Fermentation of Cereals and Legumes: Impact on Nutritional Constituents and Nutrient Bioavailability
Abstract
:1. Introduction
2. Effect of Fermentation on the Nutritional Constituents and Bioavailability of Cereals and Legumes
2.1. Protein and Amino Acids
Raw Material | Fermentation Type | Fermentation Form | Fermentation Conditions | Product | Modification(s) in Nutritional Constituents | Percentage Difference | Key Mechanism(s) Involved | Reference |
---|---|---|---|---|---|---|---|---|
Barley (Hordeum vulgare) and pea (Pisum sativum) | SSF | Spontaneous | 24 h at room temperature (RT) for 24 h, 72 h at 35–38 °C, 168 h at 40–50 °C, 312 h at 53–60 °C, 456 h at 35–40 °C, 600 h at 28–34 °C and 720 h at RT | Cereal starter | Initial decrease in reducing sugar, increase and afterwards decrease. Initial decrease in total starch and subsequent increase afterwards. | 63%↓ in reducing sugar and 3%↑ in total starch. | Increase in total starch ascribed to decline in amylase activity and release of trapped starch granules from the fibrous cell wall structure. | Li et al. [18] |
Linseed (Linum usitatissimum) | SmF | Controlled using Lactobacillus acidophilus MTCC-10307, Bacillus mesentericus, Saccharomyces boulardii, S. ellipsoideus and LAB isolate | 48 h at 30 °C | Fermented linseed beverage | Reduction in tannins and cyanogenic glycosides. | 22–66%↓ in tannins and 8–66%↓ in cyanogenic glycosides. | Reduction in cyanogenic glycosides due to the breakdown and degradation of ANFs into smaller units by the action of enzymes. | Nivetha et al. [154] |
Maize (Zea mays L.) Hudeiba 1 and Mugtama 45 cultivars | SmF | Spontaneous | 0–32 h (8 h interval) at 37 °C | Fermented maize flour | Increase in crude protein, some essential AAs and IVPD. | 0.5–5%↑ and 0.1%↓ in crude protein, 0.95–44%↑ and 9–16%↓ in essential AAs, 3–21%↑ in IVPD for Hudeiba 1. 0.41–5%↑ in crude protein, 0.4–38%↑ and 3–47%↓ in essential AAs and 19–45%↑ in IVPD for Mugtama 45. | Not reported. | Mohiedeen et al. [155] |
Maize (Z. mays) | SmF | LAB consortium from maize and sorghum | 0–48 h (12 h interval) at RT | Fermented maize flour | Decrease in lipid, fibre and CHO. Increase in ash, protein, IVSD and IVPD. | 74%↓ in crude fibre, 11%↓ in lipid, 4%↓ in CHO, 67%↑ in ash, 37%↑ in protein, 114–146%↑ in IVSD and 34–44.7%↑ in IVPD. | Lipid reduction due to metabolism of fatty acids and glycerol by fermenting organisms. Fibre reduction due to enzymatic breakdown utilization as carbon source. Increase in IVSD attributed to changes in endosperm protein which increased starch accessibility to digestive enzymes. | Ogodo et al. [156] |
Maize (Z. mays) varieties yellow-coloured quality protein maize and yellow-coloured normal maize | SmF | Spontaneous | 72 h at RT | Maize ogi flour | Decrease in crude protein, fat, fibre, ash and most minerals. Increase in CHO. | 15–24%↓ in protein, 4.6–18%↓ in fat, 27.3–32%↓ in ash, 46–49.2%↓ in crude fibre, 5.5–5.8%↑ in CHO, 7–548%↑ and 21–96%↓ in minerals. | Protein degradation of due to leaching of protein into the fermenting water and/or action of degrading enzymes. | Oladeji et al. [140] |
Maize (Z. mays) ZM 607 and Tamira Pool A9 varieties | SmF | Spontaneous | 8 h at RT | Fermented maize flour | Increase in vitamins and protein. Decrease in fat and fibre content. | 51–141%↑ in protein, 20–30%↓ in fat, 24–31%↓ in fibre and 10-fold↑ in niacin. | Not reported. | Ongol et al. [157] |
Oat (Avena sativa) | SSF | Starter culture with Pleurotus ostreatus CS155 strain | 336 h (14 days) at RT | Fermented oat flour | Decrease in minerals, fibre and tannin. Increase in protein, fat, CHO, IVPD, soluble nitrogen and some AAs. | 6.6%↑ in protein, 97%↑ in fat, 48%↓ in minerals, 22%↓ in fibre, 1%↑ in CHO, 11%↑ in IVPD, 49%↑ in soluble nitrogen, 50%↓ in tannin, 0.12–90%↑ and 2.4–33%↓ in AAs. | Protein increase attributed to increase in AA synthesis. Decrease in fibre due to enzymatic action. Decrease in tannin was due to action of a tannase. | Espinosa-Páez et al. [130] |
Pearl millet (Pennisetum glaucum) | SmF | Spontaneous | 72 h at 28 °C | Fermented pearl millet flour | Decrease in crude fat and ash. Increase in crude protein, AAs, most minerals, CHO, energy and fibre. | 24%↓ in fat, 10%↑ in ash, 6%↑ in protein, 6–78%↑ in amino acids, 3%↑ in CHO, 2%↑ in energy, 6%↑ in fibre, 10–92%↑ and 2–43%↓ in minerals. | Breakdown of lipids and leaching of soluble inorganic salts. Accumulation of proteins, increased activities of hydrolytic enzymes, degradation of complex proteins to AAs and production of additional AAs. Improvement in the extractability of minerals via synthesis and cell wall solubilization. | Adebiyi et al. [128] |
Pearl millet (P. glaucum) | SmF | Spontaneous | 72 h at RT | Fermented pearl millet flour | Decrease in ash, fibre and CHO. Increase in fat and protein. | 21%↓ in ash, 55%↓ in fibre, 3%↓ in CHO, 103%↑ in fat and 24%↑ in protein. | Ash reduction due to leaching of soluble inorganic salts. Low crude fibre due to enzymatic degradation. Metabolic activity of microorganisms and enzymes on sugars caused CHO decrease. | Akinola et al. [158] |
Pearl millet (P. glaucum) | SmF | Spontaneous | 48 h at 32 °C | Fermented instant fura | Increase in crude fat, protein, fibre and most minerals. Decrease in ash, CHO and PA. | 3%↑ in fat, 4%↑ in protein, 8%↓ in ash, 0.9%↑ in fibre, 0.7%↓ in CHO, 100%↓ in PA, 3–33%↑ and 99%↓ in minerals. | Decrease in CHO due to increase in α-amylase activity. Increase in protein due to excess production of some AAs, degradation of storage protein. Mineral increase attributed to breakdown of protein-mineral bonds. | Inyang and Zakari [129] |
Pearl millet (P. glaucum) | SmF | Inoculated with mixed culture combinations of yeasts and bacteria (S. cerevisiae, S. diastaticus, L. brevis and L. fermentum) | 72 h at 30 °C | Fermented pearl millet flour | Increase in IVSD and IVPD. | 247–362%↑ in IVSD and 54–77%↑ in IVPD. | Not reported. | Khetarpaul and Chauhan [159] |
Pearl millet (P. glaucum) | SmF | Spontaneous | 0–96 h (24 h interval) at 20, 30, 40 and 50 °C | Fermented pearl millet flour | Initial decrease in reducing minerals increase and afterwards decrease in fermentation conditions. | 14–63%↑ in calcium, 7–159%↑ in iron, 9–102%↑ in zinc, 118%↑ in copper and 49–102%↑ in manganese. | Not reported. | Mahajan and Chauhan [160] |
Rice (Oryza sativa) | SmF | Spontaneous using 1% baker’s yeast | Optimum conditions of pH 5.5 for 6.26 h at 32 °C | Fermented rice flour | Increase in protein, ash, minerals, some vitamins, total starch, resistant starch, amylose content, insoluble and soluble fibre. Decrease in lipids and PA. | 13%↑ in protein, 7%↑ in ash, 0.8%↓ in lipid, 108%↑ in soluble fibre, 16%↑ in insoluble fibre, 39%↑ in resistant starch, 11%↓ in total starch, 1.8%↓ in amylose content, 13–34%↑ in minerals, 3–3617%↑ and 0.99–3.4%↓ in vitamins and 41%↓ in PA. | Protein increase due to accumulation of microbial cells. Increase in ash related to increased mineral solubility and bioavailability. Vitamin B increase due to enzyme interactions and release of the bound forms of the vitamins. Decrease in amylose content due to the breakdown of its chain by α-amylase. | Ilowefah et al. [133] |
Rice (O. sativa) | SmF | Controlled using 1% baker’s yeast | Optimum conditions of pH 5.5 for 6.23 h at 32 °C | Fermented rice flour | Increase in protein, ash, minerals, some vitamins and insoluble and soluble fibre. Decrease in lipids and PA. | 9%↑ in ash, 13%↑ in protein, 0.8%↓ in lipid, 17%↑ in insoluble fibre, 106%↑ in soluble fibre, 39%↓ in PA, 13–34%↑ in minerals, 1.3–3617%↑ and 1.4–21%↓ in vitamins. | Increase in mineral contents to reduction in PA. | Ilowefah et al. [161] |
Rice (O. sativa) bran | SSF | Controlled using Rhizopus oryzae CCT 7560 | 0–120 h (24 h interval) at 30 °C | Fermented rice bran | Increase in ash, protein fibre and a decrease in lipids after 48 h fermentation. | 1.1–56%↑ in ash, 11–57%↑ in fibre, 6.1–49%↑ in protein, 1.3–3.3%↑ and 23–51%↓ in lipid. | Decrease in lipid was due to use of fat-related components for mycelial synthesis. | Kupski et al. [162] |
Rice (O. sativa) | SmF | Spontaneous (microflora) | 24–72 h (24 h interval) at 28 °C | Fermented rice flour | Increase in protein at 24 h and decrease afterwards. Decrease in CHO at 24 h and increase afterwards. Decrease in fat, ash, tannin and phytate. Decrease and increase in minerals in fermentation time. | 36.6%↑ and 8.6–19.1%↓ in protein, 0.3%↓ and 1.1–2.4%↑ in CHO, 16.4–81%↓ in fat, 16–75%↓ in ash, 50%↓ in tannin, 19–69%↓ in phytate, 3.8–100%↑ and 14–97.9%↓ in minerals. | Fat decrease related to increase in lipase activity, ash decrease due to loss of dry matter. The increase and decrease in the mineral linked to metabolic activities of fermenting organisms which hydrolysed metal-phytate complexes to release free minerals. Tannin decrease attributed to milling which removed most of the tannin-related fractions while phytate reduction ascribed to increased phytase activities. | Nnam and Obiakor [137] |
Rice (O. sativa) Mentik wangi susu, red cempo merah and black jowo melik varieties | SSF | Controlled using R. oligosporus | 0–72 h (24 h interval) at RT | Fermented de-husked rice flour | Initial increase in ash, protein and fat with a decrease and increase afterwards. Decrease in CHO. | 0.5–14%↑ and 0.5–31%↓ in ash, 3–20%↑ and 0.3%↓ in protein, 3–49%↑ and 0.77%↓ in fat and 0.45–7%↓ in CHO. | Protein increase due to metabolic activity of fungi while decrease due to protein degradation to support fungal growth. Increase in ash due to phytase activation and reduction in PA. Decrease in fat and CHO due to lipid and CHO degradation, respectively. | Suarti et al. [134] |
Sorghum (Sorghum bicolor) | SSF | Spontaneous and controlled using L. Fermentum | 72 h at 28 °C and 24 h at 34 °C | Ting | Decrease in tannin contents. | 29.92–98.71↓. | Tannin decrease due to rearrangement and depolymerization, reduced extractability due to self-polymerization, interaction of tannin with other macromolecules and ability of LABs to metabolize tannins. | Adebo et al. [163,164,165] |
Sorghum (S. bicolor) | SSF | Induced fermentation (i.e., back-slopping or inoculum enrichment) | 0–36 h (4 h interval) at 37 °C | Fermented sorghum flour | Increase in IVSD. Decrease in total starch and resistance starch. | 1.6–54%↑ in IVSD, 12.2–16.8%↓ in total starch and 20.6–72.9%↓ in resistance starch. | IVSD increase attributed to changes in endosperm protein fractions, while decrease in total and resistant starches due to natural increased enzymatic reactions. | Elkhalifa et al. [166] |
Sorghum (S. bicolor) (HS-B67–2) | SmF | Probiotic micro-organism L. acidophilus | 12 h at 37 °C | Sorghum flour for sorghum-based food mixture | Decrease and increase fibre content. Increase in vitamins content. | 10%↓ in total and insoluble dietary fibre; 49–69%↑ in soluble fibre; 21–50%↓ in β-glucan. ↑53, 67 and 29% in thiamine, riboflavin and niacin, respectively. | Fibre decrease due to increased activity of hydrolysing enzymes. | Jood et al. [167] |
Sorghum (S. bicolor) (Gobiye and 76T1#23 cultivars) | SmF | Spontaneous | 0–48 h (12 h interval) at RT at RT | Fermented sorghum flours | Increase in protein. Decrease in fat, fibre, ash, CHO, phytate, tannin and most minerals. | 4.2–16.3%↑ in protein, 2.5–16%↓ in fat, 20.8–40.4%↓ in fibre, 13.1–41.1%↓ in ash, 0.32–1.4%↓ in CHO, 12–70%↓ in phytate, 7.4–59%↓ in tannin, 0.13%↑ and 0.02–7.2%↓ in minerals. | Protein increase attributed to cells of fermenting microorganisms, while decrease in fibre was due to partial solubilisation of cellulose and hemicellulosic type of material by microbial enzymes. Reduction in minerals ascribed to utilization of hydrolysed elements for their metabolic activities and losses during decantation. | Mihiret [132] |
Sorghum (S. bicolor) | SSF | Starter inoculum | 72 h at RT | Fermented sorghum flour | Reduction in ash, protein, fat, energy, polyphenols, phytate and AAs. Increase in IVPD, CHO and some minerals. | 6%↓ in ash, 13%↓ in protein, 7%↓ in fat, 0.9%↑ in CHO, 1.6%↓ in energy, 6%↑ in fibre, 18%↓ in polyphenols, 22%↓ in phytate, 21%↑ in IVPD, 0.15–63%↑ and 8.3–48%↓ in minerals, 4.2–54%↓ in AAs, no increase or decrease in tannin | IVPD increase due to ANF reduction. | Mohammed et al. [139] |
Sorghum (S. bicolor) | SSF | Controlled using LAB consortium from fermented maize and sorghum | 0–48 h (12 h interval) at RT | Fermented sorghum flours | Decrease in fat, CHO and fibre. Increase in ash and protein. | 0.78–6.40%↑ in ash, 7.03–34.45%↑ in protein, 2.93–9.36%↓ in fat, 1.01–5.25%↓ in CHO and 33–72%↓ in crude fibre for sorghum sample; 1.84–5.62%↑ in ash, 7–32%↑ in protein, 4–10%↓ in fat, 1.22–5%↓ in CHO and 19%↑ and 50–70%↓ in crude fibre for maize. | Fat decrease could be attributed to its use as energy source and production of aroma compounds through the breakdown of fatty acids and glycerol. Decrease in CHO due to starch hydrolysis by amylases, while protein increase can be attributed to activities of proteolytic enzymes. Increase in ash related to mineral increase. | Ogodo et al. [136] |
Sorghum (S. bicolor) | SSF | Controlled using L. plantarum | 48 h at 30 °C | Fermented sorghum flour | Reduction in phytates, tannins, oxalate and HCN. | 77%↓ in phytate, 96.7%↓ in tannin, 67.85%↓ in oxalate and 52.3%↓ in HCN | Phytate and tannin reduction due to microbial and enzymatic activity. | Ojha et al. [168] |
Sorghum (S. bicolor) | SmF | Spontaneous | 72 h at RT | Fermented sorghum flour | Increase in protein, ash and fat. Decrease in CHO, fibre, tannin and phytate. | 34.2%↑ in protein, 25.7%↑ in ash, 13%↑ in fat, 49%↓ in fibre, 17%↓ in CHO, 45%↓ in phytate and 56%↓ in tannin. | ANF reduction due to the ability of microbial action. | Ojokoh and Eromosele [169] |
Sorghum (S. bicolor) | SSF | Spontaneous | 840 h (5 weeks) at RT | Fermented sorghum spent grains | Increase in protein, lipids and decrease in fibre and ash. Increase in nitrogen-free extract and minerals (phosphorus and calcium) and a decrease afterwards. | 28.7–34.8%↑ in protein, 66–69%↓ in fibre, 36–41.5%↑ in lipid, 13.6–23%↓ in ash, 42–47.8%↑ in nitrogen extract, 19%↓ and 12%↑ in phosphorus and 7.5%↓ and 50–97.5%↑ in calcium. | Fibre decrease due to breakdown of the cellulose components by microorganisms to utilizable sugars. Protein increase due to protein synthesis. | Onyimba et al. [135] |
Sorghum (S. bicolor) Karamaka and Mugud cultivar | SSF | Starter inoculum | 0–16 h (2 h interval) at RT | Fermented sorghum flour | Decrease in phytate and tannin. Increase in IVPD. | 12.4–67.8%↓ in phytate, 12.7–67.3%↓ in tannin and 0.49–31.3%↑ in IVPD. | Phytate reduction due to microbial and phytase activity. | Wedad et al. [170] |
Stale rice (O. sativa) | SSF | Fermented using Cordyceps sinensis | 168 h (7 days) at 25 °C | Fermented rice flour | Increase in protein, lipids, CHO, AAs, vitamin E, dietary fibre and β glucan. | 60.7%↑ in protein, 252%↑ in lipid, 4.2%↑ in CHO, 576%↑ in dietary fibre, 900%↑ in β glucan, 133%↑ in vitamin E and 83–28,471%↑ in AAs. | Increase in bioactivity and AAs was attributed to transformation of inherent constituents and some mycelia of C. sinensis. | Zhang et al. [171] |
Tef (Eragrostis tef) | SmF | Back-slopping using leftover (ersho: produced from spontaneous traditional fermentation) | 1st stage: at RT for 3–4 days; 2nd stage: 2–3 h | Fermented flour to prepare batter and injera | Decrease in vitamin (folate content). | 12%↓ in folate content in batter and 34%↓ in folate content in injera. | Reduced folate content due to folate consumption by other microorganisms or losses during discarding the supernatant. | Tamene et al. [172] |
