Characterisation of Tannin and Aroma Profiles of Pinot Noir Wines Made with or without Grape Pomace
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Microvinification
2.3. Oenological Parameters
2.4. Spectrophotometric Analysis
2.4.1. Methyl Cellulose Precipitable (MCP) Tannin
2.4.2. Total Phenolics
2.5. Analysis of Flavan-3-Ols Monomers by HPLC
2.6. Phloroglucinolysis
2.7. Volatile Aroma Compounds
2.8. Odour Activity Values
2.9. Statistical Analysis
3. Results and Discussion
3.1. Oenological Testing
3.2. Monomeric Phenolics Composition
3.3. Tannin Composition and Mean Degree of Polymerisation (mDP)
3.4. Aroma Compound Analysis
3.4.1. Odour Activity Value (OAV) Analysis
3.4.2. Principal Component Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Souquet, J.-M.; Labarbe, B.; Le Guernevé, C.; Cheynier, V.; Moutounet, M. Phenolic composition of grape stems. J. Agric. Food Chem. 2000, 48, 1076–1080. [Google Scholar] [CrossRef] [PubMed]
- Sparrow, A.M.; Dambergs, R.G.; Bindon, K.A.; Smith, P.A.; Close, D.C. Interactions of Grape Skin, Seed, and Pulp on Tannin and Anthocyanin Extraction in Pinot noir Wines. Am. J. Enol. Vitic. 2015, 66, 472–481. [Google Scholar] [CrossRef]
- Tian, B.; Harrison, R.; Morton, J.; Jaspers, M. Influence of skin contact and different extractants on extraction of proteins and phenolic substances in Sauvignon Blanc grape skin. Aust. J. Grape Wine Res. 2020, 26, 180–186. [Google Scholar] [CrossRef]
- Belda, I.; Ruiz, J.; Esteban-Fernández, A.; Navascués, E.; Marquina, D.; Santos, A.; Moreno-Arribas, M.V. Microbial contribution to wine aroma and its intended use for wine quality improvement. Molecules 2017, 22, 189. [Google Scholar] [CrossRef] [Green Version]
- Callejón, R.M.; Margulies, B.; Hirson, G.D.; Ebeler, S.E. Dynamic Changes in Volatile Compounds during Fermentation of Cabernet Sauvignon Grapes with and without Skins. Am. J. Enol. Vitic. 2012, 63, 301–312. [Google Scholar] [CrossRef]
- Vidal, S.; Francis, L.; Guyot, S.; Marnet, N.; Kwiatkowski, M.; Gawel, R.; Cheynier, V.; Waters, E.J. The mouth-feel properties of grape and apple proanthocyanidins in a wine-like medium. J. Sci. Food Agric. 2003, 83, 564–573. [Google Scholar] [CrossRef]
- Cortell, J.M.; Halbleib, M.; Gallagher, A.V.; Righetti, T.L.; Kennedy, J.A. Influence of Vine Vigor on Grape (Vitis vinifera L. Cv. Pinot Noir) and Wine Proanthocyanidins. J. Agric. Food Chem. 2005, 53, 5798–5808. [Google Scholar] [CrossRef]
- Koyama, K.; Goto-Yamamoto, N.; Hashizume, K. Influence of maceration temperature in red wine vinification on extraction of phenolics from berry skins and seeds of grape (Vitis vinifera). Biosci. Biotechnol. Biochem. 2007, 71, 958–965. [Google Scholar] [CrossRef] [Green Version]
- Carew, A.L.; Kerslake, F.L.; Bindon, K.A.; Smith, P.A.; Close, D.C.; Dambergs, R.G. Viticultural and Controlled Phenolic Release Treatments Affect Phenolic Concentration and Tannin Composition in Pinot noir Wine. Am. J. Enol. Vitic. 2020, 71, 256–265. [Google Scholar] [CrossRef]
- Harbertson, J.F.; Kennedy, J.A.; Adams, D.O. Tannin in Skins and Seeds of Cabernet Sauvignon, Syrah, and Pinot noir Berries during Ripening. Am. J. Enol. Vitic. 2002, 53, 54. [Google Scholar] [CrossRef]
