Development of a Taxon-Specific Real-Time PCR Method Targeting the Bacillus subtilis Group to Strengthen the Control of Genetically Modified Bacteria in Fermentation Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Development and Validation of the BSG Method
2.2.1. Specificity Assessment
2.2.2. Sensitivity Assessment
2.2.3. Applicability Assessment
2.3. Illustration of the Reinforcement of the First-Line Screening Analysis Step Using the BSG Method
3. Results and Discussion
3.1. Development of the BSG Method
3.2. Specificity Assessment of the BSG Method
3.3. Sensitivity Assessment of the BSG Method
3.4. Applicability Assessment of the BSG Method
3.5. Illustration of the Reinforcement of the First-Line Screening Analysis Step Using the BSG Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The European Parliament and of the Council. Regulation (EC) No 1830/2003 of the European Parliament and of the Council of 22 September 2003 concerning the traceability and labelling of genetically modified organisms and the traceability of food and feed products produced from genetically modified organisms and amending Directive 2001/18/EC. Off. J. Eur. Union 2003, L268, 24–28. [Google Scholar]
- Barbau-Piednoir, E.; De Keersmaecker, S.C.J.; Wuyts, V.; Gau, C.; Pirovano, W.; Costessi, A.; Philipp, P.; Roosens, N.H.C. Genome sequence of the EU-unauthorized genetically modified Bacillus subtilis strain 2014–3557 overproducing riboflavin, isolated from an imported lot of Vitamin B2 80% feed additive. Genome Announc. 2015, 3, e00214-5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbau-Piednoir, E.; De Keersmaecker, S.C.J.; Delvoye, M.; Gau, C.; Philipp, P.; Roosens, N.H.C. Use of next generation sequencing data to develop a qPCR method for specific detection of EU-unauthorized genetically modified Bacillus subtilis overproducing riboflavin. BMC Biotechnol. 2015, 15, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deckers, M.; De Loose, M.; Papazova, N.; Deforce, D.; Fraiture, M.A.; Roosens, N.H.C. First Monitoring for Unauthorized Genetically Modified Bacteria in Food Enzymes from the Food Market. Food Control 2021, 135, 108665. [Google Scholar] [CrossRef]
- Fraiture, M.A.; Deckers, M.; Papazova, N.; Roosens, N.H.C. Detection strategy targeting a chloramphenicol resistance gene from genetically modified bacteria in food and feed products. Food Control 2020, 18, 106873. [Google Scholar] [CrossRef]
- Fraiture, M.A.; Deckers, M.; Papazova, N.; Roosens, N.H.C. Are antimicrobial resistance genes key targets to detect genetically modified microorganisms in fermentation products? Int. J. Food Microbiol. 2020, 331, 108749. [Google Scholar] [CrossRef] [PubMed]
- Fraiture, M.A.; Deckers, M.; Papazova, N.; Roosens, N.H.C. Strategy to detect genetically modified bacteria carrying tetracycline resistance gene in fermentation products. Food Anal. Methods 2020, 13, 1929–1937. [Google Scholar] [CrossRef]
- Fraiture, M.A.; Bogaerts, B.; Winand, R.; Deckers, M.; Papazova, N.; Vanneste, K.; De Keersmaecker, S.C.J.; Roosens, N.H.C. Next-generation sequencing: A key tool to identify unauthorized genetically modified microorganisms in food enzyme preparations. Sci. Rep. 2020, 10, 7094. [Google Scholar] [CrossRef]
- Fraiture, M.A.; Papazova, N.; Roosens, N.H.C. DNA walking strategy to identify unauthorized genetically modified bacteria in microbial fermentation products. Int. J. Food Microbiol. 2021, 337, 108913. [Google Scholar] [CrossRef]
- Fraiture, M.A.; Marchesi, U.; Verginelli, D.; Papazova, N.; Roosens, N.H.C. Development of a real-time PCR method targeting an unauthorized genetically modified microorganism producing alpha-amylase. Food Anal. Methods 2021, 14, 2211–2220. [Google Scholar] [CrossRef]