Yellow maize (Z. mays) | SmF | Spontaneous | 96 h (4 days) at 30 °C and 80% relative humidity (RH) | Fermented maize dough | Decrease in fat, energy, ash, minerals, protein, vitamins (thiamine, riboflavin and β-carotene), minerals (calcium, iron and zinc) and ANFs (TI, phytate and β-amylase inhibitor). Increase in CHO and fibres. | 11%↓ in fat, 9%↓ in protein, 54%↓ in ash, 0.92%↓ in energy, 69.4%↓ in thiamine, 81.8%↓ in riboflavin, 66%↓ in β-carotene (retinol equivalent) contents, 38%↓ in calcium, 2.8%↓ in iron, 7.6%↓ in zinc, 9%↑ in CHO and fibres, 61.5%↓ in phytate, 41.6%↓ in TI and 16.5%↓ in amylase inhibitor. | Fibre decrease attributed to partial solubilisation of cellulose and hemicellulose type of materials by microbial enzymes. Fat decrease due to grain variety, fermentation conditions and other processing steps. Vitamin decrease ascribed to mechanical loss during other process and lipid solubilisation. | Ejigui et al. [138] |
Raw Material | Fermentation Type | Fermentation Form | Fermentation Conditions | Product | Modification(s) in Nutritional Constituents | Percentage Difference | Key Mechanism(s) Involved | Reference |
---|---|---|---|---|---|---|---|---|
African oil bean (Pentaclethra macrophylla) | SSF | Spontaneous | 72 h at RT | Fermented African oil bean flour | Decrease in fibre, fat, ash, CHO and energy. Increase in protein. | 20%↓ in fibre, 5%↓ in fat, 19.4%↓ in ash, 7%↓ in CHO, 26%↓ in energy and 22%↑ in protein. | Protein increase due to synthesis of new proteins. | Akubor and Chukwu [144] |
African oil bean (P. macrophylla) | SSF | Spontaneous | 12–48 h at RT | Fermented ugba | Decrease in ANFs, some saturated and unsaturated fatty acids. | 60–73%↓ in HCN, 24–46%↓ in phytate, 71–79%↓ in tannin, 62–77%↓ in oxalate, 2–24%↑ and 2–18%↓ in fatty acids. | ANFs’ decrease attributed to leaching during soaking and enzymatic activities in the microflora. | Onwuliri et al. [173] |
African yam bean (Sphenostylis stenocarpa) | SSF | Controlled using S. cerevisiae | 24 h at 45 °C | Fermented African yam bean flour | Increase in crude protein, ash, minerals, some AAs and IVPD. Decrease in fat content, fibre, CHO and ANFs (PA and tannin). | 17%↑ in protein, 14%↑ in ash, 2–52%↑ in minerals, 0.2–13%↑ and 0.3–16%↓ in AAs, 10%↑ in IVPD, 25%↓ in fat, 15%↓ in fibre, 4%↓ in CHO, 40%↓ in PA, 21%↓ in tannin and 58%↓ in TIA. | Enhanced AA levels due to formation of soluble products and monomers as well as interconversion of AAs. IVPD increase ascribed to proteolysis, increased availability of AAs and reduced ANFs. Decrease in fat attributed to lipase activity and use of lipids as food source by fermenting organisms. Decrease in fibre and CHO due to enzymatic degradation of fibre and use of CHO-related compounds as energy source, respectively. | Chinma et al. [149] |
African yam bean (Sphenostylis stenocarpa) | SmF | Spontaneous | 24 h at 45 °C | Fermented African yam bean flour | Increase in crude protein, CHO and fat. Decrease in ash and fibre. | 2.7%↑ in protein, 86%↑ in fat, 1%↑ in CHO, 29.8%↓ in ash and 12.4%↓ in fibre. | Fat increase attributed to fat from dead microflora or the fermenting microflora not using fat as energy source. Decrease in ash due to vegetative loss and leaching into fermentation medium, while fibre reduction due to hydrolysis and use by microflora for metabolism. Protein increase due to hydrolysis of protein-antinutrient bonds, to release free AAs for synthesis of new protein. | Onoja and Obizoba [174] |
Bambara groundnut (Vigna subterranea) | SSF | Spontaneous | 120 h at 35 °C | Fermented unhulled dawadawa | Decrease in ANFs (PA, tannin and oxalate). Increase in protein, some AAs as well as minerals. | 18.1%↓ in PA, 26.6%↓ in oxalate, 34.2%↓ in tannin, 2.3–43.8%↑ and 12.1–66.7%↓ in minerals, 17.7%↑ in protein, 8.3–25%↑ and 9.6–19.6%↓ in AAs. | Increase in protein attributed to extensive hydrolysis of the protein molecules to AAs and other simple peptides. AA increase ascribed to transamination and AA synthesis of these AAs by microbiota. Increase in minerals linked to ANF reduction, while decrease in other minerals due to their utilization for microbiota physiological and metabolic activities. PA reduction attributed to enzymatic activity. | Adebiyi et al. [142] |
Bambara groundnut (V. subterranea) | SmF | Spontaneous | 48 h at 60 °C | Fermented Bambara groundnut flour | Increase in crude protein, ash, fibre, fat, CHO, some AAs and minerals (except for sodium and phosphorus). Decrease in ANFs. | 1.2%↑ in protein, 4.2%↓ in ash, 4.1%↑ in fibre, 2%↑ in fat, 0.32%↑ in CHO, 0.96%↑ in energy, 6–107%↑ and 3–47%↓ in AAs, 16%↓ in oxalate, 26%↓ in TA, 39%↓ in PA, 42%↓ in PP, 37%↓ in trypsin, 4–27%↑ and 29–33%↓ in minerals. | ANF reduction ascribed to biodegradation caused by microbiota. | Ijarotimi and Esho [175] |
Bambara groundnut (V. subterranea) | SmF | Controlled using spore suspension of R. oligosporous | 0–72 h (12 h interval) at 32 °C | Fermented Bambara groundnut flour | Decrease in ANFs. | 28–75%↓ in tannin, 36–52%↓ in oxalate, 22–96%↓ in PT and 42–87%↓ in TIA. | Tannin reduction caused by the activity of polyphenol oxidase and microflora. | Ola and Opaleye [176] |
Black beans (Phaseolus vulgaris) | SSF | Controlled using P. ostreatus CS155 strain | 336 h (14 days) at RT | Fermented black beans flour | Decrease in protein, fat, minerals, fibre and some AAs. Increase in CHO, IVPD, tannin and soluble nitrogen. | 3.5%↓ in protein, 20%↓ in fat, 7%↓ in minerals, 59%↓ in fibre, 146%↑ in CHO, 20%↓ in IVPD, 123%↑ in soluble nitrogen, 20%↓ in tannin, 2–139%↑ and 0.85–14%↓ in AAs. | Fibre decrease due to enzymatic activity, which led to conversion of resistant starches to available starches and subsequent increase in CHO contents. Tannin decrease ascribed to fungus-producing tannase. | Espinosa-Páez et al. [130] |
Black-eyed pea (V. unguiculata) | SSF | Controlled using Aspergillus oryzae (MTCC 3107) | 0–96 h (24 h interval) at 30 °C | Fermented black-eyed pea flour | Increase in iron, zinc and in vitro bioavailability of minerals (iron and zinc). | 11–16.8%↑ in iron, 24–36%↑ in zinc, 6–75%↑ and 8–106%↑ in in vitro bioavailability of iron and zinc, respectively. | Increased mineral digestibility and bioavailability attributed to reduction in ANF and toxic factors. | Chawla et al. [177] |
Chickpea (Cicer arietinum L.) | SSF | Controlled using R. oligosporus | Optimum conditions of 51.3 h at 34.9 °C | Fermented tempeh flour | Increase in crude protein, true protein, available lysine and IVPD. Decrease in lipid, ash, CHO, PA and tannins. | 25%↑ in crude protein, 15.2%↑ in IVPD, 30.5%↑ in true protein, 40.5%↑ in available lysine, 5.7%↓ in lipid, 39.4%↓ in ash, 0.72%↓ in CHO, 89.9%↓ in PA and88%↓ in tannin. | Increase in IVPD and lysine due to ANF elimination and protein hydrolysis. | Reyes-Moreno et al. [178] |
Chickpea (Cicer arietinum L.) | SSF | Controlled using Cordyceps militaris | 168 h (7 days) at 25 °C | Fermented chickpea flour | Increase in crude protein, true protein, fat, ash, IVPD and AAs, except for arginine. Decrease in CHO. | 19.4%↑ in crude protein, 20%↑ in true protein, 1.8%↑ in fat, 6.1%↑ in ash, 6.7%↓ in CHO, 4.4%↑ in IVPD, 3.7%↓ and 7–27.6%↑ in AAs. | Protein increase due to accumulation during fermentation as well as synthesis or transamination. Increase in IVPD ascribed to the unfolding of the proteins and hydrolysis by proteases. CHO reduction due to use for fungal growth. | Xiao et al. [147] |
Common bean (Phaseolus vulgaris) | SmF | Controlled using L. fermentum | 72 h at 37 °C | Fermented bean powder | Increase in protein, ash, soluble fibre, soluble nitrogen, starch and some AAs. Decrease in CHO, crude fibre, fatty acids, vitamins, soluble sugar and some minerals. | 1%↑ in protein, no increase or decrease in fat, 4%↑ in ash, 8%↑ in starch, 0.5%↓ in CHO, 0.5%↓ in crude fibre, 19%↑ in soluble fibre, 9%↑ in soluble nitrogen, 1–20%↑ and 3–7%↓ in AAs, 1–20%↓ in fatty acids, 1.1–12%↑ and 0.9–24%↓ in minerals, 75%↓ in soluble sugar and 5–41%↓ in vitamins. | Increase in ash due to accumulation of white sugar decrease due to microbial utilization as food source. Increase and decrease in AA suggests synthesis of protein-related compounds and utilization by the bacteria, respectively. | Barampama and Simard [152] |
Cowpea (V. unguiculata) | SSF | Spontaneous and controlled using A. niger | 48 h at RT | Fermented cowpea flours | Increase in protein. Decrease in lipid, ash, fibre, ANFs, minerals, raffinose and stachyose, except for decrease and increase in CHO. | 21.8–24.9%↑ in protein, 25.3–58.7%↓ in lipid, 11.8–63.3%↓ in ash, 17.3–28.8%↓ in fibre, 3.15%↓ and 6.9%↑ in CHO, 3.8–98.5%↓ in minerals, 28–99%↓ in ANFs, 74.6–85%↓ in raffinose and 59.5–99.3%↓ in stachyose. | Increase in protein attributed to increase in biomass and partial protein denaturation. Decrease in ash, lipid, CHO and fibre linked to microbial metabolism. ANF reduction attributed to degradation by microorganisms. | Difo et al. [146] |
Cowpea (V. sinensis L. var. carilla) | SmF | Spontaneous and controlled using L. plantarum | 48 h at 37 °C | Fermented cowpea flour | Increase in riboflavin, decrease in ANFs (raffinose, TIA and stachyose), total starch, available starch and thiamine. | 80%↓ in raffinose, 50%↓ in TIA, 96%↓ in stachyose, 5.8%↓ in total starch, 5%↓ in available starch, 69%↓ in thiamine and 106%↑ in riboflavin for spontaneous fermented sample; 94%↑ in riboflavin, 43%↓ in thiamine, 6.2%↓ in total starch, 12%↓ in available starch, 27%↓ in TIA, 88.8%↓ in stachyose and 68.6%↓ in raffinose for controlled fermented sample. | Not reported. | Doblado et al. [179] |
Cowpea (V. sinensis var. Orutico and V. sinensis var. Tuy) | SSF | Spontaneous | 48 h at 42 °C | Fermented cowpea seeds | Decrease in available starch and mineral elements. | 4.5–22.8%↓ in starch, 42.1%↓ in ash and 4.4–68.8%↓ in mineral contents. | Degradation of available starch by microbial and enzymatic activities, water solubilization and leaching of minerals into steep water. | Granito et al. [180] |
Cowpea (V. unguiculata) | SSF | Controlled using R. microspoms | 0–24 h (3 h interval) at RT | Fermented cowpea flour | Increase in protein, fat, ash and CHO. | 2.3–8.8%↑ in protein, 100–133%↑ in fat, 30.8–33%↑ in ash and 1.7–5%↑ in CHO. | Ash increase linked to increase in B vitamins. | Prinyawiwatkul et al. [181] |
Guanacaste (Enterolobium cyclocarpum (Jacq.) Griseb.) | SSF | Controlled using A. niger | 0–28 h (7 h interval) at 30 °C | Fermented whole leaves of Enterolobium cyclocarpum | Decrease in tannin, saponin, PA, oxalate, neutral detergent fibre and acid detergent fibre. Increase in crude protein and a decrease afterwards. | 13.3–42.7%↓ in tannin, 11.7–28.8%↓ in saponin, 10.1–25.4%↓ in PA, 6.6–26.5%↓ in oxalate, 7.2–14.4%↓ in acid detergent fibre, 21.7–25.5%↓ in neutral detergent fibre, 10.2–16.3%↑ and 1.3–8.7%↓ in protein. | Protein increase attributed to addition of microbial protein during fermentation. Decrease in fibres is an indication of cell wall presence. ANF decrease ascribed to enzymatic activities. | Ayuk et al. [182] |
Horse gram (Macrotyloma uniflorum) | SmF | Spontaneous | 48 h at RT | Fermented horse gram flour | Reduction in ANFs (PA, tannin and oxalate). | 69.5%↓ in PA, 69.4%↓ in tannin and 66.8%↓ in oxalate. | ANF reduction attributed to leaching, degradation through enzyme activity and utilization of ANF as a carbon source. | Ojha et al. [183] |
Kidney bean (Phaseolus vulgaris) | SSF | Controlled using P. ostreatus CS155 strain | 336 h (14 days) at RT | Fermented kidney bean flour | Decrease in fat, minerals, CHO, tannin and fibre. Increase in protein, IVPD, soluble nitrogen and some AAs. | 13%↑ in protein, 10%↓ in fat, 13%↓ in minerals, 16%↑ in fibre, 57%↑ in IVPD, 100%↑ in soluble nitrogen, 17%↓ in CHO, 34%↓ in tannin, 0.1–41%↑ and 0.4–18%↓ in AAs. | Protein increase was attributed to AA synthesis. Decrease in tannin attributed to fungal tannase. | Espinosa-Páez et al. [130] |
Kidney bean (Phaseolus vulgaris) | SmF | Spontaneous | 16 h at RT | Fermented kidney bean flours | Decrease in protein, ashes, fat, total starch, available starch, soluble fibre, insoluble fibre, minerals, TIA, tannin and vitamin B1 (thiamine). Increase in resistant starch, vitamin B2 (riboflavin) and IVPD. | 1.7–14.5%↓ in protein, 3.8–7.7%↑ in IVPD, 0.63–2%↓ in fat, 5.4–16%↓ in total starch, 10–26.6%↓ in available starch, 4.2–10.6%↑ in resistant starch, 53–64%↓ in ashes, 4.5–25.8%↓ in insoluble fibre, 61–94%↓ in soluble fibre, 15–35%↓ in vitamin B1 (thiamine), 16.7–33%↑ in vitamin B2 (riboflavin), 56–70.9%↓ in TIA, 60.6–69.7%↓ in tannin and 1.8–68%↓ in minerals. | Increase in vitamin due to synthesis during fermentation. Decrease in insoluble fibre attributed to use of cellulose and arabinoxilnase. | Granito et al. [184] |
Lentils (Lens culinaris) | SSF | Controlled using P. ostreatus strain | 336 h (14 days) at 28 °C | Fermented lentils flour | Increase in protein and energy. Decrease in CHO and lipid. | 18.5%↑ in protein, 15%↑ in energy, 8%↓ in lipid and 6%↓ in CHO. | CHO decrease due to use as carbon source. Protein increase ascribed to bioconversion of some compounds into protein. | Asensio-Grau et al. [153] |
Lentils (Lens culinaris L.) HM-1, LL-931 and Sapna | SSF | Controlled using A. awamori (MTCC 548) | 168 h (7 days) at 25 °C | Aspergillus-fermented lentil flour | Increase in minerals and in vitro bioavailability of iron and zinc. | 0.07–60%↓ in minerals, 68.3–90.6%↑ and 86.7–100.6%↑ in in vitro bioavailability of iron and zinc. | Higher digestibility of iron and zinc attributed to reduced presence of ANFs. | Dhull et al. [185] |
Lima bean (Phaseolus lunatus) | SmF | Spontaneous | 72 h at 32 °C | Fermented lima bean flour | Increase in CHO. Decrease in crude protein, fibre, fat content, ash, minerals and ANFs. | 3%↑ in CHO, 3%↓ in protein, 25%↓ in fibre, 4%↓ in fat, 17%↓ in ash, 5–13%↓ in minerals, 78%↓ in tannin, 89%↓ in PT, 97%↓ in TIA, 75%↓ in lectin, 95%↓ in oxalate and 91%↓ in cyanide. | Decrease in protein due to previous heat treatment during processing. Reduced fat attributed to loss of total solids and fat denaturation. Decrease in minerals contents was due to leaching and reduced ANFs ascribed to microbial degradation. | Farinde et al. [186] |
Lupin (Lupinus albus and Lupinus luteus) | SSF | Spontaneous and controlled using LABs (L. sakei, Pediococcus acidilactici and Pediococcus pentosaceus) | 24 h at 30 °C for L. sakei, 32 °C for Pediococcus acidilactici and 35 °C for Pediococcus pentosaceus | Fermented whole meal | Increase in IVPD. | 3.5–17.7%↑ in IVPD for Lupinus albus. and 7.8–19%↑ in IVPD for Lupinus luteus. | Not reported. | Bartkiene et al. [187] |
Lupin (Lupinus albus L. var. Multolupa) | SmF | Spontaneous fermentation (microflora) and L. plantarum | 48 h at 37 °C | Fermented lupin flours | Decrease in vitamin content. | 6–96%↓ in vitamins (α-, γ- and δ-tocopherols). | Not reported. | Frias et al. [188] |