- Dambergs, R.; Sparrow, A.; Carew, A.; Scrimgeour, N.; Wilkes, E.; Godden, P.; Herderich, M.; Johnson, D. Quality in a cool climate–maceration techniques in Pinot Noir production. J. Wine Vitic. 2012, 18, 18–26. [Google Scholar]
- Patricia, A.M.; Kennedy, J.A. Compositional investigation of phenolic polymers isolated from Vitis vinifera L. Cv. Pinot Noir during fermentation. J. Agric. Food Chem. 2007, 55, 5670. [Google Scholar] [CrossRef]
- Gawel, R. Red wine astringency: A review. Aust. J. Grape Wine Res. 1998, 4, 74–95. [Google Scholar] [CrossRef]
- Wollmann, N.; Hofmann, T. Compositional and Sensory Characterization of Red Wine Polymers. J. Agric. Food Chem. 2013, 61, 2045–2061. [Google Scholar] [CrossRef]
- Slegers, A.; Angers, P.; Ouellet, É.; Truchon, T.; Pedneault, K. Volatile compounds from grape skin, juice and wine from five interspecific hybridgrape cultivars grown in Québec (Canada) for wine production. Molecules 2015, 20, 10980–11016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olejar, K.J.; Vasconcelos, M.C.; King, P.D.; Smart, R.E.; Ball, K.; Field, S.K. Herbicide reduction through the use of weedmat undervine treatment and the lack of impact on the aromatic profile and volatile composition of Malbec wines. Food Chem. 2021, 343, 128474. [Google Scholar] [CrossRef]
- Tomasino, E.; Harrison, R.; Breitmeyer, J.; Sedcole, R.; Sherlock, R.; Frost, A. Aroma composition of 2-year-old New Zealand Pinot Noir wine and its relationship to sensory characteristics using canonical correlation analysis and addition/omission tests. Aust. J. Grape Wine Res. 2015, 21, 376–388. [Google Scholar] [CrossRef]
- Longo, R.; Carew, A.; Sawyer, S.; Kemp, B.; Kerslake, F. A review on the aroma composition of Vitis vinifera L. Pinot noir wines: Origins and influencing factors. Crit. Rev. Food Sci. Nutr. 2021, 61, 1589–1604. [Google Scholar] [CrossRef] [PubMed]
- Borren, E.; Tian, B. The important contribution of non-Saccharomyces yeasts to the aroma complexity of wine: A review. Foods 2021, 10, 13. [Google Scholar] [CrossRef]
- Michlmayr, H.; Nauer, S.; Brandes, W.; Schümann, C.; Kulbe, K.D.; Andrés, M.; Eder, R. Release of wine monoterpenes from natural precursors by glycosidases from Oenococcus oeni. Food Chem. 2012, 135, 80–87. [Google Scholar] [CrossRef] [Green Version]
- Lukić, I.; Lotti, C.; Vrhovsek, U. Evolution of free and bound volatile aroma compounds and phenols during fermentation of Muscat blanc grape juice with and without skins. Food Chem. 2017, 232, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Maicas, S.; Mateo, J.J. Hydrolysis of terpenyl glycosides in grape juice and other fruit juices: A review. Appl. Microbiol. Biotechnol. 2005, 67, 322–335. [Google Scholar] [CrossRef] [PubMed]
- Ciani, M.; Ferraro, L. Enhanced Glycerol Content in Wines Made with Immobilized Candida stellata Cells. Appl. Environ. Microbiol. 1996, 62, 128–132. [Google Scholar] [CrossRef] [Green Version]
- Iland, P.G. Chemical Analysis of Grapes and Wine: Techniques and Concepts, 2nd ed.; Campbelltown, S., Ed.; Patrick Iland Wine Promotions: Athelstone, SA, Australia, 2013. [Google Scholar]
