Algal Biomass Accumulation in Waste Digestate after Anaerobic Digestion of Wheat Straw
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anaerobic Digestion
2.2. Microalgal Cultures
2.3. Clarification with Active Carbon
2.4. Nitrogen and Phosphorus Quantity
2.5. Pigment Content
2.6. Mathematical Modeling
3. Results and Discussion
3.1. Digestate Preparation and Clarification
3.2. Algae Cultivation
3.3. Nitrogen and Phosphorous Uptake
3.4. Modeling of the Obtained Experimental Data
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ngan, N.V.C.; Chan, F.M.S.; Nam, T.S.; Thao, H.V.; Maguyon-Detras, M.C.; Hung, D.V.; Cuong, D.M.; Hung, N.V. Anaerobic digestion of rice straw for biogas production. In Sustainable Rice Straw Management, 4th ed.; Gummert, M., Hung, N., Chivenge, P., Douthwaite, B., Eds.; Springer: Cham, Switzerland, 2020; pp. 65–92. [Google Scholar] [CrossRef] [Green Version]
- Tasmaganbetov, A.B.; Ataniyazov, Z.; Basshieva, Z.; Muhammedov, A.U.; Yessengeldina, A. World practice of using biogas as alternative energy. Int. J. Energy Econ. Policy 2020, 10, 348–352. Available online: https://econjournals.com/index.php/ijeep/article/view/9805 (accessed on 3 October 2022). [CrossRef]
- Anwar, N.; Wang, W.; Zhang, J.; Li, Y.; Chen, C.; Liu, G.; Zhang, R. Effect of sodium salt on anaerobic digestion of kitchen waste. Water Sci. Technol. 2016, 73, 1865–1871. [Google Scholar] [CrossRef] [PubMed]
- Jafar, R.; Awad, A. State and development of anaerobic technology for biogas production in Syria. Clean. Eng. Technol. 2021, 5, 100253. [Google Scholar] [CrossRef]
- Logan, M.; Visvanathan, C. Management strategies for anaerobic digestate of organic fraction of municipal solid waste: Current status and future prospects. Waste Manag. Res. 2019, 37 (Suppl. 1), 27–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalrymple, O.K.; Halfhide, T.; Udom, I.; Gilles, B.; Wolan, J.; Zhang, Q.; Ergas, S. Wastewater use in algae production for generation of renewable resources: A review and preliminary results. Aquat. Biosyst. 2013, 9, 2. [Google Scholar] [CrossRef] [Green Version]
- García, J.L.; de Vicente, M.; Galán, B. Microalgae, old sustainable food and fashion nutraceuticals. Microb. Biotechnol. 2017, 10, 1017–1024. [Google Scholar] [CrossRef] [Green Version]
- Anto, S.; Mukherjee, S.S.; Muthappa, R.; Mathimani, T.; Deviram, G.; Kumar, S.S.; Verma, T.N.; Pugazhendhi, A. Algae as green energy reserve: Technological outlook on biofuel production. Chemosphere 2020, 242, 125079. [Google Scholar] [CrossRef]
- Mendes, M.C.; Navalho, S.; Ferreira, A.; Paulino, C.; Figueiredo, D.; Silva, D.; Gao, F.; Gama, F.; Bombo, G.; Jacinto, R.; et al. Algae as food in Europe: An overview of species diversity and their application. Foods 2022, 11, 1871. [Google Scholar] [CrossRef]
- Thiyagarasaiyar, K.; Goh, B.-H.; Jeon, Y.-J.; Yow, Y.-Y. Algae metabolites in cosmeceutical: An overview of current applications and challenges. Mar. Drugs. 2020, 18, 323. [Google Scholar] [CrossRef]