Lupins (Lupinus angustifolius L.) | SSF | Controlled using A. sojae, A. ficuum and their co-cultures | 168 h (7 days) at 30 °C | Fermented lupin flours | Increase in fat, ash, crude fibre fractions, protein, starch, calcium and phosphorus. Decrease in IVPD and PA. A decrease and increase in soluble CHO. | 53.3–73.2%↓ in PA, 1.40%↓ and 0.64–1.8%↑ in crude protein, 3–11%↑ in fat, 3–7%↑ in ash, 9%↓ and 7–10%↑ in crude fibre, 0.3–15.3%↑ in acid detergent fibre, 11.4–35.2%↑ in neutral detergent fibre, 40–87%↑ in hemicellulose, 21–56%↑ in lignin, 6%↓ and 1.8–14%↑ in cellulose, 7–16.8↓ and 5.6↑ in soluble CHO, 98–700%↑ in starch, 16–32.5%↓ in IVPD, 14–29%↑ in calcium and 10–13%↑ in phosphorus. | Increase protein attributed to production of fungal protein. Reduction in IVPD due to protein being locked within the fibre matrix, reducing the hydrolytic action of enzymes. | Olukomaiya et al. [150] |
Lupin (Lupinus angustifolius L.) var. ‘Vilniai’ and 6 hybrid lines (1700, 1701, 1703, 1072, 1734, 1800) | SmF and SSF | Controlled using L. sakei KTU05–6 | 48 h at 30 °C | Fermented lupin seeds | Increase in AAs. | 2.7–1287%↑ in AAs for SmF samples and 0.7–613%↑ in AAs for SSF samples. | Not reported. | Starkute et al. [189] |
Lyon bean (Mucuna cochinchinensis) | SSF | Spontaneous | 0–72 h (24 h interval) at 30 °C | Fermented Lyon bean flour | Reduction in oxalate, PA, tannin and CHO. Increase in protein. Increase in fat and decrease at 72 h. Increase in ash and decrease at 48 h. Increase in fibre. | 1.1–60.1%↑ and 0.41%↓ in protein, 51.6–111%↑ in fat, 7.1–49.9%↑ and 8.5–13%↓ in ash, 54.3–179.3%↑ in fibre, 5.4–25.9%↓ in CHO, 16.5–68%↓ in oxalate, 13.7–26%↓ in PA and 9.2–25.7%↓ in tannin. | Not reported. | Olaleye et al. [190] |
Mahogany Bean (Afzelia africana) | SmF | Spontaneous | 0, 24, 48, 72 h at 30 °C | Fermented mahogany bean flour | Increase in protein, fat, fibre, ash and CHO. | 3–15%↑ in protein, 3–39%↑ in fat, 2.6–7%↑ in fibre, 3–18%↓ in ash and 12–61%↓ in CHO. | Increased protein attributed to increase in microbial mass and extensive protein hydrolysis to AA and other simple peptides. Fat increase ascribed to extensive breakdown of large fat molecules into simple fatty acids. Loss in ash due to leaching of soluble minerals into the processing water. CHO reduction attributed to conversion of oligosaccharides to simple sugars or utilization of CHO for growth and metabolism. | Igbabul et al. [191] |
Mung bean (Vigna radiata) | SmF | Spontaneous and back-slopping | 72 h at RT | Fermented mung bean flour | Decrease in fat, CHO and vitamin A. Increase in fibre, in ash and some minerals. | Fermented and back-slopping: 33 and 38%↓ in fat; 60%↓ in vitamin A of both, 50 and 35%↑ in fibre, 7.2%↓ in CHO, 51.2%↓ and 6.3%↑ in ash and 8.8–22.6%↑ in calcium and iron. | Decreased fat due to activities of lipolytic enzymes. Reduction in CHOs due to its use as energy source. | Onwurafor et al. [192] |
Pea (Pisum sativum) | SSF | Controlled using A. niger NRRL 334 and A. oryzae NRRL 5590 | 0, 2, 4 and 6 h at 40 °C | Fermented pea protein-enriched flour | Increase in AAs, protein and IVPD of the fermented samples over fermentation time but a decrease in AAs of the A. niger. Decrease in ash at 6 h fermentation for A. oryzae and increase in lipid at 2 h fermentation for A. niger. | 4–32%↓ in TIA, 0.5–14%↑ in protein, 0.2–8.7%↑ and 0.6–0.9%↓ in ash, 0.6–94%↓ and 20%↑ in lipid, 0.93%↓ and 0.67–8%↑ in IVPD and 0.7–10%↓ and 1.8–29%↑ in AAs. | Increase in protein content attributed to increase in fungal biomass. Decrease in AAs due to fungi utilizing the AAs as food source. | Kumitch [11]; Kumitch et al. [143] |
Pigeon pea (Cajanus cajan) | SSF | Spontaneous | 168 h (7 days at 1 h interval) at RT | Fermented pigeon pea seed flour | Increase in protein and ash. Decrease in fat, fibre, nitrogen free extract and energy. | 3.7–9.6%↑ in protein, 16–38%↓ in fat, 6.7–19.7%↑ in ash, 22.5–37.7%↓ in fibre, 0.4–4.3%↓ in nitrogen-free extract and 0.5–3%↓ in energy. | Increase in protein ascribed to synthesis of protein and AAs. Fat reduction due to increased activities of lipolytic enzymes causing fat hydrolysis. | Adebowale and Maliki [145] |
Pigeon pea (Cajanus cajan) | SSF | Spontaneous and back-slopping | 72 h at RT | Fermented pigeon peas flour | Increase and decrease in ash, fat, fibre, protein and CHO. Increase in energy. | 0.2%↑ and 17–36.8%↓ in ash, 0.32–8.6↑ and 7–18.6%↓ in fat, 2.2–6.4%↑ and 12–20%↓ in fibre, 5–20.8%↑ and 9.4%↓ in protein, 3.3–7.8%↑ and 1%↓ in CHO and 50.6–57.4%↑ in energy. | Increase in protein attributed to activities of extracellular enzymes. | Odion-Owase et al. [193] |
Red bean (Phaseolus angularis (Willd.) W.F. Wight.) | SSF | Controlled using Cordyceps militaris | 168 h (7 days) at 25 °C | Fermented red bean flour | Increase in protein, ash and some AAs. Decrease in fat and CHO. | 9.3%↑ in crude protein, 2.7%↓ in fat, 5.6%↑ in ash, 3.2%↓ in CHO and 4.8–43.9%↓ and 7–230%↑ in AAs. | Reduction in CHO due to its use as energy source for fungal growth. Increase in AAs due to synthesis or transamination. | Xiao et al. [148] |
Soybean (Glycine max) | SSF | Controlled using L. plantarum Lp6 | 72 h at 37 °C | Fermented soybean protein meal and fermented soybean protein meal with added protease | Increase in IVPD and nitrogen solubility. | 9%↑ in IVPD and 4.4%↑ in nitrogen solubility for fermented soybean protein meal; 12%↑ in IVPD and 2.2%↑ in nitrogen solubility for fermented soybean protein meal with added protease. | Increase in IVPD related to positive influence of protein degradation by proteases. | Amadou et al. [194] |
Soybean (G. max) Rudoji and progress varieties | SSF | Spontaneous and controlled using LABs (L. sakei, Pediococcus acidilactici and Pediococcus pentosaceus) | 24 h at 30 °C for L. sakei, 32 °C for Pediococcus acidilactici and 35 °C for Pediococcus pentosaceus | Fermented whole meal | Increase in IVPD. | 9–17%↑ in IVPD for Rudoji and 10–15%↑ in IVPD for progress. | Not reported. | Bartkiene et al. [187] |
Soybean (G. max) | SmF | Controlled using starter organisms Streptococcus thermophilus CCRC 14,085 and Bifidobacterium infantis CCRC 14,603 | 24 h at 37 °C | Fermented soymilk | Decrease in saponin and PA. | 46.9%↓ in saponin and 28.9%↓ in PA. | Reduction in PA due to phytase and β-glucosidase activities. | Lai et al. [195] |
Soybean (G. max) | SmF | Spontaneous | Up to 72 h at RT | Fermented soymilk | Decrease in CHO and fat. Increase in ash, protein and minerals. Decrease in energy value but an increase at 6 and 12 h fermentation. | 10–99%↓ in CHO, 8.9–222%↑ in ash, 2.2–53%↑ in minerals, 5–94%↑ in protein, 2.3–60%↓ in fat and 7.5–15.5%↓ and 0.1–7.4%↑ in energy value. | Reduction in CHO due to its use as energy source. Release of minerals from chelated complexes, influenced its increase. Protein increase due to anabolic processes causing build-up of protein-related polymers and microbial cell proliferation. Decrease in fat connected to increased activities of the lipolytic enzymes which caused fat hydrolysis. | Obadina et al. [151] |
Soybean (G. max) curd waste or okara | SSF | Controlled using Candida albicans NRRL Y-12, C. guilliermondii NRRL Y-2075, Kluyveromyces marxianus NRRL Y-7571, Kluyveromyces marxianus NRRL Y-8281, Pichia pinus and S. cerevisiae NRRL Y-12632 | 72 h at 30 °C | Fermented okara | Decrease in fibre, fat and CHO. Increase in protein and ash. | 7.4–45.5%↓ in fibre, 20.1–54.4%↑ in protein, 2.8–27.8%↑ in ash, 3.3–29.2%↓ in fat and 0.71–51.1%↓ in CHO. | Decrease in fibre linked to secretion of cellulose/hemicellulose-degrading enzymes by yeasts. | Rashad et al. [196] |
Tamarind (Tamarindus indica L.) | SSF | Spontaneous | 24, 48 and 72 h at RT | daddawa-type condiment | Initial increase in CHO and ANFs (phytate, trypsin inhibitor and tannin) and decrease afterwards. Initial decrease in protein, fat, ash, fibre and minerals and subsequent increase afterwards. | 1.04–42%↓ in CHO, 6–49%↓ in PT, 0.66–86%↓ in TI, 25–75%↓ in tannin, 1–3%↑ in protein, 3–34%↑ in fat, 5–18%↑ in ash, 2–41%↑ in fibre and 4–33%↑ and 1–17%↓ in minerals. | Decrease in ANFs attributed to enzymatic activity during fermentation. The slight increase in protein due to synthesis of enzymes and degradation of protein-related substrates. | Olagunju et al. [197] |
Tamarind (Tamarindus indica L.) | SSF | Spontaneous | 96 h (4 days) at RT | Tamarind seed flours | Reduction in ash, phytate, tannin, TIA and CHO. Increase in protein, fat and fibre | 2.3%↓ in ash, 37–99%↓ in CHO, 4.8–14.3%↓ in phytate, 42.9–85.7%↓ in tannin, 78.7–89.4%↓ in TIA, 9.5–24.6%↑ in protein, 17–48.9%↑ in fat and 15–16.7%↑ in fibre. | Decrease in TIA and phytate due to enzymatic activities. Protein increased attributed to enzyme synthesis and compositional change following degradation of other constituents. Fat increase due to increased activity of lipolytic enzymes that led to production of more fatty-related compounds. CHO reduction linked to their use as carbon source (substrate) in order to synthesize cell biomass. | Oluseyi and Temitayo [198] |
Wild Vigna species of legume (V. racemosa) | SSF | Spontaneous and controlled using A. niger | 48 h at RT | Fermented V. racemosa flour | Increase in protein for spontaneous sample and decrease in the controlled fermentation. Decrease in lipid, ash, fibre, CHO, ANFs, minerals, raffinose and stachyose, except for an increase in CHO of the controlled fermented sample. | 12.4%↑ in protein, 9.7%↓ in lipid, 12.3%↓ in ash, 18.4%↓ in fibre, 1.02%↓ in CHO, 2.6–59%↓ in ANFs, 12.5–98%↓ in minerals, 33%↓ in raffinose and 65%↓ in stachyose for the spontaneous fermented sample; 29.4%↓ in protein, 62.8%↓ in lipid, 31%↓ in ash, 0.7%↓ in fibre, 22.9%↑ in CHO, 30–99%↓ in ANFs, 42.6–98.2%↓ in minerals, 59.5%↓ in raffinose and 87.7%↓ in stachyose for controlled fermented sample. | Increase in protein due to increase in biomass brought about by the fermenting microorganisms. Protein decrease attributed to metabolism of A. niger. Decrease in ash, fibre, lipid and CHO due to their metabolism by the microorganisms. Reduction in ANFs attributed to degradation by microorganisms. Decrease in mineral contents ascribed to leaching of the minerals into fermentation water and mineral utilization by fermenting microbiota. Raffinose and stachyose reduction could be due to their utilization as energy sources. | Difo et al. [199] |
2.2. Carbohydrate, Energy and Starch Fractions
2.3. Fats and Fatty Acids
2.4. Ash and Mineral Composition
2.5. Vitamins
2.6. Fibre
2.7. Antinutritional Factors
2.8. Nutrient Digestibility and Bioavailability
3. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adebiyi, J.A.; Obadina, A.O.; Adebo, O.A.; Kayitesi, E. Fermented and malted millet products in Africa: Expedition from traditional/ethnic foods to industrial value-added products. Crit. Rev. Food Sci. Nutr. 2018, 58, 463–474. [Google Scholar] [CrossRef] [PubMed]
- Adebo, O.A. African sorghum-based fermented foods: Past, current and future prospects. Nutrients 2020, 12, 1111. [Google Scholar] [CrossRef] [PubMed]
- Blandino, A.; Al-Aseeri, M.E.; Pandiella, S.S.; Cantero, D.; Webb, C. Cereal-based fermented foods and beverages. Food Res. Int. 2003, 36, 527–543. [Google Scholar] [CrossRef]
- Tamang, J.P.; Cotter, P.D.; Endo, A.; Han, N.S.; Kort, R.; Liu, S.Q.; Mayo, B.; Westerik, N.; Hutkins, R. Fermented foods in a global age: East meets West. Compr. Rev. Food Sci. Food Saf. 2020, 19, 184–217. [Google Scholar] [CrossRef] [Green Version]
- Adebo, O.A.; Oyeyinka, S.A.; Adebiyi, J.A.; Feng, X.; Wilkin, J.D.; Kewuyemi, Y.O.; Abrahams, A.M.; Tugizimana, F. Application of gas chromatography–mass spectrometry (GC-MS)-based metabolomics for the study of fermented cereal and legume foods: A review. Int. J. Food Sci. Technol. 2021, 56, 1514–1534. [Google Scholar] [CrossRef]
- Aka, S.; Konan, G.; Fokou, G.; Dje, K.M.; Bassirou, B. Review on African traditional cereal beverages. Am. J. Res. Commun. 2014, 2, 103–153. [Google Scholar]
- Brandt, M.J. Starter cultures for cereal-based foods. Food Microbiol. 2014, 37, 41–43. [Google Scholar] [CrossRef]
- Adebo, O.A.; Njobeh, P.B.; Adeboye, A.S.; Adebiyi, J.A.; Sobowale, S.S.; Ogundele, O.M.; Kayitesi, E. Advances in fermentation technology for novel food products. In Innovations in Technologies for Fermented Food and Beverage Industries; Panda, S., Shetty, P., Eds.; Springer: London, UK, 2018; pp. 71–87. [Google Scholar]
- Nkhata, S.G.; Ayua, E.; Kamau, E.H.; Shingiro, J.B. Fermentation and germination improve nutritional value of cereals and legumes through activation of endogenous enzymes. Food Sci. Nutr. 2018, 6, 2446–2458. [Google Scholar] [CrossRef] [Green Version]
- Kewuyemi, Y.O.; Njobeh, P.B.; Kayitesi, E.; Adebiyi, J.A.; Oyedeji, A.B.; Adefisoye, M.A.; Adebo, O.A. Metabolite profile of whole grain ting (a Southern African fermented product) obtained using two strains of Lactobacillus fermentum. J. Cereal Sci. 2020, 95, 103042. [Google Scholar] [CrossRef]
- Kumitch, H.M. The Effect of Solid-State Fermentation on Air-Classified Pea Protein-Enriched Flour to Improve the Digestibility and Functional Properties. Master’s Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 2019. [Google Scholar]
- Adebo, O.A.; Medina-Meza, I.G. Impact of fermentation on the phenolic compounds and antioxidant activity of whole cereal grains: A mini review. Molecules 2020, 25, 927. [Google Scholar] [CrossRef] [Green Version]
- Rollán, G.C.; Gerez, C.L.; LeBlanc, J.G. Lactic fermentation as a strategy to improve the nutritional and functional values of pseudocereals. Front. Nutr. 2019, 6, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaves-Lopez, C.; Serio, A.; Grande-Tovar, C.D.; Cuervo-Mulet, R.; Delgado-Ospina, J.; Paparella, A. Traditional fermented foods and beverages from a microbiological and nutritional perspective: The Colombian Heritage. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1031–1048. [Google Scholar] [CrossRef] [Green Version]
- Hlangwani, E.; Adebiyi, J.A.; Doorsamy, W.; Adebo, O.A. Processing, characteristics and composition of umqombothi (a South African traditional beer). Processes 2020, 8, 1451. [Google Scholar] [CrossRef]
- Hassan, M.N.; Sultan, M.Z.; Mar-E-Um, M. Significance of fermented food in nutrition and food science. J. Sci. Res. 2014, 6, 373–386. [Google Scholar] [CrossRef]
- McFeeters, R.F. Effects of fermentation on nutritional properties of food. In Nutritional Evaluation of Food Processing, 3rd ed.; Karmas, E., Harris, R.S., Eds.; Van Nostrand Reinhold Company Inc.: New York, NY, USA, 1988; pp. 423–446. [Google Scholar]
- Li, P.; Liang, H.; Lin, W.-T.; Feng, F.; Luo, L. Microbiota dynamics associated with environmental conditions and potential roles of cellulolytic communities in traditional Chinese cereal starter solid-state fermentation. Appl. Environ. Microbiol. 2015, 81, 5144–5156. [Google Scholar] [CrossRef] [Green Version]
- Odunfa, S.A.; Oyewole, O.B. African Fermented Foods; Blackie Academic and Professional: London, UK, 1997. [Google Scholar]
- Eggum, B.O.; Monowar, L.; Back Knudsen, K.E.; Munck, L.; Axtell, J. Nutritional quality of sorghum and sorghum foods from Sudan. J. Cereal Sci. 1983, 1, 127–137. [Google Scholar] [CrossRef]
- Marsh, A.J.; Hill, C.; Ross, R.P.; Cotter, P.D. Fermented beverages with health-promoting potential: Past and future perspectives. Trends Food Sci. Technol. 2014, 38, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Steinkraus, K.H. Handbook of Indigenous Fermented Food, 2nd ed.; Marcel Dekker, Inc.: New York, NY, USA, 1996. [Google Scholar]
- Wang, H.L.; Hesseltine, C.W. Glossary of Indigenous Fermented Foods; Northern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture: Peoria, IL, USA, 2011.