- Mercurio, M.D.; Dambergs, R.G.; Herderich, M.J.; Smith, P.A. High throughput analysis of red wine and grape phenolics-adaptation and validation of methyl cellulose precipitable tannin assay and modified Somers color assay to a rapid 96 well plate format. J. Agric. Food Chem. 2007, 55, 4651. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.L. Determination of Total Phenolics. In Current Protocols in Food Analytical Chemistry; Wrolstad, R.E., Ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2002; pp. I1.1.1–I1.1.8. [Google Scholar]
- Jeffery, D.W.; Mercurio, M.D.; Herderich, M.J.; Hayasaka, Y.; Smith, P.A. Rapid isolation of red wine polymeric polyphenols by solid-phase extraction. J. Agric. Food Chem. 2008, 56, 2571. [Google Scholar] [CrossRef]
- Wimalasiri, P.M.; Olejar, K.J.; Harrison, R.; Hider, R.; Tian, B. Whole bunch fermentation and the use of grape stems: Effect on phenolic and volatile aroma composition of Vitis vinifera cv. Pinot Noir wine. Aust. J. Grape Wine Res. 2021, 28, 395–406. [Google Scholar] [CrossRef]
- Kennedy, J.A.; Jones, G.P. Analysis of Proanthocyanidin Cleavage Products Following Acid-Catalysis in the Presence of Excess Phloroglucinol. J. Agric. Food Chem. 2001, 49, 1740–1746. [Google Scholar] [CrossRef]
- Olejar, K.J.; Breitmeyer, J.; Wimalasiri, P.M.; Tian, B.; Field, S.K. Detection of sub-aroma threshold concentrations of wine methoxypyrazines by multidimensional GCMS. Analytica 2021, 2, 1–13. [Google Scholar] [CrossRef]
- Teng, B.; Hayasaka, Y.; Smith, P.A.; Bindon, K.A. Effect of Grape Seed and Skin Tannin Molecular Mass and Composition on the Rate of Reaction with Anthocyanin and Subsequent Formation of Polymeric Pigments in the Presence of Acetaldehyde. J. Agric. Food Chem. 2019, 67, 8938–8949. [Google Scholar] [CrossRef]
- Hernández-Jiménez, A.; Kennedy, J.A.; Bautista-Ortín, A.B.; Gómez-Plaza, E. Effect of ethanol on grape seed proanthocyanidin extraction. Am. J. Enol. Vitic. 2012, 63, 57–61. [Google Scholar] [CrossRef] [Green Version]
- Canals, R.; Llaudy, M.; Valls, J.; Canals, J.; Zamora, F. Influence of ethanol concentration on the extraction of color and phenolic compounds from the skin and seeds of Tempranillo grapes at different stages of ripening. J. Agric. Food Chem. 2005, 53, 4019–4025. [Google Scholar] [CrossRef] [PubMed]
- Cerpa-Calderón, F.K.; Kennedy, J.A. Berry Integrity and Extraction of Skin and Seed Proanthocyanidins during Red Wine Fermentation. J. Agric. Food Chem. 2008, 56, 9006–9014. [Google Scholar] [CrossRef] [PubMed]
- Everette, J.D.; Bryant, Q.M.; Green, A.M.; Abbey, Y.A.; Wangila, G.W.; Walker, R.B. Thorough study of reactivity of various compound classes toward the Folin–Ciocalteu reagent. J. Agric. Food Chem. 2010, 58, 8139–8144. [Google Scholar] [CrossRef] [Green Version]
- Dimitrovska, M.; Bocevska, M.; Dimitrovski, D.; Murkovic, M. Anthocyanin composition of Vranec, Cabernet Sauvignon, Merlot and Pinot Noir grapes as indicator of their varietal differentiation. Eur. Food Res. Technol. 2011, 232, 591–600. [Google Scholar] [CrossRef]
- Casassa, L.F.; Sari, S.E.; Bolcato, E.A.; Diaz-Sambueza, M.A.; Catania, A.A.; Fanzone, M.L.; Raco, F.; Barda, N. Chemical and Sensory Effects of Cold Soak, Whole Cluster Fermentation, and Stem Additions in Pinot noir Wines. Am. J. Enol. Vitic. 2019, 70, 19–33. [Google Scholar] [CrossRef]
