013, 117, 492–498. [Google Scholar] [CrossRef]
- Đurđević, S.; Milovanović, S.; Šavikin, K.; Ristić, M.; Menković, N.; Pljevljakušić, D.; Petrović, S.; Bogdanović, A. Improvement of supercritical CO2 and n-hexane extraction of wild growing pomegranate seed oil by microwave pretreatment. Ind. Crops Prod. 2017, 104, 21–27. [Google Scholar] [CrossRef]
- Laufenberg, G.; Kunz, B.; Nystroem, M. Transformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implementations. Bioresour. Technol. 2003, 87, 167–198. [Google Scholar] [CrossRef]
- Da Pereira, A.S.; Fontes-Sant’Ana, G.C.; Amaral, P.F.F. Mango agro-industrial wastes for lipase production from Yarrowia lipolytica and the potential of the fermented solid as a biocatalyst. Food Bioprod. Process. 2019, 115, 68–77. [Google Scholar] [CrossRef]
- Treichel, H.; de Oliveira, D.; Mazutti, M.A.; Di Luccio, M.; Oliveira, J.V. A review on microbial lipases production. Food Bioprocess Technol. 2010, 3, 182–196. [Google Scholar] [CrossRef]
- Gupta, R.; Gupta, N.; Rathi, P. Bacterial lipases: An overview of production, purification and biochemical properties. Appl. Microbiol. Biotechnol. 2004, 64, 763–781. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.H.; Ji, X.J.; Huang, H. Biotechnological applications of Yarrowia lipolytica: Past, present and future. Biotechnol. Adv. 2015, 33, 1522–1546. [Google Scholar] [CrossRef] [PubMed]
- Aguieiras, E.C.G.; Cavalcanti-Oliveira, E.D.; De Castro, A.M.; Langone, M.A.P.; Freire, D.M.G. Biodiesel production from Acrocomia aculeata acid oil by (enzyme/enzyme) hydroesterification process: Use of vegetable lipase and fermented solid as low-cost biocatalysts. Fuel 2014, 135, 315–321. [Google Scholar] [CrossRef]
- Todeschini, J.K.P.; Aguieiras, E.C.G.; de Castro, A.M.; Langone, M.A.P.; Freire, D.M.G.; Rodrigues, R.C. Synthesis of butyl esters via ultrasound-assisted transesterification of macaúba (Acrocomia aculeata) acid oil using a biomass-derived fermented solid as biocatalyst. J. Mol. Catal. B Enzym. 2016, 133, S213–S219. [Google Scholar] [CrossRef]
- Aguieiras, E.C.G.; de Barros, D.S.N.; Fernandez-Lafuente, R.; Freire, D.M.G. Production of lipases in cottonseed meal and application of the fermented solid as biocatalyst in esterification and transesterification reactions. Renew. Energy 2019, 130, 574–581. [Google Scholar] [CrossRef]
- De Silva, L.O.; Ranquine, L.G.; Monteiro, M.; Torres, A.G. Pomegranate (Punica granatum L.) seed oil enriched with conjugated linolenic acid (cLnA), phenolic compounds and tocopherols: Improved extraction of a specialty oil by supercritical CO2. J. Supercrit. Fluids 2019, 147, 126–137. [Google Scholar] [CrossRef]
- Zenebon, O.; Pascuet, N.S.; Tiglea, P. (Eds.) Métodos Físico-Químicos para Análise de Alimentos; Instituto Adolfo Lutz: São Paulo, Brazil, 2008. [Google Scholar]