- Pérez-Cataluña, A.; Elizaquível, P.; Carrasco, P.; Espinosa, J.; Reyes, D.; Wacher, C.; Aznar, R. Diversity and dynamics of lactic acid bacteria in Atole agrio, a traditional maize-based fermented beverage from South-Eastern Mexico, analysed by high throughput sequencing and culturing. Antonie Van Leeuwenhoek 2018, 111, 385–399. [Google Scholar] [CrossRef]
- Väkeväinen, K.; Valderrama, A.; Espinosa, J.; Centurión, D.; Rizo, J.; Reyes-Duarte, D.; Díaz-Ruiz, G.; von Wright, A.; Elizaquível, P.; Esquivel, K.; et al. Characterization of lactic acid bacteria recovered from Atole agrio, a traditional Mexican fermented beverage. LWT-Food Sci. Technol. 2018, 88, 109–118. [Google Scholar] [CrossRef] [Green Version]
- Campbell-Platt, G. Fermented Foods of the World: A Dictionary and Guide; Butterworths: London, UK, 1987. [Google Scholar]
- Tou, E.H.; Mouquet-River, C.; Rochette, I.; Traoré, A.S.; Treche., S.; Guyot, J.P. Effect of different process combinations on the fermentation kinetics, microflora and energy density of ben-saalga, a fermented gruel from Burkina Faso. Food Chem. 2007, 100, 935–943. [Google Scholar] [CrossRef]
- Kolawole, O.M.; Kayode, R.M.O.; Akindayo, B. Proximate and microbial analyses of burukutu and pito produced in Ilorin. Nigeria. Afr. J. Biotechnol. 2007, 6, 587–590. [Google Scholar]
- Eze, V.C.; Eleke, O.I.; Omeh, Y.S. Microbiological and nutritional qualities of burukutu sold in mammy market Abakpa, Enugu State, Nigeria. Am. J. Food Nutr. 2011, 1, 141–146. [Google Scholar] [CrossRef]
- Alo, M.N.; Eze, U.A.; Eda, N.E. Microbiological qualities of burukutu produced from a mixture of sorghum and millet. Am. J. Food Nutr. 2012, 2, 96–102. [Google Scholar]
- Mwale, M.M. Microbiological Quality and Safety of the Zambian Fermented Cereal Beverage: Chibwantu. Ph.D. Thesis, University of Free State, Bloemfontein, South Africa, 2014. [Google Scholar]
- Worku, B.B.; Gemede, H.F.; Woldegiorgis, A.Z. Nutritional and alcoholic contents of cheka: A traditional fermented beverage in Southwestern Ethiopia. Food Sci. Nutr. 2018, 6, 2466–2472. [Google Scholar] [CrossRef] [PubMed]
- Gadaga, T.H.; Mutakumira, A.N.; Narvhus, J.A.; Ferusu, S.B. A review of traditional fermented foods and beverages in Zimbabwe. Int. J. Food Microbiol. 1999, 53, 1–11. [Google Scholar] [CrossRef]
- Togo, A.H.; Ferusa, B.S.; Mutukumira, N.A. Identification of lactic acid bacteria isolated from opaque beer (chibuku) for potential use as a starter culture. J. Food Technol. Afr. 2002, 7, 93–97. [Google Scholar] [CrossRef] [Green Version]
- Bassi, D.; Orrù, L.; Vasquez, J.C.; Cocconcelli, P.S.; Fontana, C. Peruvian chicha: A focus on the microbial populations of this ancient maize-based fermented beverage. Microorganisms 2020, 8, 93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abriouel, H.; Omar, N.B.; López, R.L.; Martinez-Caňamero, M.; Keleke, S.; Gálvez, A. Culture-independent analysis of the microbial composition of the African traditional fermented foods poto poto and dégué. Int. J. Food Microbiol. 2006, 111, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Assohoun-Djeni, N.M.C.; Djeni, N.T.; Messaoudi, S.; Lhomme, E.; Koussemon-Camara, M.; Ouassa, T.; Chobert, J.M.; Onno, B.; Dousset, X. Biodiversity, dynamics and antimicrobial activity of lactic acid bacteria involved in the fermentation of maize flour for doklu production in Côte d’Ivoire. Food Control 2016, 62, 397–404. [Google Scholar] [CrossRef]
- Van der Aa Kühle, A.; Jespersen, L.; Glover, R.L.; Diawara, B.; Jakobsen, M. Identification and characterization of Saccharomyces cerevisiae strains isolated from West African sorghum beer. Yeast 2001, 18, 1069–1079. [Google Scholar] [CrossRef] [PubMed]
- Sawadogo-Lingani, H.; Lei, V.; Diawara, B.; Nielsen, D.S.; Moller, P.L.; Traore, A.S.; Jakobsen, M. The biodiversity of predominant lactic acid bacteria in dolo and pito wort, for production of sorghum beer. J. Appl. Microbiol. 2007, 103, 765–777. [Google Scholar] [CrossRef] [PubMed]
- Mukisa, I.M.; Ntaate, D.; Byakika, S. Application of starter cultures in the production of Enturire—A traditional sorghum-based alcoholic beverage. Food Sci. Nutr. 2017, 5, 609–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greppi, A.; Rantsiou, K.; Padonou, W.; Hounhouigan, J.; Jespersen, L.; Jakobsen, M.; Cocolin, L. Determination of yeast diversity in ogi, mawè, gowé and tchoukoutou by using culture-dependent and-independent methods. Int. J. Food Microbiol. 2013, 165, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Adinsi, L.; Vieira-Dalode, G.; Akissoe, N.H.; Anihouvi, V.; Mestres, C.; Jacobs, A.; Dlamini, N.; Pallet, D.; Hounhouigan, J.D. Processing and quality attributes of gowe: A malted and fermented cereal-based beverage from Benin. Food Chain 2014, 4, 171–183. [Google Scholar] [CrossRef]
- Yousif, N.M.K.; Huch, M.; Schuster, T.; Cho, G.S.; Dirar, H.A.; Holzapfel, W.H.; Franz, C.M.A.P. Diversity of lactic acid bacteria from Hussuwa, a traditional African fermented sorghum food. Food Microbiol. 2010, 27, 757–768. [Google Scholar] [CrossRef]
- Olasupo, N.A.; Odunfa, S.A.; Obayori, O.S. Ethnic African fermented foods. In Fermented Foods and Beverages of the World; Tamang, J.P., Kailasapathy, K., Eds.; CRC Press, Taylor & Francis Group: New York, NY, USA, 2010; pp. 323–352. [Google Scholar]
- Kanwar, S.S.; Gupta, M.K.; Katoch, C.; Kumar, R.; Kanwar, P. Traditional fermented foods of Lahul and Spiti area of Himachal Pradesh. Indian J. Tradit. Knowl. 2007, 6, 42. [Google Scholar]
- Tafere, G. A review on traditional fermented beverages of Ethiopian. J. Nat. Sci. Res. 2015, 5, 94–102. [Google Scholar]
- Kohajdová, Z. Fermented cereal products. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2017; pp. 91–117. [Google Scholar]
- Mohammed, S.I.; Steenson, L.R.; Kirleis, A.W. Isolation and characterization of microorganisms associated with traditional sorghum fermentation for production of Sudanese kisra. Appl. Environ. Microbiol. 1991, 57, 2529–2533. [Google Scholar] [CrossRef] [Green Version]
- Hamad, S.H.; Dieng, M.C.; Ehrmann, M.A.; Vogel, R.F. Characterization of the bacterial flora of Sudanese sorghum flour and sorghum sourdough. J. Appl. Microbiol. 1997, 3, 764–770. [Google Scholar] [CrossRef]
- Von Mollendor, J.W.; Vaz-Velho, M.; Todorov, S.D. Boza, a traditional cereal-based fermented beverage: A rich source of probiotics and bacteriocin-producing lactic acid bacteria. In Functional Properties of Traditional Foods; Kristbergsson, K., Ötles, S., Eds.; Springer: Boston, MA, USA, 2016; pp. 157–188. [Google Scholar]
- Franz, C.M.A.P.; Holzapfel, W.H. Examples of lactic-fermented foods of the African continent. In Lactic Acid Bacteria: Microbiological and Functional Aspects; Vinderola, G., Ouwehand, A., Salminen, S., von Wright, A., Eds.; CRC Press: Boca Raton, FL, USA, 2019; pp. 235–254. [Google Scholar]
- Tchikoua, R.; Tatsadjieu, N.L.; Mbofung, C.M.F. Effect of selected lactic acid bacteria on growth of Aspergillus flavus and Aflatoxin B1 production in kutukutu. J. Microbiol. Res. 2015, 5, 84–94. [Google Scholar]
- Prado, F.C.; Parada, J.L.; Pandey, A.; Soccol, C.R. Trends in non-dairy probiotic beverages. Food Res. Int. 2008, 41, 111–123. [Google Scholar] [CrossRef]
- Franz, C.M.; Huch, M.; Mathara, J.M.; Abriouel, H.; Benomar, N.; Reid, G.; Galvez, A.; Holzapfel, W.H. African fermented foods and probiotics. Int. J. Food Microbiol. 2014, 190, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Hounhouigan, D.J.; Nout, M.J.; Nago, C.M.; Houben, J.H.; Rombouts, F.M. Characterization and frequency distribution of species of lactic acid bacteria involved in the processing of mawé, a fermented maize dough from Benin. Int. J. Food Microbiol. 1993, 18, 279–287. [Google Scholar] [CrossRef]
- Agati, V.; Guyot, J.P.; Morlon-Guyot, J.; Talamond, P.; Hounhouigan, D.J. Isolation and characterization of new amylolytic strains of Lactobacillus fermentum from fermented maize doughs (mawè and ogi) from Benin. J. Appl. Microbiol. 1998, 85, 512–520. [Google Scholar] [CrossRef]
- Schoustra, S.E.; Kasase, C.; Toarta, C.; Poulain, A.J. Microbial community structure of three traditional Zambian fermented products: Mabisi, Chibwantu and Munkoyo. PLoS ONE 2013, 6, 112. [Google Scholar] [CrossRef] [Green Version]
- Kuye, A.; Sanni, L.O. Industrialization of fermented food processes: How far in Nigeria? J. Sci. Ind. Res. 1999, 58, 83743. [Google Scholar]
- Omemu, A.M.; Bankole, M.O. Consumer’s knowledge, attitude, usage and storage pattern of ogi-A fermented cereal gruel in Southwest, Nigeria. Food Public Health 2015, 5, 77–83. [Google Scholar]
- Oriola, O.B.; Boboye, B.E.; Adetuyi, F.C. Bacterial and fungal communities associated with the production of a Nigerian fermented beverage, “otika”. Jordan J. Biol. Sci. 2017, 10, 127–133. [Google Scholar]
- Kotaka, A.; Bando, H.; Kaya, M.; Kato-Murai, M.; Kuroda, K.; Sahara, H.; Hata, Y.; Kondo, A.; Ueda, M. Direct ethanol production from barley β-glucan by sake yeast displaying Aspergillus oryzae β-glucosidase and endoglucanase. J. Biosci. Bioeng. 2008, 105, 622–627. [Google Scholar] [CrossRef]
- Ray, S.S.; Raychaudhuri, U.; Chakraborty, R. Rice-, pulse-, barley-, and oat-based fermented food products. Cereal Foods World 2015, 60, 218–223. [Google Scholar] [CrossRef]
- Djè, K.M.; Aka, S.; Zinzendorf, N.Y.; Yao, K.C.; Loukou, Y.G. Predominant lactic acid bacteria involved in the spontaneous fermentation step of tchapalo process, a traditional sorghum beer of Côte d’Ivoire. Res. J. Biol. Sci. 2009, 4, 789–795. [Google Scholar]
- N’guessan, K.F.; Brou, K.; Jacques, N.; Casaregola, S.; Djè, K.M. Identification of yeasts during alcoholic fermentation of tchapalo, a traditional sorghum beer from Côte d’Ivoire. Antonie Van Leeuwenhoek 2011, 99, 855–864. [Google Scholar] [CrossRef] [PubMed]
- Kayodé, A.P.P.; Hounhouigana, J.D.; Nout, M.J.R. Impact of brewing process operations on phyta, phenolic compounds and in vitro solubility of iron and zinc in opaque sorghum beer. LWT-Food Sci. Technol. 2007, 40, 834–841. [Google Scholar] [CrossRef]
- Greppi, A.; Rantsiou, K.; Padonou, W.; Hounhouigan, J.; Jespersen, L.; Jakobsen, M.; Cocolin, L. Yeast dynamics during spontaneous fermentation of mawè and tchoukoutou, two traditional products from Benin. Int. J. Food Microbiol. 2013, 165, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Madoroba, E.; Steenkamp, E.T.; Theron, J.; Huys, G.; Scheirlinck, I.; Cloete, T.E. Polyphasic taxonomic characterization of lactic acid bacteria isolated from spontaneous sorghum fermentations used to produce ting, a traditional South African food. Afr. J. Biotechnol. 2009, 8, 458–463. [Google Scholar]
- Madoroba, E.; Steenkamp, E.T.; Theron, J.; Scheirlinck, I.; Cloete, T.E.; Huys, G. Diversity and dynamics of bacterial populations during spontaneous sorghum fermentations used to produce ting, a South African food. Syst. Appl. Microbiol. 2011, 34, 227–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekwati-Monang, B.; Gänzle, M.G. Microbiological and chemical characterization of ting, a sorghum-based sourdough product from Botswana. Int. J. Food Microbiol. 2011, 150, 115–121. [Google Scholar] [CrossRef]
- Adebo, O.A.; Kayitesi, E.; Tugizimana, F.; Njobeh, P.B. Differential metabolic signatures in naturally and lactic acid bacteria (LAB) fermented ting (a Southern African food) with different tannin content, as revealed by gas chromatography mass spectrometry (GC–MS)-based metabolomics. Food Res. Int. 2019, 121, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Nout, M.J.R. Rich Nutrition from the poorest-Cereal fermentations in Africa and Asia. Food Microbiol. 2009, 26, 685–692. [Google Scholar] [CrossRef]
- Katongole, J.N. The Microbial Succession in Indigenous Fermented Maize Products. Master’s Thesis, University of Free State, Bloemfontein, South Africa, 2008. [Google Scholar]
- Van der Walt, J. Better Kaffir beer. S. Afr. J. Sci. 1954, 50, 221. [Google Scholar]
- Singh, T.A.; Devi, K.R.; Ahmed, G.; Jeyaram, K. Microbial and endogenous origin of fibrinolytic activity in traditional fermented foods of Northeast India. Food Res. Int. 2014, 55, 356–362. [Google Scholar] [CrossRef]
- Hossain, M.; Kabir, Y. Ethnic Fermented Foods and Beverages of Bangladesh. In Ethnic Fermented Foods and Alcoholic Beverages of Asia; Tamang, J.P., Ed.; Springer: New Delhi, India, 2016; pp. 73–89. [Google Scholar]
- Rawat, K.; Kumari, A.; Kumar, S.; Kumar, R.; Gehlot, R. Traditional fermented products of India. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 1873–1883. [Google Scholar] [CrossRef]
- Chettri, R. Microbiological Evaluation of turangbai and bekang, Ethnic Fermented Soybean foods of Northeast India. Ph.D. Thesis, North Bengal University, Siliguri, India, 2013. [Google Scholar]
- Rani, D.K.; Soni, S.K. Applications and commercial uses of microorganisms. In Microbes: A Source of Energy for 21st Century; Soni, S.K., Ed.; Jai Bharat Printing Press: Delhi, India, 2007; Chapter 2; pp. 71–126. [Google Scholar]
- Shin, D.; Kwon, D.; Kim, Y.; Jeong, D. Science and Technology of Korean Gochujang; Public Health Edu: Seoul, Korea, 2012; pp. 10–133. [Google Scholar]
- Sha, S.P.; Ghatani, K.; Tamang, J.P. Dalbari, a traditional pulse based fermented food of West Bangal. Int. J. Agric. Food Sci. Technol. 2013, 4, 6–10. [Google Scholar]
- Amadi, E.N.; Barimalaa, I.S.; Omosigho, J. Influence of temperature on the fermentation of Bambara groundnut (Vigna subterranea), to produce a dawadawa-type product. Plant Foods Hum. Nutr. 1999, 54, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Frias, J.; Penas, E.; Martinez-Villaluenga, C. Fermented pulses in nutrition and health promotion. In Fermented Foods in Health and Disease Prevention; Frias, J., Martinez-Villaluenga, C., Penas, E., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 385–416. [Google Scholar]
- Akanni, G.B.; Naudé, Y.; de Kock, H.L.; Buys, E.M. Diversity and functionality of bacillus species associated with alkaline fermentation of Bambara groundnut (Vigna subterranean L. Verdc) into dawadawa-type African condiment. Eur. Food Res. Technol. 2018, 244, 1147–1158. [Google Scholar] [CrossRef] [Green Version]
- Soni, S.K.; Sandhu, D.K.; Vilkhu, K.S.; Kamra, N. Microbiological studies on dosa fermentation. Food Microbiol. 1986, 3, 45–53. [Google Scholar] [CrossRef]
- Zhang, J.H.; Tatsumi, E.; Fan, J.F.; Li, L.T. Chemical components of Aspergillus-type Douchi, a Chinese traditional fermented soybean product, change during the fermentation process. Int. J. Food Sci. Technol. 2007, 42, 263–268. [Google Scholar] [CrossRef]
- Chen, T.; Jiang, S.; Xiong, S.; Wang, M.; Zhu, D.; Wei, H. Application of denaturing gradient gel electrophoresis to microbial diversity analysis in Chinese Douchi. J. Sci. Food Agric. 2012, 92, 2171–2176. [Google Scholar] [CrossRef]