- Cortell, J.M.; Halbleib, M.; Gallagher, A.V.; Righetti, T.L.; Kennedy, J.A. Influence of vine vigor on grape (Vitis vinifera L. Cv. Pinot Noir) anthocyanins. 2. Anthocyanins and pigmented polymers in wine. J. Agric. Food Chem. 2007, 55, 6585. [Google Scholar] [CrossRef]
- Waterhouse, A.L.; Sacks, G.L.; Jeffery, D.W. Understanding Wine Chemistry; John Wiley & Sons, Ltd.: Chichester, UK, 2016. [Google Scholar] [CrossRef]
- Price, S.F.; Breen, P.J.; Valladao, M.; Watson, B.T. Cluster sun exposure and quercetin in Pinot noir grapes and wine. Am. J. Enol. Vitic. 1995, 46, 187–194. [Google Scholar]
- Šuković, D.; Knežević, B.; Gašić, U.; Sredojević, M.; Ćirić, I.; Todić, S.; Mutić, J.; Tešić, Ž. Phenolic profiles of leaves, grapes and wine of grapevine variety vranac (Vitis vinifera L.) from Montenegro. Foods 2020, 9, 138. [Google Scholar] [CrossRef] [Green Version]
- Van Leeuw, R.; Kevers, C.; Pincemail, J.; Defraigne, J.O.; Dommes, J. Antioxidant capacity and phenolic composition of red wines from various grape varieties: Specificity of Pinot Noir. J. Food Compos. Anal. 2014, 36, 40–50. [Google Scholar] [CrossRef]
- Doshi, P.; Adsule, P.; Banerjee, K.; Oulkar, D. Phenolic compounds, antioxidant activity and insulinotropic effect of extracts prepared from grape (Vitis vinifera L.) byproducts. J. Food Sci. Technol. 2015, 52, 181–190. [Google Scholar] [CrossRef] [Green Version]
- Gomes, T.M.; Toaldo, I.M.; da Silva Haas, I.C.; Burin, V.M.; Caliari, V.; Luna, A.S.; de Gois, J.S.; Bordignon-Luiz, M.T. Differential contribution of grape peel, pulp, and seed to bioaccessibility of micronutrients and major polyphenolic compounds of red and white grapes through simulated human digestion. J. Funct. Foods 2019, 52, 699–708. [Google Scholar] [CrossRef]
- Garrido, J.; Borges, F. Wine and grape polyphenols—A chemical perspective. Food Res. Int. 2013, 54, 1844–1858. [Google Scholar] [CrossRef] [Green Version]
- Vendramin, V.; Viel, A.; Vincenzi, S. Caftaric Acid Isolation from Unripe Grape: A “Green” Alternative for Hydroxycinnamic Acids Recovery. Molecules 2021, 26, 1148. [Google Scholar] [CrossRef] [PubMed]
- Rousserie, P.; Lacampagne, S.; Vanbrabant, S.; Rabot, A.; Geny-Denis, L. Influence of berry ripeness on seed tannins extraction in wine. Food Chem. 2020, 315, 126307. [Google Scholar] [CrossRef]
- Cheynier, V.; Dueñas-Paton, M.; Salas, E.; Maury, C.; Souquet, J.M.; Sarni-Manchado, P.; Fulcrand, H. Structure and Properties of Wine Pigments and Tannins. Am. J. Enol. Vitic. 2006, 57, 298–305. [Google Scholar] [CrossRef]
- Kumar, L.; Tian, B.; Harrison, R. Interactions of Vitis vinifera L. cv. Pinot Noir grape anthocyanins with seed proanthocyanidins and their effect on wine color and phenolic composition. LWT-Food Sci. Technol. 2022, 162, 113428. [Google Scholar] [CrossRef]
- Moio, L.; Etievant, P.X. Ethyl anthranilate, ethyl cinnamate, 2,3-dihydrocinnamate, and methyl anthranilate: Four important odorants identified in Pinot noir wines of Burgundy. Am. J. Enol. Vitic. 1995, 46, 392–398. [Google Scholar]
- Gunata, Z.; Bitteur, S.; Brillouet, J.-M.; Bayonove, C.; Cordonnier, R. Sequential enzymic hydrolysis of potentially aromatic glycosides from grape. Carbohydr. Res. 1988, 184, 139–149. [Google Scholar] [CrossRef]