- Nikolova, B.; Semkova, S.; Tsoneva, I.; Antov, G.; Ivanova, J.; Vasileva, I.; Kardaleva, P.; Stoineva, I.; Christova, N.; Nacheva, L.; et al. Characterization and potential antitumor effect of a heteropolysaccharide produced by the red alga Porphyridium sordidum. Eng. Life Sci. 2021, 19, 978–985. [Google Scholar] [CrossRef] [Green Version]
- Ammar, E.E.; Aioub, A.A.A.; Elesawy, A.E.; Karkour, A.M.; Mouhamed, M.S.; Amer, A.A.; EL-Shershaby, N.A. Algae as bio-fertilizers: Between current situation and future prospective. Saudi J. Biol. Sci. 2022, 29, 3083–3096. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Raouf, N.; Al-Homaidan, A.; Ibraheem, I.B.M. Agricultural importance of algae. Afr. J. Biotechnol. 2016, 11, 11648–11658. [Google Scholar] [CrossRef]
- Kabaivanova, L.; Chernev, G.; Ivanova, J. Construction of inorganic and hybrid biosorbents for heavy metal ions removal. Int. J. Bioautomation 2015, 19, 473–482. [Google Scholar]
- Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M. Microalgae and wastewater treatment. Saudi J. Biol. Sci. 2012, 19, 257–275. [Google Scholar] [CrossRef] [Green Version]
- Ozkurt, I. Qualifying of safflower and algae for energy. Energy Educ. Sci. Technol. Part A 2009, 23, 145–151. [Google Scholar]
- Ayre, J.M.; Mickan, B.S.; Jenkins, S.N.; Moheimani, N.R. Batch cultivation of microalgae in anaerobic digestate exhibits functional changes in bacterial communities impacting nitrogen removal and wastewater treatment. Algal Res. 2021, 57, 102338. [Google Scholar] [CrossRef]
- Grobbelaar, J.U. Algal nutrition. In Handbook of Microalgal Culture: Biotechnology and Applied Phycology, 1st ed.; Richmond, A., Ed.; Blackwell Science Ltd.: Oxford, UK, 2004; pp. 97–115. Available online: https://dl.icdst.org/pdfs/files/8a0e128e46252f218192dc8d9cfa090e.pdf (accessed on 3 December 2022).
- Shahid, A.; Malik, S.; Zhu, H.; Xu, J.; Nawaz, M.Z.; Nawaz, S.; Alam, A.M.; Mehmood, M.A. Cultivating microalgae in wastewater for biomass production, pollutant removal, and atmospheric carbon mitigation; A review. Sci. Total Environ. 2020, 704, 135303. [Google Scholar] [CrossRef]
- Rana, M.S.; Prajapati, S.K. Stimulating effects of glycerol on the growth, phycoremediation and biofuel potential of Chlorella pyrenoidosa cultivated in wastewater. Environ. Technol. Innov. 2021, 24, 102082. [Google Scholar] [CrossRef]
- Kabaivanova, L.; Petrova, P.; Hubenov, V.; Simeonov, I. Biogas production potential of thermophilic anaerobic biodegradation of organic waste by a microbial consortium identified with metagenomics. Life 2022, 12, 702. [Google Scholar] [CrossRef]
- Zachleder, V.; Šetlik, I. Effect of irradiance on the course of RNA synthesis in the cell cycle of Scenedesmus quadricauda. Biol. Plantarum 1982, 24, 341–353. [Google Scholar] [CrossRef]
- Hemerick, G. Handbook of Physiological Methods: Culture Methods and Growth Measurements, 1st ed.; Stein, J.R., Ed.; Cambridge University Press: New York, NY, USA, 1973; pp. 259–260. [Google Scholar]