- Sumino, T.; Endo, E.; Kageyama, A.S.; Chihihara, R.; Yamada, K. Various components and bacteria of furu (soybean cheese). J. Cook. Sci. Jpn. 2003, 36, 157–163. [Google Scholar]
- Kim, T.W.; Lee, J.W.; Kim, S.E.; Park, M.H.; Chang, H.C.; Kim, H.Y. Analysis of microbial communities in doenjang, a Korean fermented soybean paste using nested PCR-denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 2009, 131, 265–271. [Google Scholar] [CrossRef]
- Nam, Y.-D.; Lee, S.-Y.; Lim, S.-I. Microbial community analysis of Korean soybean pastes by next generation sequencing. Int. J. Food Microbiol. 2012, 155, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Jeyaram, K.; Singh, W.M.; Premarani, T.; Ranjita Devi, A.; Chanu, K.S.; Talukdar, N.C.; Singh, M.R. Molecular identification of dominant microflora associated with ‘Hawaijar’—A traditional fermented soybean (Glycine max L.) food of Manipur, India. Int. J. Food Microbiol. 2008, 122, 259–268. [Google Scholar] [CrossRef] [PubMed]
- Sridevi, J.; Halami, P.M.; Vijayendra, S.V.N. Selection of starter cultures for idli batter fermentation and their effect on quality of idli. J. Food Sci. Technol. 2010, 47, 557–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meerak, J.; Yukphan, P.; Miyashita, M.; Sato, H.; Nakagawa, Y.; Tahara, Y. Phylogeny of γ-polyglutamic acid-producing Bacillus strains isolated from a fermented locust bean product manufactured in West Africa. J. Gen. Appl. Microbiol. 2008, 54, 159–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dirar, H.A.; Harper, D.B.; Collins, M.A. Biochemical and microbiological studies on kawal, a meat substitute derived by fermentation of Cassia obtusifolia leaves. J. Sci. Food Agric. 2006, 36, 881–892. [Google Scholar] [CrossRef]
- Alexandraki, V.; Tsakalidou, E.; Papadimitriou, K.; Holzapfel, W.H. Status and Trends of the Conservation and Sustainable Use of Microorganisms in Food Processes; Commission on Genetic Resources for Food and Agriculture. FAO Background Study Paper No. 65; FAO: Rome, Italy, 2013. [Google Scholar]
- Tamang, J.P. Native microorganisms in fermentation of kinema. Ind. J. Microbiol. 2003, 43, 127–130. [Google Scholar]
- Kumar, J.; Sharma, N.; Girija Kaushal, G.; Samurailatpam, S.; Sahoo, D.; Rai, A.K.; Singh, S.P. Metagenomic insights into the taxonomic and functional features of kinema, a traditional fermented soybean product of Sikkim Himalaya. Front. Microbiol. 2019, 10, 1744. [Google Scholar] [CrossRef] [Green Version]
- Ramakrishnan, C.V. Studies on Indian fermented foods. Baroda J. Nutr. 1979, 6, 1–54. [Google Scholar]
- Sugawara, E. Fermented soybean pastes miso and shoyu with reference to aroma. In Fermented Foods and Beverages of the World; Tamang, J.P., Kailasapathy, K., Eds.; CRC Press, Taylor & Francis Group: New York, NY, USA, 2010; pp. 225–245. [Google Scholar]
- Chettri, R.; Tamang, J.P. Microbiological evaluation of maseura, an ethnic fermented legume-based condiment of Sikkim. J. Hill Res. 2008, 21, 1–7. [Google Scholar]
- Sharma, N.; Handa, S.; Gupta, A. A comprehensive study of different traditional fermented foods/beverages of Himachal Pradesh to evaluate their nutrition impact on health and rich biodiversity of fermenting microorganisms. Int. J. Res. Appl. Nat. Soc. Sci. 2013, 3, 19–28. [Google Scholar]
- Dahal, N.R.; Karki, T.B.; Swamylingappa, B.; Li, Q.; Gu, G. Traditional foods and beverages of Nepal—A review. Food Rev. Int. 2005, 21, 1–25. [Google Scholar] [CrossRef]
- Dahal, N.R.; Rao, E.R.; Swamylingappa, B. Biochemical and nutritional evaluation of Masyaura—A legume based traditional savory of Nepal. J. Food Sci. Technol. 2013, 1, 17–22. [Google Scholar]
- Zhu, Y.P.; Cheng, Y.Q.; Wang, L.J.; Fan, J.F.; Li, L.T. Enhanced antioxidative activity of Chinese traditionally fermented Okara (Meitauza) prepared with various microorganism. Int. J. Food Prop. 2008, 11, 519–529. [Google Scholar] [CrossRef]
- Choi, S.H.; Lee, M.H.; Lee, S.K.; Oh, M.J. Microflora and enzyme activity of conventional meju and isolation of useful mould. Kor. J. Agric. Sci. 1995, 22, 188–196. [Google Scholar]
- Asahara, N.; Zhang, X.B.; Ohta, Y. Antimutagenicity and mutagen-binding activation of mutagenic pyrolyzates by microorganisms isolated from Japanese miso. J. Sci. Food Agric. 2006, 58, 395–401. [Google Scholar] [CrossRef]
- Khairil Anwar, N.A.K.; Idris, A.; Hassan, N. Isolation and identification of halophilic microorganisms in soy sauce. Food Res. 2020, 4, 84–87. [Google Scholar] [CrossRef]
- Nagai, T.; Tamang, J.P. Fermented soybeans and non-soybeans legume foods. In Fermented Foods and Beverages of the World; Tamang, J.P., Kailasapathy, K., Eds.; CRC Press, Taylor & Francis Group: New York, NY, USA, 2010; pp. 191–224. [Google Scholar]
- Okoronkwo, N.E.; Emeh, I.C.; Onwuchekwa, E.C. Evaluation of phytochemical compositions and microbial load of raw and traditionally processed Ricinus communis seed (Ogiri). Am. J. NutR. Food Sci. 2015, 1, 21–26. [Google Scholar]
- Balogun, M.A.; Oyeyiola, G.P. Microbiological and chemical changes during the production of Okpehe from Prosopis africana Seeds. J. Asian Sci. Res. 2011, 1, 390–398. [Google Scholar]
- Ho, C.C. Identity and characteristics of Neurospora intermedia responsible for oncom fermentation in Indonesia. Food Microbiol. 1986, 3, 115–132. [Google Scholar] [CrossRef]
- Ezekiel, O.O.; Ogunshe, A.A.O.; Jegede, D.E. Controlled fermentation of cotton seeds (Gossypium hirsutum) for Owoh production using bacteria starter cultures. Niger. Food J. 2015, 33, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Noda, F.; Hayashi, K.; Mizunuma, T. Antagonism between osmophilic lactic acid bacteria and yeasts in brine fermentation of soy sauce. Appl. Envviron. Microbiol. 1980, 40, 452–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inamori, K.; Miyauchi, K.; Uchida, K.; Yoshino, H. Interaction between Pediococcus halophilus and Saccharomyces rouxii (microorganisms involved in shoyu moromi fermentation. Part I). Nipp. Nougeik. Kaishi 1984, 58, 771–777. [Google Scholar] [CrossRef]
- Ouoba, L.; Cantor, M.; Diawara, B.; Traoré, A.; Jakobsen, M. Degradation of African locust bean oil by Bacillus subtilis and Bacillus pumilus isolated from soumbala, a fermented African locust bean condiment. J. Appl. Microbiol. 2003, 95, 868–873. [Google Scholar] [CrossRef] [PubMed]
- Ouoba, L.; Diawara, B.; Wk, A.A.; Traore, A.; Moller, P. Genotyping of starter cultures of Bacillus subtilis and Bacillus pumilus for fermentation of African locust bean (Parkia biglobosa) to produce Soumbala. Int. J. Food Microbiol. 2004, 90, 197–205. [Google Scholar] [CrossRef]
- Han, B.Z.; Beumer, R.R.; Rombouts, F.M.; Nout, M.J.R. Microbiological safety and quality of commercial sufu—A Chinese fermented soybean food. Food Control 2001, 12, 541–547. [Google Scholar] [CrossRef]
- Kanlayakrit, W.; Phromsak, K. Novel conditions for tofu and pehtze preparation to overcome bacterial contamination in pehtze. Int. Food Res. J. 2014, 21, 335–342. [Google Scholar]
- Winarno, F.G.; Fardiaz, S.; Daulay, D. Indonesian Fermented Foods; Department of Agricultural Product Technology, Fatema, Bogor Agricultural University: Bogor City, Indonesia, 1973. [Google Scholar]
- Thakur, N.; Savitri; Bhalla, T.C. Characterization of some traditional fermented foods and beverages of Himachal Pradesh. Ind. J. Trad. Knowl. 2004, 3, 325–335. [Google Scholar]
- Nout, M.J.R.; Kiers, J.L. Tempeh fermentation, innovation and functionality: Update into the third millennium. J. Appl. Microbiol. 2005, 98, 789–805. [Google Scholar] [CrossRef] [PubMed]
- Jennessen, J.; Schnürer, J.; Olsson, J.; Samson, R.A.; Dijiksterhuis, J. Morphological characteristics of sporangiospores of the tempeh fungus Rhizopus oligosporus differentiate it from other taxa of the R. microsporus group. Mycol. Res. 2008, 112, 547–563. [Google Scholar] [CrossRef]
- Kwon, Y.S.; Lee, S.; Lee, S.H.; Kim, H.J.; Lee, C.H. Comparative evaluation of six traditional fermented soybean products in East Asia: A metabolomics approach. Metabolites 2019, 9, 183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chunhachart, O.; Itoh, T.; Sukchotiratana, M.; Tanimoto, H.; Tahara, Y. Characterization of γ-glutamyl hydrolase produced by Bacillus sp. isolated from Thai thuanao. Biosci. Biotechnol. Biochem. 2006, 70, 2779–2782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, S.-H.; Tomii, Y.; Watanabe, K.; Tsai, Y.-C. Diversity of lactic acid bacteria in fermented brines used to make stinky tofu. Int. J. Food Microbiol. 2008, 123, 134–141. [Google Scholar] [CrossRef] [PubMed]
- Okorie, P.C.; Olasupo, N.A. Growth and extracellular enzyme production by microorganisms isolated from Ugba-an indigenous Nigerian fermented food. Afr. J. Biotechnol. 2013, 12, 4158–4167. [Google Scholar]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.; Harris, H.; Mattarelli, P.; Toole, P.W.; Pot, B.; Vandamme, P.; Jens Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2000, 70, 2782–2858. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, B.M.; Adelakun, O.E.; Katawal, S.B. Physicochemical properties of fermented wheat-chickpea-rice weaning blend. Nutr. Food Sci. 2013, 43, 517–526. [Google Scholar] [CrossRef] [Green Version]
- Adebiyi, J.A.; Obadina, A.O.; Adebo, O.A.; Kayitesi, E. Comparison of nutritional quality and sensory acceptability of biscuits obtained from native, fermented, and malted pearl millet (Pennisetum glaucum) flour. Food Chem. 2017, 233, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Inyang, C.U.; Zakari, U.M. Effect of germination and fermentation of pearl millet on proximate, chemical and sensory properties of instant “fura”—A Nigerian cereal food. Pak. J. Nutr. 2008, 7, 9–12. [Google Scholar] [CrossRef]
- Espinosa-Páez, E.; Alanis-Guzmán, M.G.; Hernández-Luna, C.E.; Báez-González, J.G.; Amaya-Guerra, G.A.; Andrés-Grau, A. Increasing antioxidant activity and protein digestibility in Phaseolus vulgaris and Avenasativa by fermentation with the Pleurotus ostreatus fungus. Molecules 2017, 22, 2275. [Google Scholar] [CrossRef] [Green Version]
- Osman, M.A. Effect of traditional fermentation process on the nutrient and antinutrient contents of pearl millet during preparation of Lohoh. J. Saudi Soc. Agric. Sci. 2011, 10, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Mihiret, K.A. The Effect of Natural Fermentation on Some Antinutritional Factors, Minerals, Proximate Composition and Sensory Characteristics in Sorghum Based Weaning Food. Master’s. Thesis, Addis Ababa University, Addis Ababa, Ethiopia, 2009. [Google Scholar]
- Ilowefah, M.; Bakar, J.; Ghazali, H.M.; Mediani, A.; Muhammad, K. Physicochemical and functional properties of yeast fermented brown rice flour. J. Food Sci. Technol. 2015, 52, 5534–5545. [Google Scholar] [CrossRef] [Green Version]
- Suarti, B.; Sukarno; Ardiansyah; Budijanto, S. Bio-active compounds, their antioxidant activities, and the physicochemical and pasting properties of both pigmented and non-pigmented fermented de-husked rice flour. AIMS Agric. Food 2021, 6, 49–64. [Google Scholar] [CrossRef]
- Onyimba, I.A.; Ogbonna, C.I.C.; Akueshi, C.O.; Chukwu, C.O.C. Changes in the nutrient composition of brewery spent grain subjected to solid state natural fermentation. Niger. J. Biotechnol. 2009, 20, 55–60. [Google Scholar]
- Ogodo, A.C.; Ugbogu, O.C.; Onyeagba, R.A.; Okereke, H.C. Microbiological quality, proximate composition and in vitro starch/protein digestibility of Sorghum bicolor flour fermented with lactic acid bacteria consortia. Chem. Biol. Technol. Agric. 2019, 6, 1–9. [Google Scholar] [CrossRef]
- Nnam, N.M.; Obiakor, P.N. Effect of fermentation on the nutrient and antinutrient composition of baobab (Adansonia digitata) seeds and rice (Oryza sativa) grains. Ecol. Food Nutr. 2003, 42, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Ejigui, J.; Savoie, L.; Marin, J.; Desrosiers, T. Beneficial changes and drawbacks of a traditional fermentation process on chemical composition and antinutritional factors of yellow maize (Zea mays). J. Biol. Sci. 2005, 5, 590–596. [Google Scholar]
- Mohammed, N.A.; Ahmed, I.A.M.; Babiker, E.E. Nutritional evaluation of sorghum flour (Sorghum bicolor L. Moench) during processing of Injera. World Acad. Sci. Eng. Technol. 2011, 51, 72–76. [Google Scholar]
- Oladeji, B.S.; Irinkoyenikan, O.A.; Akanbi, C.T.; Gbadamosi, S.O. Effect of fermentation on the physicochemical properties, pasting profile and sensory scores of normal endosperm maize and quality protein maize flours. Int. Food Res. J. 2018, 25, 1100–1108. [Google Scholar]
- Curiel, J.A.; Coda, R.; Centomani, I.; Summo, C.; Gobbetti, M.; Rizzello, C.G. Exploitation of the nutritional and functional characteristics of traditional Italian legumes: The potential of sourdough fermentation. Int. J. Food Microbiol. 2015, 196, 51–61. [Google Scholar] [CrossRef]
- Adebiyi, J.A.; Njobeh, P.B.; Kayitesi, E. Assessment of nutritional and phytochemical quality of Dawadawa (an African fermented condiment) produced from Bambara groundnut (Vigna subterranea). Microchem. J. 2019, 149, 104034. [Google Scholar] [CrossRef]
- Kumitch, H.M.; Stone, A.; Nosworthy, M.G.; Nickerson, M.T.; House, J.D.; Korber, D.R.; Tanaka, T. Effect of fermentation time on the nutritional properties of pea protein-enriched flour fermented by Aspergillus oryzae and Aspergillus niger. Cereal Chem. 2020, 97, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Akubor, P.I.; Chukwu, J.K. Proximate composition and selected functional properties of fermented and unfermented African oil bean (Pentaclethra macrophylla) seed flour. Plant Foods Hum. Nutr. 1999, 54, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Adebowale, O.J.; Maliki, K. Effect of fermentation period on the chemical composition and functional properties of pigeon pea (Cajanus cajan) seed flour. Int. Food Res. J. 2011, 18, 1329–1333. [Google Scholar]
- Difo, H.V.; Onyike, E.; Ameh, D.A.; Ndidi, U.S.; Njoku, G.C. Chemical changes during open and controlled fermentation of cowpea (Vigna unguiculata) flour. Int. J. Food Nutr. Saf. 2014, 5, 1–10. [Google Scholar]
- Xiao, Y.; Xing, G.; Rui, X.; Li, W.; Chen, X.; Jiang, M.; Dong, M. Effect of solid-state fermentation with Cordyceps militaris SN-18 on physicochemical and functional properties of chickpea (Cicer arietinum L.) flour. LWT-Food Sci Technol. 2015, 63, 1317–1324. [Google Scholar] [CrossRef]
- Xiao, Y.; Sun, M.; Zhang, Q.; Chen, Y.; Miao, J.; Rui, X.; Dong, M. Effects of Cordyceps militaris (L.) Fr. fermentation on the nutritional, physicochemical, functional properties and angiotensin I converting enzyme inhibitory activity of red bean (Phaseolus angularis [Willd.] W.F. Wight.) flour. J. Food Sci. Technol. 2018, 55, 1244–1255. [Google Scholar] [CrossRef] [PubMed]