- Vilanova, M.; Ugliano, M.; Varela, C.; Siebert, T.; Pretorius, I.; Henschke, P. Assimilable nitrogen utilisation and production of volatile and non-volatile compounds in chemically defined medium by Saccharomyces cerevisiae wine yeasts. Appl. Microbiol. Biotechnol. 2007, 77, 145–157. [Google Scholar] [CrossRef] [Green Version]
- HERNANDEZ-ORTE, P.; Bely, M.; Cacho, J.; Ferreira, V. Impact of ammonium additions on volatile acidity, ethanol, and aromatic compound production by different Saccharomyces cerevisiae strains during fermentation in controlled synthetic media. Aust. J. Grape Wine Res. 2006, 12, 150–160. [Google Scholar] [CrossRef]
- Valero, E.; Millán, C.; Ortega, J.M. Influence of pre-fermentative treatment on the fatty acid content of Saccharomyces cerevisiae (M330-9) during alcoholic fermentation of grape must. J. Biosci. Bioeng. 2001, 91, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Hawkins, D.; Parish-Virtue, K.; Fedrizzi, B.; Knight, S.J.; Deed, R.C. Contribution of Grape Skins and Yeast Choice on the Aroma Profiles of Wines Produced from Pinot Noir and Synthetic Grape Musts. Fermentation 2021, 7, 168. [Google Scholar] [CrossRef]
- Carpena, M.; Fraga-Corral, M.; Otero, P.; Nogueira, R.A.; Garcia-Oliveira, P.; Prieto, M.A.; Simal-Gandara, J. Secondary aroma: Influence of wine microorganisms in their aroma profile. Foods 2020, 10, 51. [Google Scholar] [CrossRef] [PubMed]
- Cliff, M.A.; Pickering, G.J. Determination of odour detection thresholds for acetic acid and ethyl acetate in ice wine. J. Wine Res. 2006, 17, 45–52. [Google Scholar] [CrossRef]
- Corison, C.; Ough, C.; Berg, H.; Nelson, K. Must acetic acid and ethyl acetate as mold and rot indicators in grapes. Am. J. Enol. Vitic. 1979, 30, 130–134. [Google Scholar]
- BELL, S.J.; Henschke, P.A. Implications of nitrogen nutrition for grapes, fermentation and wine. Aust. J. Grape Wine Res. 2005, 11, 242–295. [Google Scholar] [CrossRef]
- Saerens, S.; Delvaux, F.; Verstrepen, K.; Van Dijck, P.; Thevelein, J.; Delvaux, F. Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Appl. Environ. Microbiol. 2008, 74, 454–461. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; Zhu, B.-Q.; Wang, Y.-H.; Lu, L.; Lan, Y.-B.; Reeves, M.J.; Duan, C.-Q. Influence of pre-fermentation cold maceration treatment on aroma compounds of Cabernet Sauvignon wines fermented in different industrial scale fermenters. Food Chem. 2014, 154, 217–229. [Google Scholar] [CrossRef]
- Ferreira, V.; López, R.; Cacho, J.F. Quantitative determination of the odorants of young red wines from different grape varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Zea, L.; Moyano, L.; Moreno, J.; Medina, M. Aroma series as fingerprints for biological ageing in fino sherry-type wines. J. Sci. Food Agric. 2007, 87, 2319–2326. [Google Scholar] [CrossRef]
- Zhu, L.-X.; Zhang, M.-M.; Shi, Y.; Duan, C.-Q. Evolution of the aromatic profile of traditional Msalais wine during industrial production. Int. J. Food Prop. 2019, 22, 911–924. [Google Scholar] [CrossRef] [Green Version]
- Killian, E.; Ough, C. Fermentation esters—Formation and retention as affected by fermentation temperature. Am. J. Enol. Vitic. 1979, 30, 301–305. [Google Scholar]