- Fraiture, M.A.; Gobbo, A.; Marchesi, U.; Verginelli, D.; Papazova, N.; Roosens, N.H.C. Development of a Real-Time PCR Marker Targeting a New Unauthorized Genetically Modified Microorganism Producing Protease Identified by DNA Walking. Int. J. Food Microbiol. 2021, 354, 109330. [Google Scholar] [CrossRef] [PubMed]
- Fraiture, M.A.; Joly, L.; Vandermassen, E.; Delvoye, M.; Van Geel, D.; Michelet, J.Y.; Van Hoeck, E.; De Jaeger, N.; Papazova, N.; Roosens, N.H.C. Retrospective Survey of Unauthorized Genetically Modified Bacteria Harbouring Antimicrobial Resistance Genes in Feed Additive Vitamin B2 Commercialized in Belgium: Challenges and Solutions. Food Control 2021, 119, 107476. [Google Scholar] [CrossRef]
- Paracchini, V.; Petrillo, M.; Reiting, R.; Angers-Loustau, A.; Wahler, D.; Stolz, A.; Schönig, B.; Matthies, A.; Bendiek, J.; Meinel, D.M.; et al. Molecular characterization of an unauthorized genetically modified Bacillus subtilis production strain identified in a vitamin B2 feed additive. Food Chem. 2017, 230, 681–689. [Google Scholar] [CrossRef] [PubMed]
- RASFF Portal. Available online: https://webgate.ec.europa.eu/rasff-window/portal/?event=SearchForm&cleanSearch=1 (accessed on 13 January 2022).
- Deckers, M.; Deforce, D.; Fraiture, M.A.; Roosens, N.H.C. Genetically modified micro-organisms for industrial food enzyme. Foods 2020, 9, 326. [Google Scholar] [CrossRef] [Green Version]
- Florez-Cuadrado, D.; Moreno, M.A.; Ugarte-Ruíz, M.; Domínguez, L. Antimicrobial Resistance in the Food Chain in the European Union. Adv. Food Nutr. Res. 2018, 86, 115–136. [Google Scholar]
- Nadeem, S.F.; Gohar, U.F.; Tahir, S.F.; Mukhtar, H.; Pornpukdeewattana, S.; Nukthamna, P.; Moula Ali, A.M.; Bavisetty, S.C.B.; Massa, S. Antimicrobial resistance: More than 70 years of war between humans and bacteria. Crit. Rev. Microbiol. 2020, 46, 578–599. [Google Scholar] [CrossRef]
- Tóth, A.G.; Csabai, I.; Krikó, E.; Tőzsér, D.; Maróti, G.; Patai, Á.V.; Makrai, L.; Szita, G.; Solymosi, N. Antimicrobial resistance genes in raw milk for human consumption. Sci. Rep. 2020, 10, 7464. [Google Scholar] [CrossRef]
- von Wintersdorff, C.J.H.; Penders, J.; van Niekerk, J.M.; Mills, N.D.; Majumder, S.; van Alphen, L.B.; Savelkoul, P.H.M.; Wolffs, P.F.G. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front. Microbiol. 2016, 7, 173. [Google Scholar] [CrossRef] [Green Version]
- Von Wrighta, A.; Bruce, A. Genetically modified microorganisms and their potential effects on human health and nutrition. Trends Food Sci. Technol. 2003, 14, 264–276. [Google Scholar] [CrossRef]
- Fraiture, M.A.; Herman, P.; Taverniers, I.; De Loose, M.; Deforce, D.; Roosens, N.H.C. Current and New Approaches in GMO Detection: Challenges and Solutions. BioMed Res. Int. 2015, 2015, 392872. [Google Scholar] [CrossRef] [Green Version]
- Broeders, S.R.M.; De Keersmaecker, S.C.J.; Roosens, N.H.C. How to Deal with the Upcoming Challenges in GMO Detection in Food and Feed. BioMed Res. Int. 2012, 2012, 402418. [Google Scholar] [CrossRef] [PubMed]
- Bonfini, L.; Van den Bulcke, M.H.; Mazzara, M.; Ben, E.; Patak, A. GMOMETHODS: The European Union database of reference methods for GMO analysis. J. AOAC Int. 2012, 95, 1713–1719. [Google Scholar] [CrossRef] [PubMed]
- ENGL. Definition of Minimum Performance Requirements for Analytical Methods for GMO Testing. 2015. Available online: http://gmo-crl.jrc.ec.europa.eu/doc/MPR%20Report%20Application%2020_10_2015.pdf (accessed on 13 January 2022).