- Makarevičienė, V.; Skorupskaitė, V.; Andrulevičiūtė, V. Biomass and oil production of green microalgae Scenedesmus sp. using different nutrients and growth. Environ. Res. Eng. Manag. 2012, 62, 5–13. [Google Scholar] [CrossRef]
- Mackinney, G. Criteria for purity of chlorophyll preparations. J. Biol. Chem. 1940, 132, 91–109. [Google Scholar] [CrossRef]
- Siegelman, H.W.; Kycia, J.H. Algal biliproteins. In Handbook of Phycological Methods, Physiological and Biochemical Methods, 2nd ed.; Hellebust, J.A., Craigie, J.S., Eds.; Cambridge University Press: Cambridge, UK, 1978; pp. 71–79. [Google Scholar] [CrossRef]
- Nocedal, J.; Wright, S.J. Numerical Optimization, 2nd ed.; Springer Series in Operations Research; Springer: New York, NY, USA, 2006. [Google Scholar] [CrossRef] [Green Version]
- Monlau, F.; Sambusiti, C.; Ficara, E.; Aboulkas, A.; Barakat, A.; Carrère, H. New opportunities for agricultural digestate valorization: Current situation and perspectives. Energy Environ. Sci. 2015, 8, 2600–2621. [Google Scholar] [CrossRef]
- Uggetti, E.; Sialve, B.; Trably, E.; Steyer, J.P. Integrating microalgae production with anaerobic digestion: A biorefinery approach. Biofuels Bioprod. Biorefin. 2014, 8, 516–529. [Google Scholar] [CrossRef]
- Marazzi, F.; Sambusiti, C.; Monlau, F.; Cecere, S.E.; Scaglione, D.; Barakat, A.; Mezzanotte, V.; Ficara, E. A novel option for reducing the optical density of liquid digestate to achieve a more productive microalgal culturing. Algal Res. Part A 2017, 24, 19–28. [Google Scholar] [CrossRef]
- Silva, S.C.; Ferreira, I.C.F.R.; Dias, M.M.; Barreiro, M.F. Microalgae-derived pigments: A 10-year bibliometric review and industry and market trend analysis. Molecules 2020, 25, 3406. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, F.; Silkina, A.; Gayo-Peláez, J.I.; Kapoore, R.V.; de la Broise, D.; Llewellyn, C.A. Microalgae Cultivation on Nutrient Rich Digestate: The Importance of Strain and Digestate Tailoring under PH Control. Appl. Sci. 2022, 12, 5429. [Google Scholar] [CrossRef]
- Bauer, L.; Ranglová, K.; Masojídek, J.; Drosg, B.; Meixner, K. Digestate as Sustainable Nutrient Source for Microalgae—Challenges and Prospects. Appl. Sci. 2021, 11, 1056. [Google Scholar] [CrossRef]
- Yaakob, M.A.; Mohamed, R.M.S.R.; Al-Gheethi, A.; Aswathnarayana Gokare, R.; Ambati, R.R. Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: An overview. Cells 2021, 10, 393. [Google Scholar] [CrossRef]
- Barzee, T.G.; Edalati, A.; El-Mashad, H.; Wang, D.; Scow, K.; Zhang, R. Digestate Biofertilizers Support Similar or Higher Tomato Yields and Quality Than Mineral Fertilizer in a Subsurface Drip Fertigation System. Front. Sustain. Food Syst. 2019, 3, 58. [Google Scholar] [CrossRef]
- Nag, R.; Whyte, P.; Markey, B.K.; O’Flaherty, V.; Bolton, D.; Fenton, O.; Richards, K.G.; Cummins, E. Ranking hazards pertaining to human health concerns from land application of anaerobic digestate. Sci. Total Environ. 2020, 710, 136297. [Google Scholar] [CrossRef] [PubMed]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; López-Felices, B.; Román-Sánchez, I.M. Circular economy in agriculture. An analysis of the state of research based on the life cycle. Sustainab. Product. Consumpt. 2022, 34, 257–270. [Google Scholar] [CrossRef]