- Chinma, E.C.; Azeez, S.O.; Sulayman, H.T.; Alhassan, K.; Alozie, S.N.; Gbadamosi, H.D.; Danbaba, N.; Oboh, H.A.; Anuonye, J.C.; Adebo, O.A. Evaluation of fermented African yam bean flour composition and influence of substitution levels on properties of wheat bread. J. Food Sci. 2020, 85, 4281–4289. [Google Scholar] [CrossRef] [PubMed]
- Olukomaiya, O.O.; Adiamo, O.Q.; Fernando, W.C.; Mereddy, R.; Li, X.; Sultanbawa, Y. Effect of solid-state fermentation on proximate composition, anti-nutritional factor, microbiological and functional properties of lupin flour. Food Chem. 2020, 315, 126238. [Google Scholar] [CrossRef]
- Obadina, A.O.; Akinola, O.J.; Shittu, T.A.; Bakare, H.A. Effect of natural fermentation on the chemical and nutritional composition of fermented soymilk nono. Niger. Food J. 2013, 31, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Barampama, Z.; Simard, R.E. Effects of soaking, cooking and fermentation on composition, in-vitro starch digestibility and nutritive value of common beans. Plant Foods Hum. Nutr. 1995, 48, 349–365. [Google Scholar] [CrossRef]
- Asensio-Grau, A.; Calvo-Lerma, J.; Heredia, A.; Andrés, A. Enhancing the nutritional profile and digestibility of lentil flour by solid state fermentation with Pleurotus ostreatus. Food Funct. 2020, 11, 7905–7912. [Google Scholar] [CrossRef]
- Nivetha, N.; Suvarna, V.C.; Abhishek, R.U. Reduction of phenolics, tannins and cyanogenic glycosides contents in fermented beverage of linseed (Linum usitatissimum). Int. J. Food Ferment. Technol. 2018, 8, 185–190. [Google Scholar] [CrossRef]
- Mohiedeen, I.E.; El Tinay, A.H.; Elkhalifa, A.O.; Babiker, E.E.; Mallasy, L.O. Effect of fermentation and cooking on protein quality of maize (Zea mays L.) cultivars. Int. J. Food Sci. Technol. 2010, 45, 1284–1290. [Google Scholar] [CrossRef]
- Ogodo, A.C.; Ugbogu, O.C.; Onyeagba, R.A.; Okereke, H.C. Effect of lactic acid bacteria consortium fermentation on the proximate composition and in-vitro starch/protein digestibility of maize (Zea mays) flour. Am. J. Microbiol. Biotechnol. 2017, 4, 35–43. [Google Scholar]
- Ongol, M.P.; Niyonzima, E.; Gisanura, I.; Vasanthakaalam, H. Effect of germination and fermentation on nutrients in maize flour. Pak. J. Food Sci. 2013, 23, 183–188. [Google Scholar]
- Akinola, S.A.; Badejo, A.A.; Osundahunsi, O.F.; Edema, M.O. Effect of pre-processing techniques on pearl millet flour and changes in technological properties. Int. J. Food Sci. Technol. 2017, 52, 992–999. [Google Scholar] [CrossRef]
- Khetarpaul, N.; Chauhan, B.M. Effect of germination and fermentation on in vitro starch and protein digestibility of pearl millet. J. Food Sci. 1990, 55, 883–884. [Google Scholar] [CrossRef]
- Mahajan, S.; Chauhan, B.M. Effect of natural fermentation on the extractability of minerals from pearl millet flour. J. Food Sci. 1988, 53, 1576–1577. [Google Scholar] [CrossRef]
- Ilowefah, M.; Chinma, E.C.; Bakar, J.; Ghazali, H.M.; Muhammad, K. Enhancement of extruded brown rice flour functionality through fermentation. Acta Sci. Nutr. Health 2018, 2, 2–10. [Google Scholar]
- Kupski, L.; Cipolatti, E.; da Rocha, M.; dos Santos Oliveira, M.; de Almeida Souza-Soares, L.; Badiale-Furlong, B. Solid-state fermentation for the enrichment and extraction of proteins and antioxidant compounds in rice bran by Rhizopus oryzae. Brazil. Arch. Biol. Technol. 2012, 55, 937–942. [Google Scholar] [CrossRef] [Green Version]
- Adebo, O.A.; Njobeh, P.B.; Mulaba-Bafubiandi, A.F.; Adebiyi, J.A.; Desobgo, S.C.Z.; Kayitesi, E. Co-influence of fermentation time and temperature on physicochemical properties, bioactive components and microstructure of ting (a Southern African food) from whole grain sorghum. Food Biosci. 2018, 25, 118–127. [Google Scholar] [CrossRef]
- Adebo, O.A.; Njobeh, P.B.; Kayitesi, E. Fermentation by Lactobacillus fermentum strains (singly and in combination) enhances the properties of ting from two whole grain sorghum types. J. Cereal Sci. 2018, 82, 49–56. [Google Scholar] [CrossRef]
- Adebo, O.A.; Njobeh, P.B.; Mulaba-Bafubiandi, A.F.; Adebiyi, J.A.; Desobgo, Z.S.C.; Kayitesi, E. Optimization of fermentation conditions for ting production using response surface methodology. J. Food Proces. Preserv. 2018, 42, e13381. [Google Scholar] [CrossRef]
- Elkhalifa, A.E.O.; Schiffler, B.; Bernhard, R. Effect of fermentation on the starch digestibility, resistant starch and some physicochemical properties of sorghum flour. Food/Nahrung 2004, 48, 91–94. [Google Scholar] [CrossRef] [PubMed]
- Jood, S.; Khetarpaul, N.; Goyal, R. Effect of germination and probiotic fermentation on pH, titratable acidity, dietary fibre, β-glucan and vitamin content of sorghum-based food mixtures. J. Nutr. Food Sci. 2012, 2, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Ojha, P.; Adhikari, R.; Karki, R.; Mishra, A.; Subedi, U.; Karki, T.B. Malting and fermentation effects on antinutritional components and functional characteristics of sorghum flour. Food Sci. Nutr. 2018, 6, 47–53. [Google Scholar] [CrossRef]
- Ojokoh, A.O.; Eromosele, O. Effect of fermentation on proximate composition and microbiological changes of sorghum and pumpkin blend. Br. Microbiol. Res. J. 2015, 10, 1–4. [Google Scholar] [CrossRef]
- Wedad, H.A.; El Tinay, A.H.; Mustafa, A.I.; Babiker, E.E. Effect of fermentation, malt-pretreatment and cooking on antinutritional factors and protein digestibility of sorghum cultivars. Pak. J. Nutr. 2008, 7, 335–341. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Lei, Z.; Yun, L.; Zhongzhi, L.; Chen, Y. Chemical composition and bioactivity changes in stale rice after fermentation with Cordyceps sinensis. J. Biosci. Bioeng. 2008, 106, 188–193. [Google Scholar] [CrossRef]
- Tamene, A.; Kariluoto, S.; Baye, K.; Humblot, C. Quantification of folate in the main steps of traditional processing of tef injera, a cereal based fermented staple food. J. Cereal Sci. 2019, 87, 225–230. [Google Scholar] [CrossRef]
- Onwuliri, V.A.; Attah, I.; Nwankwo, J.O. Anti-nutritional factors, essential and non-essential fatty acids composition of Ugba (Pentaclethra macrophylla) seeds at different stages of processing and fermentation. J. Biol. Sci. 2004, 4, 671–675. [Google Scholar]
- Onoja, U.S.; Obizoba, I.C. Nutrient composition and organoleptic attributes of gruel based on fermented cereal, legume, tuber and root flour. Agro-Sci. J. Trop. Agric. Food Environ. Ext. 2009, 8, 162–168. [Google Scholar] [CrossRef] [Green Version]
- Ijarotimi, O.S.; Esho, T.R. Comparison of nutritional composition and anti-nutrient status of fermented, germinated and roasted bambara groundnut seeds (Vigna subterranea). Br. Food J. 2009, 111, 376–386. [Google Scholar] [CrossRef]
- Ola, O.I.; Opaleye, S.O. Effect of fermentation on antinutritional factors and functional properties of fermented Bambara nut flour. Asian Food Sci. J. 2019, 11, 1–5. [Google Scholar] [CrossRef]
- Chawla, P.; Bhandari, L.; Sadh, P.K.; Kaushik, R. Impact of solid-state fermentation (Aspergillus oryzae) on functional properties and mineral bioavailability of black-eyed pea (Vigna unguiculata) seed flour. Cereal Chem. 2017, 94, 437–442. [Google Scholar] [CrossRef]
- Reyes-Moreno, C.; Cuevas-Rodríguez, E.O.; Milan-Carrillo, J.; Cardenas-Valenzuela, O.G.; Barron-Hoyos, J. Solid state fermentation process for producing chickpea (Cicer arietinum L.) tempeh flour. Physicochemical and nutritional characteristics of the product. J. Sci. Food Agric. 2004, 84, 271–278. [Google Scholar] [CrossRef]
- Doblado, R.; Frias, J.; Muñoz, R.; Vidal-Valverde, C. Fermentation of Vigna sinensis var. carilla flours by natural microflora and Lactobacillus species. J. Food Prot. 2003, 66, 2313–2320. [Google Scholar] [CrossRef] [PubMed]
- Granito, M.; Torres, A.; Frías, J.; Guerra, M.; Vidal-Valverde, C. Influence of fermentation on the nutritional value of two varieties of Vigna sinensis. Eur. Food Res. Technol. 2005, 220, 176–181. [Google Scholar] [CrossRef]
- Prinyawiwatkul, W.; Beuchat, L.R.; McWatters, K.H.; Phillips, R.D. Fermented cowpea flour: Production and characterization of selected physico-chemical properties. J. Food Proces. Preserv. 1996, 20, 265–284. [Google Scholar] [CrossRef]
- Ayuk, A.A.; Iyayi, E.A.; Okon, B.I.; Ayuk, J.O.; Jang, E. Biodegradation of antinutritional factors in whole leaves of Enterolobium cyclocarpum by Aspergillus niger using solid state fermentation. J. Agric. Sci. 2018, 6, 188–196. [Google Scholar] [CrossRef]
- Ojha, P.; Bhurtel, Y.; Karki, R.; Subedi, U. Processing effects on anti-nutritional factors, phytochemicals, and functional properties of horse gram (Macrotyloma uniflorum) flour. J. Microbiol. Biotechnol. Food Sci. 2020, 9, 1080–1086. [Google Scholar] [CrossRef]
- Granito, M.; Frias, J.; Doblado, R.; Guerra, M.; Champ, M.; Vidal-Valverde, C. Nutritional improvement of beans (Phaseolus vulgaris) by natural fermentation. Eur. Food Res. Technol. 2002, 214, 226–231. [Google Scholar] [CrossRef]
- Dhull, S.B.; Punia, S.; Kidwai, M.S.; Kaur, M.; Chawla, P.; Purewal, S.S.; Sangwan, M.; Palthania, S. Solid-state fermentation of lentil (Lens culinaris L.) with Aspergillus awamori: Effect on phenolic compounds, mineral content, and their bioavailability. Legume Sci. 2020, 2, e37. [Google Scholar] [CrossRef] [Green Version]
- Farinde, E.O.; Olanipekun, O.T.; Olasupo, R.B. Nutritional composition and antinutrients content of raw and processed lima bean (Phaseolus lunatus). Ann. Food Sci. Technol. 2018, 19, 250–264. [Google Scholar]
- Bartkiene, E.; Krungleviciute, V.; Juodeikiene, G.; Vidmantiene, D.; Maknickiene, Z. Solid state fermentation with lactic acid bacteria to improve the nutritional quality of lupin and soya bean. J. Sci. Food Agric. 2015, 85, 1336–1342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frias, J.; Miranda, M.L.; Doblado, R.; Vidal-Valverde, C. Effect of germination and fermentation on the antioxidant vitamin content and antioxidant capacity of Lupinus albus L. var. Multolupa. Food Chem. 2005, 92, 211–220. [Google Scholar] [CrossRef]
- Starkute, V.; Bartkiene, E.; Bartkevics, V.; Rusko, J.; Zadeike, D.; Juodeikiene, G. Amino acids profile and antioxidant activity of different Lupinus angustifolius seeds after solid state and submerged fermentations. J. Food Sci. Technol. 2016, 53, 4141–4148. [Google Scholar] [CrossRef] [Green Version]
- Olaleye, H.T.; Oresanya, T.O.; Ogundipe, O.O. Comparative study on proximate and antinutritional factors of dehulled and undehulled fermented Lyon bean (Mucuna cochinchinensis). Food Res. 2020, 4, 1611–1615. [Google Scholar] [CrossRef]
- Igbabul, B.; Hiikyaa, O.; Amove, J. Effect of fermentation on the proximate composition and functional properties of mahogany bean (Afzelia africana) flour. Curr. Res. Nutr. Food Sci. J. 2014, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Onwurafor, E.U.; Onweluzo, J.C.; Ezeoke, A.M. Effect of fermentation methods on chemical and microbial properties of mung bean (Vigna radiata) flour. Niger. Food J. 2014, 32, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Odion-Owase, E.; Ojokoh, A.O.; Oyetayo, V.O. Effect of different fermentation methods on the microbial and proximate composition of pigeon pea (Cajanus cajan). Microbiol. Res. J. Int. 2018, 23, 1–6. [Google Scholar] [CrossRef]
- Amadou, I.; Amza, T.; Foh, M.B.K.; Kamara, M.T.; Le, G.W. Influence of Lactobacillus plantarum Lp6 fermentation on the functional properties of soybean protein meal. Emir. J. Food Agric. 2010, 22, 456–465. [Google Scholar] [CrossRef] [Green Version]
- Lai, L.R.; Hsieh, S.C.; Huang, H.Y.; Chou, C.C. Effect of lactic fermentation on the total phenolic, saponin and phytic acid contents as well as anti-colon cancer cell proliferation activity of soymilk. J. Biosci. Bioeng. 2013, 115, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Rashad, M.M.; Mahmoud, A.E.; Abdou, H.M.; Nooman, M.U. Improvement of nutritional quality and antioxidant activities of yeast fermented soybean curd residue. Afr. J. Biotechnol. 2011, 10, 5504–5513. [Google Scholar]
- Olagunju, O.F.; Ezekiel, O.O.; Ogunshe, A.O.; Oyeyinka, S.A.; Ijabadeniyi, O.A. Effects of fermentation on proximate composition, mineral profile and antinutrients of tamarind (Tamarindus indica L.) seed in the production of daddawa-type condiment. LWT-Food Sci. Technol. 2018, 90, 455–459. [Google Scholar] [CrossRef]
- Oluseyi, E.O.; Temitayo, O.M. Chemical and functional properties of fermented, roasted and germinated tamarind (Tamarindus indica) seed flours. Nutr. Food Sci. 2015, 45, 97–111. [Google Scholar] [CrossRef]
- Difo, H.V.; Onyike, E.; Ameh, D.A.; Njoku, G.C.; Ndidi, U.S. Changes in nutrient and antinutrient composition of Vigna racemosa flour in open and controlled fermentation. J. Food Sci. Technol. 2015, 52, 6043–6048. [Google Scholar] [CrossRef] [Green Version]
- Nyako, K.O.; Danso, K.O. Role of added yeast in the acceptability of naturally fermented corn dough. In Proceedings of a Regional Workshop on Traditional African Foods—Quality and Nutrition, Dares Salaam, Tanzania, 3-5 November 1992; Westby, A., Reilly, P.J.A., Eds.; International Foundation for Science: Stockholm, Sweden, 1991; pp. 19–21. [Google Scholar]
- Petrova, P.; Petrov, K. Lactic acid fermentation of cereals and pseudocereals: Ancient nutritional biotechnologies with modern applications. Nutrients 2020, 12, 1118. [Google Scholar] [CrossRef] [Green Version]
- Coutron-Gambotti, C.; Gandemer, G. Lipolysis and oxidation in subcutaneous adipose tissue during dry-cured ham processing. Food Chem. 1999, 64, 95–101. [Google Scholar] [CrossRef]
- Liquori, A.; Belsito, E.L.; Di Gioia, M.L.; Leggio, A.; Malagrino, F.; Romio, E.; Siciliano, C.; Tagarelli, A. GC/MS analysis of fatty acids in Italian dry fermented sausages. Open Food Sci. J. 2015, 9, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Kong, B.; Han, Q.; Xia, X.; Xu, L. The role of bacterial fermentation in lipolysis and lipid oxidation in Harbin dry sausages and its flavour development. LWT-Food Sci Technol. 2017, 77, 389–396. [Google Scholar] [CrossRef]
- García, C.; Rendueles, M.; Díaz, M. Liquid-phase food fermentations with microbial consortia involving lactic acid bacteria: A review. Food Res. Int. 2019, 119, 207–220. [Google Scholar] [CrossRef]
- Adebiyi, J.A.; Kayitesi, E.; Adebo, O.A.; Changwa, R.; Njobeh, P.B. Food fermentation and mycotoxin detoxification: An African perspective. Food Control 2019, 106, 106731. [Google Scholar] [CrossRef]
- Omojokun, A.O.; Jokoh, A.O. Effects of fermentation and extrusion on the mineral and antinutrient composition of plantain-cowpea flour blends. Asian J. Emerg. Res. 2020, 2, 190–199. [Google Scholar]