- Horwitz, W.; George, W. Latimer Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Hagler, A.N.; Mendonça-Hagler, L.C. Yeasts from Marine and Estuarine Waters with Different Levels of Pollution in the State of Rio de Janeiro, Brazil. Appl. Environ. Microbiol. 1981, 41, 173. [Google Scholar] [CrossRef] [Green Version]
- Saqib, A.A.N.; Hassan, M.; Khan, N.F.; Baig, S. Thermostability of crude endoglucanase from Aspergillus fumigatus grown under solid state fermentation (SSF) and submerged fermentation (SmF). Process Biochem. 2010, 45, 641–646. [Google Scholar] [CrossRef]
- Akil, E.; da, S. Pereira, A.; El-Bacha, T.; Amaral, P.F.F.; Torres, A.G. Efficient production of bioactive structured lipids by fast acidolysis catalyzed by Yarrowia lipolytica lipase, free and immobilized in chitosan-alginate beads, in solvent-free medium. Int. J. Biol. Macromol. 2020, 163, 910–918. [Google Scholar] [CrossRef]
- Pereira-Meirelles, F.V.; Rocha-LeãO, M.H.M.; Santt’ Anna, G.L. A stable lipase from Candida lipolytica: Cultivation conditions and crude enzyme characteristics. Appl. Biochem. Biotechnol. 1997, 63–65, 73–85. [Google Scholar] [CrossRef]
- Lepage, G.; Roy, C.C. Direct transesterification of all classes of lipids in a one-step reaction. J. Lipid Res. 1986, 27, 114–120. [Google Scholar] [CrossRef]
- Guzmán-Lorite, M.; Marina, M.L.; García, M.C. Pressurized liquids vs. high intensity focused ultrasounds for the extraction of proteins from a pomegranate seed waste. Innov. Food Sci. Emerg. Technol. 2022, 77, 102958. [Google Scholar] [CrossRef]
- Li, C.Y.; Cheng, C.Y.; Chen, T.L. Fed-batch production of lipase by Acinetobacter radioresistens using Tween 80 as the carbon source. Biochem. Eng. J. 2004, 19, 25–31. [Google Scholar] [CrossRef]
- Galvagno, M.A.; Iannone, L.J.; Bianchi, J.; Kronberg, F.; Rost, E.; Carstens, M.R.; Cerrutti, P. Optimization of biomass production of a mutant of Yarrowia lipolytica with an increased lipase activity using raw glycerol. Rev. Argent. Microbiol. 2011, 43, 218–225. [Google Scholar] [CrossRef]
- Novotný, Č.; Doležalová, L.; Musil, P.; Novák, M. The production of lipases by some Candida and Yarrowia yeasts. J. Basic Microbiol. 1988, 28, 221–227. [Google Scholar] [CrossRef]
- Nunes, P.M.B.; Fraga, J.L.; Ratier, R.B.; Rocha-Leão, M.H.M.; Brígida, A.I.S.; Fickers, P.; Amaral, P.F.F. Waste soybean frying oil for the production, extraction, and characterization of cell-wall-associated lipases from Yarrowia lipolytica. Bioprocess Biosyst. Eng. 2021, 44, 809–818. [Google Scholar] [CrossRef]
- Fraga, J.L.; da Penha, A.C.B.; Akil, E.; Silva, K.A.; Amaral, P.F.F. Catalytic and physical features of a naturally immobilized Yarrowia lipolytica lipase in cell debris (LipImDebri) displaying high thermostability. 3 Biotech 2020, 10, 454. [Google Scholar] [CrossRef]
- Carvalho, T.; da, S. Pereira, A.; Bonomo, R.C.F.; Franco, M.; Finotelli, P.V.; Amaral, P.F.F. Simple physical adsorption technique to immobilize Yarrowia lipolytica lipase purified by different methods on magnetic nanoparticles: Adsorption isotherms and thermodynamic approach. Int. J. Biol. Macromol. 2020, 160, 889–902. [Google Scholar] [CrossRef]