- Varela, C.; Cuijvers, K.; Van Den Heuvel, S.; Rullo, M.; Solomon, M.; Borneman, A.; Schmidt, S. Effect of aeration on yeast community structure and volatile composition in uninoculated chardonnay wines. Fermentation 2021, 7, 97. [Google Scholar] [CrossRef]
GJ-P | MJ-P | GJ | MJ | |
---|---|---|---|---|
Juice | ||||
pH | 3.20 ± 0.02 a | 3.22 ± 0.01 b | 3.13 ± 0.06 c | 3.21 ± 0.00 b |
TA (g/L) | 9.57 ± 0.18 b | 6.38 ± 0.12 b | 9.70 ± 0.22 a | 6.10 ± 0.00 c |
Wine | ||||
pH | 3.40 ± 0.03 a | 3.22 ± 0.02 b | 3.16 ± 0.02 c | 3.23 ± 0.02 b |
TA (g/L) | 9.62 ± 0.19 b | 8.34 ± 0.08 c | 10.91 ± 0.58 a | 8.54 ± 0.00 c |
Alcohol (%) | 13.4 ± 0.2 a | 10.9 ± 0.5 b | 14.2 ± 0.2 a | 11.0 ± 0.4 b |
Residual sugar (g/L) | 2.78 ± 0.42 b | 2.22 ± 0.08 b | 1.58 ± 0.16 c | 3.70 ± 0.13 a |
Total phenolics (mg/L) | 2705 ± 69 a | 2152 ± 34 b | 274 ± 13 c | 127 ± 3 d |
Tannin (mg/L) | 1225 ± 119 a | 821 ± 22 b | ND | ND |
Phenolics (mg/L) | GJ-P | MJ-P | GJ | MJ |
---|---|---|---|---|
Flavan-3-ols | ||||
Catechin | 356 ± 16 a | 306 ± 24 b | 2.40 ± 0.37 c | ND |
Epicatechin | 95.7 ± 6.8 a | 81.8 ± 5.3 b | ND | ND |
Procyanidin B1 | 24.2 ± 1.3 a | 17.3 ± 1.8 b | ND | ND |
Procyanidin B2 | 21.9 ± 1.4 a | 13.4 ± 1.4 b | ND | ND |
Anthocyanins | ||||
Delphenidin-3-O-glucoside | 26.7 ± 2.1 a | 31.2 ± 2.2 a | ND | ND |
Cyanidin-3-O-glucoside | 1.04 ± 0.11 a | 1.21 ± 0.18 a | ND | ND |
Malvidin-3-O-glucoside | 217 ± 4 a | 196 ± 22 a | 10.7 ± 0.8 b | ND |
Peonidin-3-O-glucoside | 21.8 ± 1.2 a | 21.8 ± 3.5 a | 0.86 ± 0.17 b | ND |
Flavonols | ||||
Kaempferol | 0.72 ± 0.54 ab | 1.24 ± 0.19 a | 0.14 ± 0.07 b | ND |
Quercetin | 5.45 ± 0.78 a | 5.58 ± 0.58 a | 0.45 ± 0.20 b | ND |
Rutin | 0.50 ± 0.02 a | 0.78 ± 0.33 a | ND | ND |
Hydroxybenzoic acids | ||||
Gallic acid | 13.8 ± 1.1 a | 12.3 ± 0.6 a | 0.35 ± 0.05 b | 0.18 ± 0.06 b |
Protocatechuic acid | 1.52 ± 0.04 a | 0.97 ± 0.07 b | 0.67 ± 0.07 c | ND |
Syringic acid | 3.84 ± 1.30 a | 2.78 ± 0.94 ab | 0.95 ± 0.12 bc | ND |
Vanilic acid | 3.82 ± 0.07 a | 1.63 ± 0.66 b | 1.27 ± 0.11 a | 3.70 ± 0.17 b |
Hydroxycinnamic acids | ||||
Caffeic acid | 0.00 ± 0.00 b | ND | 0.09 ± 0.01 a | ND |
Caftaric acid | 2.60 ± 0.13 b | 3.20 ± 0.09 a | 0.85 ± 0.06 c | ND |
Cinnamic acid | 0.10 ± 0.00 b | 0.13 ± 0.02 a | ND | ND |
Ferulic acid | 0.05 ± 0.09 b | 0.29 ± 0.04 a | 0.03 ± 0.05 b | ND |
p-Coumaric acid | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.28 ± 0.01 a | ND |
Stilbenes | ||||
Resveratrol | 0.06 ± 0.05 b | 0.15 ± 0.02 a | ND | ND |
GJ-P | MJ-P | |
---|---|---|
Concentrations | ||
Total Terminal (nmol/L) | 270 ± 73 a | 330 ± 81 a |
Total Extension (nmol/L) | 1368 ± 153 a | 999 ± 113 b |
Terminal subunit composition (%) | ||
C | 59.1 ± 0.2 a | 59.8 ± 1.2 a |
EC | 32.1 ± 0.3 b | 33.4 ± 0.3 a |
ECG | 8.8 ± 0.5 a | 6.9 ± 0.9 b |
Extension subunit composition (%) | ||
P-C | 10.4 ± 0.6 a | 11.7 ± 0.7 a |
P-EC | 73.0 ± 0.3 b | 73.8 ± 0.1 a |
P-ECG | 7.3 ± 0.1 a | 5.7 ± 0.6 b |
P-EGC | 9.3 ± 0.7 a | 8.9 ± 0.2 a |
Tannin characteristics | ||
mDP | 6.2 ± 0.6 a | 4.1 ± 0.4 b |
Yield | 38.7 ± 4.5 a | 47.1 ± 7.6 a |
Aroma Compounds * | Aroma Threshold | Aroma Series | Concentration of Aroma Compounds | Odour Activity Values | ||||||
---|---|---|---|---|---|---|---|---|---|---|
GJ-P | MJ-P | GJ | MJ | GJ-P | MJ-P | GJ | MJ | |||
Acetate Esters | ||||||||||