- Hubenov, V.; Carcioch, R.A.; Ivanova, J.; Vasileva, I.; Dimitrov, K.; Simeonov, I.; Kabaivanova, L. Biomethane production using ultrasound pre-treated maize stalks with subsequent microalgae cultivation. Biotechnol. Biotechnol. Eq. 2020, 34, 800–809. [Google Scholar] [CrossRef]
- Marks, E.A.N.; Montero, O.; Rad, C. The biostimulating effects of viable microalgal cells applied to a calcareous soil: Increases in bacterial biomass, phosphorus scavenging, and precipitation of carbonates. Sci. Total Environ. 2019, 692, 784–790. [Google Scholar] [CrossRef] [PubMed]
- Colica, G.; Li, H.; Rossi, F.; Li, D.; Liu, Y.; De Philippis, R. Microbial secreted exopolysaccharides affect the hydrological behavior of induced biological crusts in desert soils. Soil Biol. Biochem. 2014, 68, 62–70. [Google Scholar] [CrossRef]
- Domozych, D.S.; Ciancia, M.; Fangel, J.U.; Mikkelsen, M.D.; Ulvskov, P.; Willats, W.G.T. The cell walls of green algae: A journey through evolution and diversity. Front. Plant Sci. 2012, 3, 82. [Google Scholar] [CrossRef] [Green Version]
- Rachidi, F.; Benhima, R.; Sbabou, L.; El Arroussi, H. Microalgae polysaccharides bio-stimulating effect on tomato plants: Growth and metabolic distribution. Biotechnol. Rep. 2020, 25, e00426. [Google Scholar] [CrossRef]
- Alvarez-Garreton, C.; Ryu, D.; Western, A.W.; Su, C.-H.; Crow, W.T.; Robertson, D.E.; Leahy, C. Improving operational flood ensemble prediction by the assimilation of satellite soil moisture: Comparison between lumped and semi-distributed schemes. Hydrol. Earth Syst. Sci. 2015, 19, 1659–1676. [Google Scholar] [CrossRef] [Green Version]
- Massari, C.; Brocca, L.; Tarpanelli, A.; Moramarco, T. Data Assimilation of Satellite Soil Moisture into Rainfall-Runoff Modelling: A Complex Recipe? Remote Sens. 2015, 7, 11403–11433. [Google Scholar] [CrossRef]
- Nazifa, R.; Forruque, A.S.; Anjum, B.I.; Mofijur, M.; Sarfaraz, K. Strategies to Produce Cost-Effective Third-Generation Biofuel from Microalgae. Front. Energy Res. 2021, 9, 749968. [Google Scholar] [CrossRef]
- Zarrinmehr, M.J.; Farhadian, O.; Heyrati, F.P.; Keramat, J.; Koutra, E.; Kornaros, M.; Daneshvar, E. Effect of nitrogen concentration on the growth rate and biochemical composition of the microalga, Isochrysis galbana. Egypt. J. Aquat. Res. 2019, 46, 1687–4285. [Google Scholar] [CrossRef]
- Procházková, G.; Brányiková, I.; Zachleder, V.; Brányik, T. Effect of nutrient supply status on biomass composition of eukaryotic green microalgae. J. Appl. Phycol. 2013, 26, 1359–1377. [Google Scholar] [CrossRef]
- Ummalyma, S.B.; Singh, A. Biomass production and phycoremediation of microalgae cultivated in polluted river water. Bioresour. Technol. 2022, 351, 126948. [Google Scholar] [CrossRef] [PubMed]
Parameter | Digestate From: | |
---|---|---|
Mesophilic Process | Thermophilic Process | |
TS, g/L | 9.27 ± 0.04 | 6.31 ± 0.03 |