- Hawashi, M.; Altway, A.; Widjaja, T.; Gunawan, S. Optimization of process conditions for tannin content reduction in cassava leaves during solid state fermentation using Saccharomyces cerevisiae. Heliyon 2019, 5, e02298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Udensi, E.A.; Ekwu, F.C.; Isinguzo, J.N. Antinutrient factors of vegetable cowpea (Sesquipedalis) seeds during thermal processing. Pak. J. Nutr. 2007, 6, 194–197. [Google Scholar]
- Cossa, J.; Oloffs, K.; Kluge, H.; Drauschke, W.; Jeroch, H. Variabilities of total and phytate phosphorus contents as well as phytase activity in wheat. J. Agric. Trop. Subtrop. 2000, 101, 119–126. [Google Scholar]
- Reale, A.; Konietzny, U.; Coppola, R.; Sorrentino, E.; Greiner, R. The importance of lactic acid bacteria for phytate degradation during cereal dough fermentation. J. Agric. Food Chem. 2007, 55, 2993–2997. [Google Scholar] [CrossRef]
- Licandro, H.; Ho, P.H.; Nguyen, T.K.C.; Petchkongkaew, A.; Van Nguyen, H.; Chu-Ky, S.; Nguyen, T.V.A.; Lorn, D.; Waché, Y. How fermentation by lactic acid bacteria can address safety issues in legumes food products? Food Control 2020, 110, 106957. [Google Scholar] [CrossRef]
- Hassan, G.F.; Yusuf, L.; Adebolu, T.T.; Onifade, A.K. Effect of fermentation on mineral and anti-nutritional composition of cocoyam (Colocasia esculenta linn). Sky J. Food Sci. 2015, 4, 42–49. [Google Scholar]
- Joye, I. Protein digestibility of cereal products. Foods 2019, 8, 199. [Google Scholar] [CrossRef] [Green Version]
- Annor, G.A.; Tyl, C.; Marcone, M.; Ragaee, S.; Marti, A. Why do millets have slower starch and protein digestibility than other cereals? Trends Food Sci. Technol. 2017, 66, 73–83. [Google Scholar] [CrossRef]
- Wu, T.; Taylor, C.; Nebl, T.; Ng, K.; Bennett, L.E. Effects of chemical composition and baking on in vitro digestibility of proteins in breads made from selected gluten-containing and gluten-free flours. Food Chem. 2017, 233, 514–524. [Google Scholar] [CrossRef] [PubMed]
Product | Raw Materials | Product Form | Microorganisms Involved | Country/Region | Reference |
---|---|---|---|---|---|
Cereal-Based | |||||
Abreh | Sorghum | Beverage | Lactiplantibacillus plantarum | Sudan | Odunfa and Oyewole [19] |
Aceda | Sorghum | Thick porridge | Unknown | Sudan | Eggum et al. [20] |
Aliha | Maize/sorghum | Beverage | Lactic acid bacteria (LAB) | Benin, Ghana, Togo | Odunfa and Oyewole [19] |
Amazake | Rice | Beverage | Aspergillus spp. | Japan | Marsh et al. [21] |
Ang kak | Rice | Colorant | Monascus purpureus | China, Philippines, Taiwan, Thailand | Steinkraus [22] |
Apem | Rice | Bread | Leuconostoc mesenteroides and Saccharomyces spp. | Bali, Indonesia | Wang and Hesseltine [23] |
Atole agrio | Maize | Beverage | Enterococcus asini, Enterococcus casseliflavus, Enterococcus faecium, Enterococcus hirae, Enterococcus mundtii, Lactococcus lactis, Lactococcus piscium, Agrilactobacillus composti, Lacticaseibacillus casei, Lacticaseibacillus paracasei, Lacticaseibacillus rhamnosus, Lactiplantibacillus fabifermentans, Lactiplantibacillus paraplantarum, Lactiplantibacillus pentosus, Lactiplantibacillus plantarum, Latilactobacillus curvatus, Lactobacillus dixtrinicus, Levilactobacillus brevis, Ligilactobacillus araffinosus, Liquorilactobacillus mali, Loigolactobacillus coryniformis, Leuconostoc garlicum, Leuconostoc mesenteroides, Leuconostoc pseudomesenteroides, Pediococcus pentosaceus, Pediococcus stilesii, Streptococcus equines, Weissella cibaria, Weissella confusa, Weissella hellenica, Weissella oryzae and Weissella paramesenteroides | Mexico | Pérez-Cataluña et al. [24]; Väkeväinen et al. [25] |
Bagni | Millet | Alcoholic beverage | LAB and yeasts | Russia | Tamang et al. [4] |
Banku | Maize and cassava | Dough as staple | Lactobacillus spp., yeasts and moulds | Ghana | Blandino et al. [3]; Campbell-Platt [26] |
Ben-saalga | Pearl millet | Gruel | Lactobacillus spp., Leuconostoc spp., Pediococcus spp., Weissela spp. and yeasts | Burkina Faso, Ghana | Tou et al. [27] |
Bouza | Wheat | Alcoholic beverage | LAB | Egypt | Steinkraus [22] |
Burukutu | Sorghum | Alcoholic beverage | Acetobacter spp., Candida spp., Enterobacter spp., Lactobacillus spp., Leuconostoc mesenteroides, Saccharomyces cerevisiae and Saccharomyces chavelieri | Benin, Ghana, Nigeria | Kolawole et al. [28]; Eze et al. [29]; Alo et al. [30] |
Busa | Millet, maize or sorghum | Beverage | Lactobacillus spp., Leuconostoc mesenteroides, Pediococcus damnosus and Saccharomyces spp. | East Africa, Kenya | Odunfa and Oyewole [19] |
Bushera | Sorghum | Beverage | Enterococcus spp., Lacticaseibacillus paracasei, Lactobacillus delbrueckii, Lactiplantibacillus plantarum, Levilactobacillus brevis, and Streptococcus thermophilus | Uganda | Marsh et al. [21]; Mwale [31] |
Cheka | Sorghum/maize | Beverage | Unknown | Ethiopia | Worku et al. [32] |
Chibuku | Sorghum | Alcoholic beverage | Lactobacillus spp. | Botswana, Zimbabwe | Gadaga et al. [33]; Togo et al. [34] |
Chicha | Maize | Beverage | Acetobacter and LAB | Peru | Bassi et al. [35] |
Dalaki | Millet | Thick porridge | Unknown | Nigeria | Blandino et al. [3] |
Darassum | Millet | Beverage | Unknown | Mongolia | Blandino et al. [3] |
Dégué | Millet | Condiment | Lacticaseibacillus casei, Lactobacillus gasseri, Levilactobacillus brevis,Limosilactobacillus fermentumand Enterococcus spp. | Burkina Faso | Abriouel et al. [36] |
Doklu | Maize | Dough | Enterococcus spp., Lactiplantibacillus plantarum, Limosilactobacillus fermentum, Pediococcus acidilactici, Pediococcus pentosaceus, Streptococcus spp., Weissella cibaria | Côte d’Ivoire | Assohoun-Djeni et al. [37] |
Dolo | Sorghum | Alcoholic beverage | Lactobacillus delbrueckii, Limosilactobacillus fermentum, Lactococcus lactis, Pediococcus acidilactici and Saccharomyces cerevisae | Burkina Faso, Togo | Van der Aa Kühle et al. [38]; Sawadogo-Lingani et al. [39] |
Doro | Millet/sorghum | Alcoholic beverage | Bacteria and yeast | Zimbabwe | Blandino et al. [3] |
Enturire | Sorghum | Alcoholic beverage | Lactiplantibacillus plantarum, Saccharomyces cerevisae, Weissela confusa | Uganda | Mukisa et al. [40] |
Gowe | Sorghum | Porridge | Candida krusei, Candida tropicalis, Kluyveromyces marxianus, Limosilactobacillus fermentum and Limosilactobacillus mucosae | Benin | Greppi et al. [41]; Adinsi et al. [42] |
Hussuwa | Sorghum | Cooked dough | Acetobacter xylinum, Gluconobacter oxydans, Lactobacillus saccharolyticum, Limosilactobacillus fermentum, Pediococcus acidilactici, Pediococcus pentosaceus, Saccharomyces cerevisiae and yeasts | Sudan | Mwale [31]; Yousif et al. [43] |
Injera | Tef flour/wheat | Flatbread | Candida glabrata, Lactiplantibacillus plantarum, Leuconostoc mesenteroides, Limosilactobacillus pontis, Pediococcus cerevisiae and Saccharomyces cerevisiae | Ethiopia | Olasupo et al. [44] |
Jalebies | Wheat flour | Snack | Saccharomyces bayanus | India, Nepal, Pakistan | Blandino et al. [3] |
Jhan chang | Barley flour | Snack | Unknown | India | Kanwar et al. [45] |
Kenkey | Maize | Dough | Candida kefir, Candida krusei, Candida mycoderma, Candida tropicalis, Limosilactobacillus fermentum, Limosilactobacillus reuteri and Saccharomyces cerevisiae | Ghana | Odunfa and Oyewole [19] |
Keribo | Barley | Beverage | LAB | Ethiopia | Tafere [46] |
Kishk | Wheat, oat | Soup | Bacillus subtilis, Lacticaseibacillus casei, Lacticaseibacillus rhamnosus, Lactiplantibacillus plantarum, Latilactobacillus sakei, Levilactobacillus brevis and yeasts | Arabic countries, Egypt, Syria | Kohajdová [47] |
Kisra | Sorghum | Flat bread, pancake and sourdough | Candida intermedia, Candida krusei, Debrayomyces hansenii, Enterococcus faecium, Lactobacillus amylovorus, Lactobacillus confusus, Levilactobacillus brevis, Limosilactobacillus fermentum and Pichia kudriavzevii | Sudan | Mohammed et al. [48]; Hamad et al. [49] |
Khanom-jeen | Rice | Noodle | Lactobacillus spp., Streptococcus spp. | Thailand | Blandino et al. [3] |
Koko | Maize | Porridge | Lactiplantibacillus plantarum, Levilactobacillus brevis and Saccharomyces cerevisiae | Ghana | Von Mollendor et al. [50] |
Kunu-zaki | Maize/sorghum/millet | Aerobacter spp., Aspergillus spp., Candida mycoderma, Cephalosporium spp., Corynebacterium spp., Fusarium spp., Lacticaseibacillus pantheris, Lactiplantibacillus plantarum, Paucilactobacillus vaccinostercus, Penicillium spp., Rhodotorula spp. and Saccharomyces cerevisiae | Nigeria | Franz and Holzapfel [51] | |
Kutukutu | Maize | Dough | Lactobacillus spp., Lactococcus spp., Streptococcus spp. and Leuconostoc spp. | Cameroon | Tchikoua et al. [52] |
Kvass | Rye | Beverage | Lacticaseibacillus casei, Lactobacillus mesenteroides and Saccharomyces cerevisiae | Central Europe | Blandino et al. [3]; Kohajdová [47] |
Mahewu | Maize | Beverage | Lactobacillus delbrueckii, Lactococcus lactis, Leuconostoc spp. and Streptococcus lactis | Arabian gulf countries, South Africa | Prado et al. [53]; Franz et al. [54] |
Mantou | Wheat flour | Steamed cake | Saccharomyces spp. | China | Blandino et al. [3] |
Mawè | Maize | Dough | LAB and yeast | Benin, Nigeria, Togo | Greppi et al. [41]; Hounhouigan et al. [55]; Agati et al. [56] |
Mbege | Maize, millet or sorghum | Beverage | Lactiplantibacillus plantarum, Leuconostoc mesenteroides, Saccharomyces cerevisiae and Schizosaccharomyces pombe | Tanzania | Odunfa and Oyewole [19] |
Merissa | Sorghum and millet | Alcoholic beverage | Saccharomyces spp. | Sudan | Blandino et al. [3] |
Munkoyo | Maize | Beverage | Lactobacillus spp. and Weisella spp. | Southern Africa | Schoustra et al. [57] |
Mutwiwa | Maize | Porridge | Pediococcus pentosaceus | Zimbabwe | Gadaga et al. [33] |
Ogi | Maize, millet or sorghum | Gruel | Acetobacter spp.; Candida krusei; Corynebacterium spp.; Lactiplantibacillus plantarum, Lactobacillus acidophilus, Lactobacillus cellobiosus, Lactobacillus confusus, Ligilactobacillus agilis, Ligilactobacillus murinus, Limosilactobacillus fermentum and Saccharomyces cerevisiae | West Africa | Kuye and Sanni [58]; Omemu and Bankole [59] |
Otika | Sorghum | Alcoholic beverage | Bacillus cereus, Bacillus subtilis, Candida krusei, Candida tropicalis, Enterobacter clocae, Lactiplantibacillus plantarum, Levilactobacillus brevis,Limosilactobacillus fermentum, Leuconostoc mesenteroides and Saccharomyces cerevisae | Nigeria | Oriola et al. [60] |
Pito | Sorghum | Alcoholic beverage | Bacillus subtillis, Candida spp., Geotrichum candidum and Lactobacillus spp. | Ghana, Nigeria | Blandino et al. [3]; Sawadogo-Lingani et al. [39] |
Poto poto | Maize | Dough | Enterococcus spp., Escherichia coli, Lactiplantibacillus plantarum, Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus delbrueckii, Lactobacillus gasseri, and Limosilactobacillus reuteri | Congo | Abriouel et al. [36] |
Pozol | Maize | Beverage | Bifidobacterium spp., Enterococcus spp., Lactococcus lactis, Lacticaseibacillus casei, Lactiplantibacillus plantarum, Lactobacillus alimentarium, Lactobacillus delbruekii, and Streptococcus suis | Mexico | Marsh et al. [21] |
Saké | Rice | Alcoholic beverage | Aspergillus oryzae, Latilactobacillus sakei, Leuconostoc mesenteroides, Saccharomyces cerevisiae and Saccharomyces sake | Japan | Blandino et al. [3]; Kotaka et al. [61] |
Shaosinghjiu | Rice | Beverage | Saccharomyces cerevisiae | China | Blandino et al. [3] |
Takju | Rice/wheat | Beverage | LAB and Saccharomyces cerevisiae | Korea | Blandino et al. [3] |
Tapuy | Rice | Alcoholic beverage | Aspergillus spp., Lactiplantibacillus plantarum, Leuconostoc spp., Mucor spp., Rhizopus spp. and Saccharomyces spp. | Philippines | Ray et al. [62] |
Tchapalo | Sorghum | Alcoholic beverage | Lactiplantibacillus plantarum, Lactobacillus cellobiosus, Lactobacillus coprophilus, Lentilactobacillus hilgardii, Levilactobacillus brevis and Limosilactobacillus fermentum | Côte d’Ivoire | Djè et al. [63]; N’guessan et al. [64] |
Tchoukoutou | Sorghum | Alcoholic beverage | Candida albicans, Clavispora lusitaniae, Hanseniaspora guillermondii, Hanseniaspora uvarum, Kluyveromyces marxianus, Saccharomyces cerevisiae and Torulaspora delbrueckii | Benin | Greppi et al. [41]; Kayode et al. [65]; Greppi et al. [66] |
Ting | Sorghum | Porridge | Lacticaseibacillus casei, Lacticaseibacillus rhamnosus, Lactiplantibacillus plantarum, Latilactobacillus curvatus, Lentilactobacillus parabuchneri, Limosilactobacillus fermentum,Limosilactobacillus reuteri, Loigolactobacillus coryniformis and Schleiferilactobacillus harbinensis | Botswana, South Africa | Madoroba et al. [67]; Madoroba et al. [68]; Sekwati-Monang and Gänzle [69]; Adebo et al. [70] |
Tobwa | Maize | Beverage | LAB | Zimbabwe | Blandino et al. [3] |
Togwa | Maize flour or finger millet malt | Lactobacillus spp., Candida spp. and Saccharomyces cerevisiae | Tanzania | Marsh et al. [21] | |
Uji | Sorghum | Porridge | Lactiplantibacillus plantarum, Lactobacillus cellobiosus, Limosilactobacillus fermentum, Pediococcus acidilactici and Pediococcus pentosaceus | East Africa | Blandino et al. [3]; Nout [71] |
Umqombothi | Sorghum/maize | Beverage | Lactobacillus spp. and Saccharomyces cerevisiae | Southern Africa | Katongole [72]; Van Der Walt [73] |
Product | Raw Materials | Product Form | Microorganisms Involved * | Country/Region | Reference |
---|---|---|---|---|---|
Legume-Based | |||||
Aakhone/Axone | Soybean | Condiment | Bacillus subtilis and Proteus mirabilis | India | Singh et al. [74] |
Amriti | Black lentils | Snack | LAB and yeasts | India | Steinkraus [22]; Hossain and Kabir [75] |
Bedvin roti | Black gram, opium seeds or walnut | Snack | Not reported | India | Rawat et al. [76] |
Bekang | Soybean | Paste | Bacillus amyloliquefaciens, Bacillus brevis, Bacillus circulans, Bacillus coagulans, Bacillus licheniformis, Bacillus pumilus, Bacillus sphaericus, Bacillus subtilis, Debaryomyces hansenii, Enterococcus cecorum, Enterococcus durans, Enterococcus faecium, Enterococcus hirae, Enterococcus raffinossus, Pichia burtonii, Proteus mirabilis, Saccharomyces cerevisiae | India | Singh et al. [74]; Chettri [77] |
Bhallae | Black gram | Side dish | Bacillus subtilis, Candida curvata, Candida famata, Candida membraneafaciens, Candida variovaarai, Cryptococcus humicoius, Debaryomyces hansenii, Enterococcus faecalis, Geotrichum candidum, Hansenula anomala, Hansenula polymorpha, Kluyveromyces marxianus, Leuconostoc mesenteroides, Limosilactobacillus fermentum, Pediococcus membranaefaciens, Rhizopus marina, Saccharomyces cerevisiae, Trichosporon beigelii, Trichosporon pullulans and Wingea robertsii | India | Rani and Soni [78] |
Chee-fan | Soybean wheat curd | Cheese-like | Aspergillus glaucus and Mucor spp. | China | Blandino et al. [3] |
Cheonggukjang | Soybean | Meal, dish | Bacillus amyloliquefaciens, Bacillus cereus, Bacillus subtilis, Pantoea agglomerans, Pantoega ananatis, Enterococcus spp., Pseudomonas spp. and Rhodococcus spp. | Korea | Shin et al. [79] |