Ethyl acetate (mg/L) | 7.50 | 3, 1 | 112.8 ± 8.5 a | 57.3 ± 4.0 c | 86.9 ± 5.5 b | 34.4 ± 0.2 d | 15.07 | 7.64 | 11.59 | 4.59 |
Isobutyl acetate | 1605 | 1 | 46.9 ± 3.9 bc | 34.0 ± 3.6 c | 263.9 ± 16.3 a | 60.3 ± 0.3 b | - | - | 0.16 | - |
2-Methylbutyl acetate (mg/L) | 0.313 | 1 | 0.255 ± 0.012 b | 0.207 ± 0.018 b | 5.009 ± 0.145 a | 0.254 ± 0.006 b | 0.81 | 0.66 | 16.01 | 0.81 |
Isoamyl acetate (mg/L) | 0.030 | 1 | 0.208 ± 0.009 b | 0.141 ± 0.008 b | 2.535 ± 0.169 a | 0.171 ± 0.003 b | 6.93 | 4.70 | 84.67 | 5.70 |
Hexyl acetate | 700 | 1 | 6.73 ± 0.34 b | 5.79 ± 0.40 b | 55.24 ± 7.26 a | 4.57 ± 0.48 b | - | - | - | - |
Octyl acetate | 50,000 | 1, 2 | 4.97 ± 0.34 b | 4.82 ± 0.15 b | 6.24 ± 0.31 a | 0.96 ± 0.05 c | - | - | - | - |
Volatile fatty acids | ||||||||||
Acetic acid (mg/L) | 200 | 3 | 139 ± 7 c | 174 ± 4 b | 172 ± 10 b | 640 ± 3 a | 0.70 | 0.87 | 0.86 | 3.20 |
Butyric acid (mg/L) | 0.173 | 4 | 1.136 ± 0.025 a | 0.960 ± 0.017 b | 1.100 ± 0.026 a | 0.466 ± 0.003 c | 6.59 | 5.55 | 6.36 | 2.69 |
Isobutyric acid (mg/L) | 2.30 | 4 | 2.696 ± 0.091 b | 2.363 ± 0.020 c | 3.514 ± 0.127 a | 1.571 ± 0.010 d | 1.17 | 1.03 | 1.53 | 0.68 |
2-Methylbutyric acid (mg/L) | 3.00 | 4 | 0.665 ± 0.087 a | 0.363 ± 0.016 b | 0.777 ± 0.027 a | 0.207 ± 0.003 c | 0.22 | 0.12 | 0.26 | - |
Isovaleric acid (mg/L) | 0.0334 | 4 | 0.638 ± 0.032 a | 0.461 ± 0.017 c | 0.588 ± 0.006 b | 0.178 ± 0.002 d | 19.10 | 13.80 | 17.60 | 5.33 |
Hexanoic acid (mg/L) | 0.420 | 4 | 2.45 ± 0.07 b | 2.08 ± 0.05 c | 2.63 ± 0.02 a | 0.87 ± 0.02 d | 5.83 | 4.95 | 6.26 | 2.08 |
Octanoic acid (mg/L) | 0.500 | 4 | 1.86 ± 0.07 b | 1.49 ± 0.22 c | 3.10 ± 0.04 a | 1.25 ± 0.04 c | 3.72 | 2.98 | 6.20 | 2.50 |
Alcohols | ||||||||||
Isoamyl alcohol (mg/L) | 30.0 | 3 | 177 ± 2 a | 117 ± 5 c | 145 ± 6 b | 58 ± 1 d | 5.90 | 3.90 | 4.83 | 1.92 |
cis-3-Hexen-1-ol | 1000 | 4, 5 | 50.1 ± 0.5 a | 28.3 ± 1.1 a | 41.3 ± 16.6 a | 1.0 ± 0.1 b | - | - | - | - |
trans-3-Hexen-1-ol | 1000 | 5 | 22.1 ± 0.5 a | 18.9 ± 0.3 a | 20.6 ± 5.4 a | ND | - | - | - | - |
trans-2-Hexen-1-ol | 1000 | 5 | 9.52 ± 3.22 a | 6.53 ± 0.34 ab | 8.08 ± 0.63 a | 2.63 ± 0.07 b | - | - | - | - |
Hexanol (mg/L) | 1.10 | 5 | 1.180 ± 0.083 a | 1.131 ± 0.067 a | 0.657 ± 0.072 b | 0.015 ± 0.001 c | 1.07 | 1.03 | 0.60 | - |
1-Heptanol | 200 | 4 | 53.9 ± 6.4 a | 55.7 ± 11.0 a | 7.8 ± 0.4 b | 7.8 ± 0.4 b | 0.27 | 0.28 | - | - |
Phenylethyl alcohol (mg/L) | 14.0 | 2 | 45.0 ± 5.0 a | 40.4 ± 0.2 ab | 38.2 ± 0.4 b | 19.0 ± 0.1 c | 3.21 | 2.89 | 2.73 | 1.36 |
1-Octanol | 800 | 2 | 35.8 ± 3.3 a | 31.3 ± 2.8 a | 18.0 ± 0.3 b | 14.2 ± 2.2 b | - | - | - | - |
Aldehydes | ||||||||||
Benzaldehyde | 2000 | 12.4 ± 2.9 a | 10.7 ± 1.2 ab | 11.3 ± 1.0 ab | 6.9 ± 0.9 b | - | - | - | - | |
Ethyl Esters | ||||||||||
ethyl isobutyrate | 15.0 | 1 | 27.3 ± 2.1 b | 21.7 ± 0.4 c | 41.2 ± 3.2 a | 17.7 ± 0.3 c | 1.82 | 1.45 | 2.75 | 1.18 |
Ethyl butyrate | 400 | 1 | 422 ± 27 a | 226 ± 17 b | 406 ± 21 a | 90 ± 3 c | 1.06 | 0.57 | 1.02 | 0.23 |
Ethyl lactate (mg/L) | 150 | 1, 4 | 8.10 ± 0.34 b | 9.23 ± 0.67 a | 9.10 ± 0.79 a | 5.99 ± 0.08 b | - | - | - | - |
Ethyl 2-methylbutyrate | 18.0 | 1 | 3.59 ± 0.47 b | 2.43 ± 0.28 bc | 5.78 ± 0.95 a | 1.29 ± 0.05 c | 0.20 | 0.14 | 0.32 | - |
Ethyl pentanoate | 5.00 | 1 | 1.41 ± 0.21 a | 1.38 ± 0.12 a | 1.48 ± 0.06 a | 0.95 ± 0.07 b | 0.28 | 0.28 | 0.30 | 0.19 |