- Da Pereira, A.S.; Diniz, M.M.; De Jong, G.; Gama Filho, H.S.; dos Anjos, M.J.; Finotelli, P.V.; Fontes-Sant’Ana, G.C.; Amaral, P.F.F. Chitosan-alginate beads as encapsulating agents for Yarrowia lipolytica lipase: Morphological, physico-chemical and kinetic characteristics. Int. J. Biol. Macromol. 2019, 139, 621–630. [Google Scholar] [CrossRef]
Run | Real Values (Corresponding Coded Levels) | Extracellular Lipase Activity (U/L) | |
---|---|---|---|
Yeast Extract (g/L) | Urea (g/L) | ||
1 | 2.0(−1) | 0.5(−1) | 13,120.81 |
2 | 2.0(−1) | 2.5(+1) | 502.45 |
3 | 4.0(+1) | 0.5(−1) | 11,685.13 |
4 | 4.0(+1) | 2.5(+1) | 530.41 |
5 | 1.6(−1.41) | 1.5(0) | 10,450.85 |
6 | 4.4(+1.41) | 1.5(0) | 3127.25 |
7 | 3.0(0) | 0.1(−1.41) | 14,161.17 |
8 | 3.0(0) | 2.9(+1.41) | 285.55 |
9 (C) | 3.0(0) | 1.5(0) | 9990.86 |
10 (C) | 3.0(0) | 1.5(0) | 7615.04 |
11 (C) | 3.0(0) | 1.5(0) | 8191.85 |
Constituent | Concentration (%) |
---|---|
Moisture | 8.65 ± 0.02 |
Protein | 12.57 ± 0.09 |
Lipids | 3.54 ± 0.34 |
Carbohydrates | 72.62 ± 0.83 |
Ashes | 2.49 ± 0.07 |
Factor | Sum of Square | DF | Mean Square | F-Value | p-Value | R2 |
---|---|---|---|---|---|---|
Yeast extract (L) | 17,301,489 | 1 | 17,301,489 | 11.2669 | 0.0784 | 0.913 |
Urea (L) | 235,403,403 | 1 | 235,403,403 | 153.2965 | 0.0065 | |
Lack of fit | 21,085,205 | 6 | 3,514,201 | 2.2885 | 0.3351 | |
Pure error | 3,071,216 | 2 | 1,535,608 | |||
Total | 276,861,314 | 10 |
Parameters | Value |
---|---|
Vmax (µmol/min/g) | 49.47 |
Km (µmol/L) | 206.96 |
Kcat (s−1) | 129.83 |
ΔGE–S (kJ/µmol) | 13.72 |
ΔGE–T (kJ/µmol) | 1.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diniz, M.M.; Pereira, A.d.S.; Albagli, G.; Amaral, P.F.F. Simultaneous Production and Immobilization of Lipase Using Pomegranate-Seed Residue: A New Biocatalyst for Hydrolysis Reactions and Structured Lipids Synthesis. Fermentation 2022, 8, 651. https://doi.org/10.3390/fermentation8110651
Diniz MM, Pereira AdS, Albagli G, Amaral PFF. Simultaneous Production and Immobilization of Lipase Using Pomegranate-Seed Residue: A New Biocatalyst for Hydrolysis Reactions and Structured Lipids Synthesis. Fermentation. 2022; 8(11):651. https://doi.org/10.3390/fermentation8110651
Chicago/Turabian StyleDiniz, Marianne M., Adejanildo da S. Pereira, Gabriel Albagli, and Priscilla F. F. Amaral. 2022. "Simultaneous Production and Immobilization of Lipase Using Pomegranate-Seed Residue: A New Biocatalyst for Hydrolysis Reactions and Structured Lipids Synthesis" Fermentation 8, no. 11: 651. https://doi.org/10.3390/fermentation8110651
APA StyleDiniz, M. M., Pereira, A. d. S., Albagli, G., & Amaral, P. F. F. (2022). Simultaneous Production and Immobilization of Lipase Using Pomegranate-Seed Residue: A New Biocatalyst for Hydrolysis Reactions and Structured Lipids Synthesis. Fermentation, 8(11), 651. https://doi.org/10.3390/fermentation8110651