VS, %TS | 60.21 ± 0.43 | 63.46 ± 0.72 |
pH | 7.62 ± 0.01 | 7.88 ± 0.01 |
COD, mg/L | 668 ± 0.04 | 591 ± 0.04 |
NH4-N, mg/L | 177 ± 0.10 | 175 ± 0.13 |
PO4-P, mg/L | 3.79 ± 0.06 | 3.76 ± 0.05 |
Scenedesmus acutus | Porphyridium cruentum | |||||
---|---|---|---|---|---|---|
Time | Control | Mesophilic Digestate | Thermophilic Digestate | Control | Mesophilic Digestate | Thermophilic Digestate |
N (mg/L) | N (mg/L) | N (mg/L) | N (mg/L) | N (mg/L) | N (mg/L) | |
0 h | 200 | 176 | 173 | 280 | 139 | 140 |
24 h | 170 | 134 | 168 | 260 | 130 | 123 |
48 h | 156 | 98 | 160 | 248 | 124.8 | 116 |
72 h | 148 | 92.3 | 154.1 | 225 | 112.1 | 109 |
96 h | 127 | 84 | 130 | 219 | 109 | 92 |
120 h | 114 | 77 | 117 | 212 | 108 | 70.2 |
144 h | 100.6 | 60.2 | 90.6 | 200 | 100 | 55.6 |
168 h | 94 | 41 | 88 | 180 | 99 | 40 |
Scenedesmus acutus | Porphyridium cruentum | |||||
---|---|---|---|---|---|---|
Time | Control | Mesophilic Digestate | Thermophilic Digestate | Control | Mesophilic Digestate | Thermophilic Digestate |
P (mg/L) | P (mg/L) | P (mg/L) | P (mg/L) | P (mg/L) | P (mg/L) | |
0 h | 42.5 | 3.88 | 3.52 | 38.75 | 3.77 | 3.98 |
24 h | 37 | 3.42 | 3.46 | 29 | 3.65 | 3.62 |
48 h | 25 | 2.6 | 2.8 | 18 | 3.51 | 3.1 |
72 h | 18 | 2.1 | 2.4 | 12.2 | 3 | 2 |
96 h | 11.4 | 1.8 | 2.1 | 8.3 | 2.1 | 1.78 |
120 h | 8 | 0.87 | 2 | 5.9 | 1.9 | 0.6 |
144 h | 4.1 | 0.3 | 1.1 | 3.2 | 0.66 | 0.33 |
168 h | 3.63 | 0 | 0.3 | 1.3 | 0.18 | 0.12 |
Coefficient | A1 | b | c | B1 | d | f |
---|---|---|---|---|---|---|
Coefficient lower bound | 0 | −1 | −1.5 | 0 | −1 | −2 |
Coefficient upper limit | 6000 | 1 | 1 | 500 | 1 | 1 |
Coefficients identified values | 5015.42 | −0.002 | −0.6 | 129.55 | −0.004 | −0.32 |
Coefficient | A1 | b | c | B1 | d | f |
---|---|---|---|---|---|---|
Coefficient lower bound | 0 | −1 | −1.5 | 0 | −1 | −2 |
Coefficient upper limit | 6000 | 1 | 1 | 1000 | 1 | 1 |
Coefficients identified values | 2743.33 | 0.012 | −0.84 | 889.15 | −0.029 | 0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabaivanova, L.; Ivanova, J.; Chorukova, E.; Hubenov, V.; Nacheva, L.; Simeonov, I. Algal Biomass Accumulation in Waste Digestate after Anaerobic Digestion of Wheat Straw. Fermentation 2022, 8, 715. https://doi.org/10.3390/fermentation8120715
Kabaivanova L, Ivanova J, Chorukova E, Hubenov V, Nacheva L, Simeonov I. Algal Biomass Accumulation in Waste Digestate after Anaerobic Digestion of Wheat Straw. Fermentation. 2022; 8(12):715. https://doi.org/10.3390/fermentation8120715
Chicago/Turabian StyleKabaivanova, Lyudmila, Juliana Ivanova, Elena Chorukova, Veneren Hubenov, Lilyana Nacheva, and Ivan Simeonov. 2022. "Algal Biomass Accumulation in Waste Digestate after Anaerobic Digestion of Wheat Straw" Fermentation 8, no. 12: 715. https://doi.org/10.3390/fermentation8120715
APA StyleKabaivanova, L., Ivanova, J., Chorukova, E., Hubenov, V., Nacheva, L., & Simeonov, I. (2022). Algal Biomass Accumulation in Waste Digestate after Anaerobic Digestion of Wheat Straw. Fermentation, 8(12), 715. https://doi.org/10.3390/fermentation8120715