Ethyl hexanoate | 14.0 | 1, 2 | 806 ± 25 b | 496 ± 25 c | 919 ± 24 a | 228 ± 7 d | 57.57 | 35.43 | 65.64 | 16.29 |
Ethyl heptanoate | 2.20 | 1 | 1.72 ± 0.18 b | 2.46 ± 0.27 a | 0.92 ± 0.01 c | 0.97 ± 0.08 c | 0.78 | 1.12 | 0.42 | 0.44 |
2-Phenylethyl acetate | 250 | 2, 5 | 12.6 ± 1.3 b | 12.1 ± 1.1 b | 244.0 ± 9.7 a | 22.7 ± 1.3 b | - | - | 0.98 | - |
Ethyl octanoate (mg/L) | 0.580 | 1, 2 | 1.239 ± 0.064 a | 0.866 ± 0.037 b | 1.256 ± 0.006 a | 0.500 ± 0.008 c | 2.14 | 1.49 | 2.17 | 0.86 |
Diethyl succinate | 1,200,000 | 1, 2 | 240.9 ± 28.4 a | 248.5 ± 16.9 a | 152.0 ± 13.6 b | 13.8 ± 0.3 c | - | - | - | - |
Ethyl cinnamate | 1.10 | 5 | 0.970 ± 0.131 a | 0.747 ± 0.151 a | 0.846 ± 0.102 a | 0.141 ± 0.024 b | 0.88 | 0.68 | 0.77 | 0.13 |
Ethyl hydrocinnamate | 1.60 | 1, 2 | 0.705 ± 0.069 a | 0.688 ± 0.114 a | 0.550 ± 0.004 a | 0.197 ± 0.052 b | 0.44 | 0.43 | 0.34 | 0.12 |
Ethyl decanoate (mg/L) | 0.200 | 1, 3, 4 | 1.06 ± 0.04 b | 0.85 ± 0.01 c | 1.34 ± 0.08 a | 0.26 ± 0.01 d | 5.30 | 4.26 | 6.70 | 1.32 |
Volatile phenols | ||||||||||
Phenol | 5900 | 3, 5 | 3.87 ± 0.12 a | 3.01 ± 0.19 b | 2.49 ± 0.13 c | 2.57 ± 0.14 c | - | - | - | - |
Guaiacol | 9.50 | 3, 5 | 6.26 ± 0.13 a | 5.30 ± 0.47 b | 5.27 ± 0.16 b | 4.10 ± 0.01 c | 0.66 | 0.56 | 0.55 | 0.43 |
4-Ethylguaiacol | 33.0 | 5 | 0.123 ± 0.028 a | 0.097 ± 0.034 ab | 0.126 ± 0.007 a | 0.043 ± 0.003 b | - | - | - | - |
Eugenol | 6.00 | 5 | 3.02 ± 0.48 a | 1.99 ± 0.10 b | 1.81 ± 0.28 b | 0.94 ± 0.02 c | 0.50 | 0.33 | 0.30 | 0.16 |
C13-norisoprenoids | ||||||||||
β-Damascenone | 7.00 | 1, 2 | 6.57 ± 0.16 b | 2.22 ± 0.21 c | 14.11 ± 2.22 a | 0.42 ± 0.01 c | 0.94 | 0.32 | 2.01 | - |
α-Ionone | 2.60 | 1 | 0.117 ± 0.008 b | 0.137 ± 0.009 a | 0.050 ± 0.005 c | 0.047 ± 0.000 c | - | - | - | - |
β-Ionone | 5.00 | 1, 2 | 0.711 ± 0.021 a | 0.663 ± 0.032 a | 0.396 ± 0.016 b | 0.351 ± 0.031 b | 0.14 | 0.13 | - | - |
Monoterpenes | ||||||||||
Geraniol | 30.0 | 1, 2 | 8.59 ± 0.11 a | 4.73 ± 0.16 c | 6.10 ± 0.12 b | ND | 0.29 | 0.16 | 0.20 | - |
Linalool | 25.2 | 2, 1 | 17.7 ± 0.5 a | 10.7 ± 0.3 c | 15.4 ± 0.6 b | 2.4 ± 0.1 d | 0.70 | 0.42 | 0.61 | - |
Citronellol | 100 | 2 | 19.2 ± 0.8 a | 13.5 ± 0.7 b | 12.0 ± 0.5 b | 4.9 ± 0.1 c | 0.19 | 0.14 | 0.12 | - |
Nerol | 300 | 2 | 5.16 ± 0.40 a | 3.84 ± 0.36 b | 2.92 ± 0.21 c | ND | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wimalasiri, P.M.; Zhan, J.; Tian, B. Characterisation of Tannin and Aroma Profiles of Pinot Noir Wines Made with or without Grape Pomace. Fermentation 2022, 8, 718. https://doi.org/10.3390/fermentation8120718
Wimalasiri PM, Zhan J, Tian B. Characterisation of Tannin and Aroma Profiles of Pinot Noir Wines Made with or without Grape Pomace. Fermentation. 2022; 8(12):718. https://doi.org/10.3390/fermentation8120718
Chicago/Turabian StyleWimalasiri, Pradeep M., Jicheng Zhan, and Bin Tian. 2022. "Characterisation of Tannin and Aroma Profiles of Pinot Noir Wines Made with or without Grape Pomace" Fermentation 8, no. 12: 718. https://doi.org/10.3390/fermentation8120718
APA StyleWimalasiri, P. M., Zhan, J., & Tian, B. (2022). Characterisation of Tannin and Aroma Profiles of Pinot Noir Wines Made with or without Grape Pomace. Fermentation, 8(12), 718. https://doi.org/10.3390/fermentation8120718