Dalbari (Urad dalbari) | Lentil | Snack | Not reported | India | Sha et al. [80] |
Dawadawa | Bambara groundnut and locust bean | Condiment | Bacillus licheniformis, Bacillus pumilus and Bacillus subtilis | Central and West Africa | Amadi et al. [81]; Frias et al. [82]; Akanni et al. [83] |
Dhokla | Chickpeas, green gram and rice | Snack | Enterococcus faecalis, Leuconostoc mesenteroides,Limosilactobacillus fermentum, Streptococcus faecalis, Torulaspora candida and Torulaspora pullulans | India | Blandino et al. [3]; Frias et al. [82] |
Doenjang | Soybean | Soup | Aspergillus oryzae, Bacillus licheniformis, Bacillus subtilis, Debaryomyces hansenii, Enterococcus faecium, Lactobacillus spp., Leuconostoc mesenteroides, Mucor plumbeus and Tetragenococcus halophilus | Korea | Shin et al. [79]; Frias et al. [82] |
Dosa | Black gram dhal (Phaselus mango) and rice | Pancake, snack | Bacillus amyloliquefaciens, Enterococcus faecalis, Candida boidini, Candida glabrata, Candida sake, Debaryomyces hansenii, Hansenula polymorpha, Issatchenkia terricola, Lactobacillus delbrueckii, Lactobacillus fermenti, Leuconostoc mesenteroides, Streptococcus faecalis and Rhizopus graminis | India, Sri Lanka | Soni et al. [84] |
Douchi | Soybean | Condiment | Aspergillus oryzae, Bacillus amyloliquefaciens, Bacillus subtilis, Enterobacter spp., Pichia farinose, Pseudomonas spp., Saccharomyces cerevisiae, Staphylococcus saprophyticus and Staphylococcus sciuri | China, Taiwan | Zhang et al. [85]; Chen et al. [86] |
Furu | Soybean curd | Condiment | Bacillus firmus, Bacillus megaterium, Bacillus pumilus, Bacillus stearothermophilus and Staphylococcus hominis | China | Sumino et al. [87] |
Gochujang | Soybean and red pepper | Seasoning | Aspergillus spp., Bacillus amyloliquefacious, Bacillus liqueformis, Bacillus subtilis, Bacillus velegensis, Candida lactis, Penicillium spp., Rhizopus spp., spcecis of Oceanobacillus, Zygorouxii spp. and Zygosaccharomyses spp. | Korea | Kim et al. [88]; Nam et al. [89] |
Hawaijar | Soybean | Meal, dish | Alkaligenes spp., Bacillus amyloliquefaciens, Bacillus cereus, Bacillus licheniformis, Bacillus subtilis, Proteus mirabilis, Providencia rettgers, Staphylococcus aureus and Staphylococcus sciuri | India | Singh et al. [74]; Jeyaram et al. [90] |
Idli | Black gram and rice | Meal, dish | Bacillus amyloliquefaciens, Candida versatilis, Enterococcus faecium, Limosilactobacillus fermentum, Lactobacillus delbrueckii, Lactococcus lactis, Loigolactobacillus coryniformis, Leuconostoc mesenteroides, Pediococcus acidilactis, Pediococcus cerevisiae, Torulopsis spp. Tricholsporon pullulans, Streptococcus lactis, Streptococcus faecalis and yeast | India, Malaysia, Singapore, Sri Lanka | Frias et al. [82]; Sridevi et al. [91] |
Iru | Locust bean | Condiment | Bacillus amyloliquefaciens, Bacillus atrophaeus, Bacillus fumus, Bacillus licheniformis, Bacillus megaterium, Bacillus mojavensis, Bacillus pumilus, Bacillus subtilis, Lysininbacillus sphaericus and Staphylococcus saprophyticus | West Africa | Odunfa and Oyewole [19]; Meerak et al. [92] |
Kanjang | Soybean, meju, salt and water | Sauce | Aspergillus oryzae, Bacillus citreus, Bacillus pumillus, Bacillus subtilis, Saccharomyces rouxii and Sarcina mazima | Korea | Shin et al. [79] |
Kawal | Leaves of legume (Cassia spp.) | Meat substitute | Bacillus subilis, Lactiplantibacillus plantarum, Propionibacterium spp. and Staphylococcus sciuri, Yeasts | Sudan | Dirar et al. [93] |
Kecap | Soybean and wheat | Sauce | Aspergillus oryzae, Candida spp., Debaromyces spp., Pediococcus halophilus, Rhizopus oligosporus, Rhizopus oryzae, Staphylococcus spp. and Sterigmatomyces spp. | Indonesia | Alexandraki et al. [94] |
Ketjap | Black soybean | Syrup | Aspergillus flavus, Aspergillus oryzae, Rhizopus arrhizus, Rhizopus oligosporus | Indonesia | Alexandraki et al. [94] |
Kinda | Locust bean | Condiment | Bacillus amyloliquefaciens, Bacillus atrophaeus, Bacillus licheniformis, Bacillus mojavensis, Bacillus pumilus, Bacillus subtilis and Lysininbacillus sphaericus | Sierra Leone | Meerak et al. [92] |
Kinema | Soybean | Meal, dish | Bacillus cereus, Bacillus circulans, Bacillus licheniformis, Bacillus pumilus, Bacillus subtilis, Bacillus thuringiensis, Bacillus sphaericus, Candida parapsilosis, Corynebacterium glutamicum, Enterococcus faecium, Geotrichum candidum and Lactococcus lactis | Bhutan, India, Nepal | Tamang [95]; Kumar et al. [96] |
Khaman | Bengal gram and chickpeas | Snack | Bacillus spp., Lactobacillus fermentum, Lactobacillus lactis, Leuconostoc mesenteroides and Pediococcus acidilactici | India | Ramakrishnan [97] |
Koikuchi Shoyu | Defatted soybean flake, wheat, brine and tane-koji | Soy sauce | Aspergillus oryzae, Aspergillus sojae, Bacillus spp., Enterococcus faecalis, Pediococcus halophilus, Torulopsis echellsii, Torulopsis versatilis, Saccharomyces halomembransis and Saccharomyces rouxii | Japan | Sugawara [98] |
Maseura | Black gram | Dry, ball-like, brittle, condiment | Bacillus laterosporus, Bacillus mycoides, Bacillus pumilus, Bacillus subtilis, Candida castellii, Enterococcus durans, Ligilactobacillus salivarius, Limosilactobacillus fermentum, Pediococcus acidilactici, Pediococcus pentosaceous, Pichia burtonii and Saccharomyces cerevisiae | India, Nepal | Chettri and Tamang [99] |
Mashbari | Black gram and spices | Meal, dish | Bacillus spp. A94, Lactobacillus spp. and Saccharomyces cerevisiae | India | Sharma et al. [100] |
Masyaura | Black gram or green gram | Side dish | Aspergillus niger, Candida versatilis, Cladosporium spp., Lactobacillus spp., Pediococcus acidilactici, Pediococcus pentosaceus, Penicillium spp. and Saccharomyces cerevisiae | India, Nepal | Dahal et al. [101]; Dahal et al. [102] |
Meitauza | Soybean | Meal, dish | Actinomucor elegans, Aspergillus oryzae, Bacillus subtilis, Mucor meitauza and Rhizopus oligosporus | China, Taiwan | Zhu et al. [103] |
Meju | Soybean | Condiment | Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Aspergillus oryzae, Aspergillus retricus, Aspergillus spinosa, Aspergillus terreus, Aspergillus wentii, Bacillus citreus, Bacillus circulans, Bacillus licheniformis, Bacillus megaterium, Bacillus mesentricus, Bacillus subtilis, Bacillus pumilis, Botrytis cineara, Candida edax, Candida incommenis, Candida utilis, Hansenula anomala, Hansenula capsulata, Hansenula holstii, Lactobacillus spp., Mucor adundans, Mucor circinelloides, Mucor griseocyanus, Mucor hiemalis, Mucor jasseni, Mucor racemosus, Pediococcus acidilactici, Penicillium citrinum, Penicillium griseopurpureum, Penicillium griesotula, Penicillium kaupscinskii, Penicillium lanosum, Penicillium thomii, Penicillium turalense, Rhizopus chinensis, Rhizopus nigricans, Rhizopus oryzae, Rhizopus sotronifer, Rhodotorula flaca, Rhodotorula glutinis, Saccharomyces exiguus, Saccharomyces cerevisiae, Saccharomyces kluyveri, Zygosaccharomyces japonicus and Zygosaccharomyces rouxii | Korea | Choi et al. [104] |
Miso | Soybean | Seasoning | Aspergillus oryzae, Leuconostoc paramesenteroides, Micrococcus halobius, Pediococcus acidilactici and Zygosaccharomyces rouxii | Japan | Asahara et al. [105] |
Moromi | Soybean | Seasoning | Aspergillus oryzae, Candida etchellsii, Candida versatilis, Tetragenococcus halophilus and Zygosaccharomyces rouxii | Japan | Khairil et al. [106] |
Natto | Soybean | Meal, dish | Bacillus subtilis (natto) | Japan | Nagai and Tamang [107] |
Ogiri | Castor oil seed, melon seed, groundnut and fluted pumpkin seed | Condiment | Bacillus licheniformis, Bacillus pumilus, Bacillus megaterium, Bacillus rimus, Bacillus subtilis, Lactiplantibacillus plantarum, Pediococcus spp. and Salmonella shigella dysenteria Staphylococcus saprophyticus | Central, East and West Africa | Odunfa and Oyewole [19]; Okoronkwo et al. [108] |
Okpehe | Prosopis africana seeds | Condiment | Bacillus amyloliquefaciens, Bacillus cereus, Bacillus licheniformis, Bacillus megaterium, Bacillus subtilis, Escherichia coli, Saccharomyces cerevisiae and Staphylococcus aureus | Nigeria | Balogun and Oyeyiola [109] |
Ontjom/Oncom (Hitam/Merah) | Soybean | Snack | Neurospora crassa, Neurospora intermedia, Neurospora sitophila (from red oncom) and Rhizopus oligosporus (from black oncom) | Indonesia | Ho [110] |
Owoh | Cotton seed | Condiment | Bacillus licheniformis, Bacillus pumilus, Bacillus subtilis and Staphylococcus saprophyticus | Nigeria | Ezekiel et al. [111] |
Papad | Black gram, Bengal gram, lentil and red or green gram | Condiment or savoury food | Candida krusei, Debaryomyces hansenii, Enterococcus faecalis, Leuconostoc mesenteroides, Limosilactobacillus fermentum, Pediococcus membranaefaciens, Saccharomyces cerevisiae and Trichosporon beigelii | India, Nepal | Rani and Soni [78] |
Pepok | Soybean | Condiment | Bacillus spp. | Myanmar | Nagai and Tamang [107] |
Peruyyan | Soybean | Side dish | Bacillus amyloliquefaciens, Bacillus subtilis, Enterococcus faecalis, Pediococcus acidilactici and Vagococcus lutrae | India | Singh et al. [74] |
Sepubari | Black gram, Dangal, spices | Meal, dish | Bacillus spp. A31., Lactobacillus spp. and Saccharomyces cerevisiae | India | Sharma et al. [100] |
Sieng | Soybean | Condiment | Bacillus spp. | Cambodia, Laos | Nagai and Tamang [107] |
Shoyu | Soybean | Seasoning | Aspergillus oryzae, Clavaria versatilis, Pediococcus halophilus, Saccharomyces rouxii, Torulopsis versatilis and Zygosaccharomyces rouxii | China, Japan, Korea | Noda et al. [112]; Inamori et al. [113] |
Soumbala | Locust bean | Condiment | Bacillus amyloliquefaciens, Bacillus atrophaeus, Bacillus badius, Bacillus cereus, Bacillus firmus, Bacillus licheniformis, Bacillus megaterium, Bacillus mojavensis, Bacillus mycoides, Bacillus pumilus, Bacillus sphaericus, Bacillus subtilis, Bacillus thuringiensis, Brevibacillus laterosporus, Lysininbacillus sphaericus, Peanibacillus alvei and Peanibacillus larvae | Burkina Faso | Ouoba et al. [114]; Ouoba et al. [115] |
Sufu | Soybean curd | Side dish | Actinomucor elenans, Mucor corticolus, Mucor hiemalis, Mucor praini, Monascus purpureus, Mucor racemosus, Mucor silvatixus, Mucor subtilissimus and Rhizopus chinensis | China, Taiwan | Han et al. [116]; Kanlayakrit and Phromsak [117] |
Tauco | Soybean | Paste | Aspergillus oryzae, Hansenula spp., Lactobacillus delbrueckii, Rhizopus ologosporus, Rhizopus oryzae and Zygosaccharomyces soyae | Indonesia | Winarno et al. [118] |
Teliye mah | Black gram | Semi solid | Not reported | India | Thakur et al. [119] |
Tempe/Tempeh | Soybean | Side dish | Aspergillus niger, Aspergillus oryzae, Citrobacter freundii, Enterobacter cloacae, Klebsiella pneumoniae, Klebsiella pneumoniae subspp. ozaenae, Lactiplantibacillus plantarum, Lactobacillus lactis, Limosilactobacillus fermentum, Limosilactobacillus reuteri, Pseudomas fluorescens as vitamin B12-producing bacteria, Rhizopus arrhizus, Rhizopus oligosporus, Rhizopus oryzae and Rhizopus stolonifer | Indonesia, Japan, Korea, the Netherlands, New Guinea, Surinam | Frias et al. [82]; Nout and Kiers [120]; Jennessen et al. [121] |
Tianmianjiang | Soybean | Sauce | Not reported | China, Korea | Kwon et al. [122] |
Thu nao | Soybean | Condiment, side dish | Bacillus pumilus, Bacillus subtilis and Lactobacillus spp. | Thailand | Chunhachart et al. [123] |
Tofu (stinky tofu) | Soybean | Bacillus spp., Enterococcus hermanniensis, Lactobacillus agilis, Lactobacillus brevis, Lactobacillus buchneri, Lactobacillus crispatus, Lactobacillus curvatus, Lactobacillus delbrueckii, Lactobacillus farciminis, Lactobacillus fermentum, Lactobacillus pantheris, Lactobacillus salivarius, Lactobacillus vaccinostercus, Lactococcus lactis, Lactococcus spp., Leuconostoc camosum, Leuconostoc citreum, Leuconostoc fallax, Leuconostoc lactis, Leuconostoc mesenteroides, Leuconostoc pseudomesenteroides, Pediococcus acidilactici, Streptococcus bovis, Streptococcus macedonicus, Weissella cibaria, Weissella confusa, Weissella paramesenteroides and Weissella soli | China, Japan | Chao et al. [124] | |
Toyo | Soybean, salt, brown sugar and wheat starter | Cowpea sauce | Aspergillus oryzae, Lactobacillus delbrueckii Hansenula anomala and Hansenula subpelliculosa | Philippines | Alexandraki et al. [94] |
Tungrymbai | Soybean | Side dish | Bacillus amyloliquefaciens, Bacillus licheniformis, Bacillus pumilus, Bacillus subtilis, Enterococcus cecorum, Enterococcus durans, Enterococcus faecium, Enterococcus hirae, Enterococcus raffinossus, Levilactobacillus brevis, Debaryomyces hansenii, Pichia burtonii, Saccharomyces cerevisiae and Vagococcus carniphilus | India | Singh et al. [74]; Chettri [77] |
Ugba | African oil bean | Condiment | Bacillus spp., Micrococcus spp., Proteus spp., Pseudomonas spp. and Staphylococcus spp. | Nigeria | Okorie and Olasupo [125] |
Uri | Locust bean | Condiment | Bacillus spp. | West Africa | Alexandraki et al. [94] |
Vadai | Black gram | Snack | Leuconostoc spp., Pediococcus spp. and Streptococcus spp. | India | Blandino et al. [3] |
Wari | Black gram or Bengal gram | Snack | Bacillus subtilis, Candida curvata, Candida famata, Candida krusei, Candida parapsilosis, Candida vartiovaarai, Cryptococcus humicolus, Debaromyces hansenii, Debaromyces tamarii, Enterococcus faecalis, Geotrichum candidum, Hansenula anomala, Kluyveromyces marxianus, Rhizopus lactosa, Saccharomyces. cerevisiae, Trichosporon beigelii and Wingea robetsii | India, Pakistan | Rani and Soni [78] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adebo, J.A.; Njobeh, P.B.; Gbashi, S.; Oyedeji, A.B.; Ogundele, O.M.; Oyeyinka, S.A.; Adebo, O.A. Fermentation of Cereals and Legumes: Impact on Nutritional Constituents and Nutrient Bioavailability. Fermentation 2022, 8, 63. https://doi.org/10.3390/fermentation8020063
Adebo JA, Njobeh PB, Gbashi S, Oyedeji AB, Ogundele OM, Oyeyinka SA, Adebo OA. Fermentation of Cereals and Legumes: Impact on Nutritional Constituents and Nutrient Bioavailability. Fermentation. 2022; 8(2):63. https://doi.org/10.3390/fermentation8020063
Chicago/Turabian StyleAdebo, Janet Adeyinka, Patrick Berka Njobeh, Sefater Gbashi, Ajibola Bamikole Oyedeji, Opeoluwa Mayowa Ogundele, Samson Adeoye Oyeyinka, and Oluwafemi Ayodeji Adebo. 2022. "Fermentation of Cereals and Legumes: Impact on Nutritional Constituents and Nutrient Bioavailability" Fermentation 8, no. 2: 63. https://doi.org/10.3390/fermentation8020063
APA StyleAdebo, J. A., Njobeh, P. B., Gbashi, S., Oyedeji, A. B., Ogundele, O. M., Oyeyinka, S. A., & Adebo, O. A. (2022). Fermentation of Cereals and Legumes: Impact on Nutritional Constituents and Nutrient Bioavailability. Fermentation, 8(2), 63. https://doi.org/10.3390/fermentation8020063