- Deckers, M.; Vanneste, K.; Winand, R.; De Keersmaecker, S.C.J.; Denayer, S.; Heyndrickx, M.; Deforce, D.; Fraiture, M.A.; Roosens, N.H.C. Strategy for the Identification of Micro-Organisms Producing Food and Feed Products: Bacteria Producing Food Enzymes as Study Case. Food Chem. 2020, 305, 125431. [Google Scholar] [CrossRef] [Green Version]
- Kleinschmidt, K.; Wilkens, E.; Glaeser, S.P.; Kaempfer, P.; Staerk, A.; Roesti, D. Development of a qualitative real-time PCR for microbiological quality control testing in mammalian cell culture production. J. Appl. Microbiol. 2017, 122, 997–1008. [Google Scholar] [CrossRef] [PubMed]
- Cangiano, G.; Sirec, T.; Panarella, C.; Isticato, R.; Baccigalupi, L.; De Felice, M.; Ricca, E. The sps Gene Products Affect the Germination, Hydrophobicity, and Protein Adsorption of Bacillus subtilis Spores. Appl. Environ. Microbiol. 2014, 80, 7293–7302. [Google Scholar] [CrossRef] [Green Version]
- Solichová, K.; Němečková, I.; Šviráková, E.; Horáčková, Š. Novel identification methods including a species-specific PCR for hazardous Bacillus species. Acta Aliment. 2019, 48, 4. [Google Scholar] [CrossRef] [Green Version]
- Fernández-No, I.C.; Guarddon, M.; Böhme, K.; Cepeda, A.; Calo-Mata, P.; Barros-Velázquez, J. Detection and quantification of spoilage and pathogenic Bacillus cereus, Bacillus subtilis and Bacillus licheniformis by real-time PCR. Food Microbiol. 2011, 28, 605–610. [Google Scholar] [CrossRef]
- Kaewklom, S.; Chueakhalm, W.; Suthirawut, S.; Aunpad, R. Development of a Novel PCR Primer to Differentiate and Identify Bacillus subtilis and Closely Related Species Isolated from Thai Fermented Foods. Food Biotechnol. 2014, 28, 354–368. [Google Scholar] [CrossRef]
- EFSA Panel on Biological Hazards. Scientific Opinion on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA. EFSA J. 2017, 15, 4664. [Google Scholar]
- Valdivia-Anistro, J.A.; Eguiarte-Fruns, L.E.; Delgado-Sapién, G.; Márquez-Zacarías, P.; Gasca-Pineda, J.; Learned, J.; Elser, J.J.; Olmedo-Alvarez Gand Souza, V. Variability of rRNA Operon Copy Number and Growth Rate Dynamics of Bacillus Isolated from an Extremely Oligotrophic Aquatic Ecosystem. Front. Microbiol. 2016, 6, 1486. [Google Scholar] [CrossRef] [Green Version]
- Sicuia, O.A.; Florica, C.; Cornea, C.P. Biodiversity of Bacillus subtilis group and beneficial traits of Bacillus species useful in plant protection. Rom. Biotechnol. Lett. 2015, 20, 5. [Google Scholar]
- Vanneste, K.; Garlant, L.; Broeders, S.; Van Gucht, S.; Roosens, N.H. Application of whole genome data for in silico evaluation of primers and probes routinely employed for the detection of viral species by RT-qPCR using dengue virus as a case study. BMC Bioinform. 2018, 19, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Gand, M.; Vanneste, K.; Thomas, I.; Van Gucht, S.; Capron, A.; Herman, P.; Roosens, N.H.C.; De Keersmaecker, S.C.J. Use of Whole Genome Sequencing Data for a First in Silico Specificity Evaluation of the RT-qPCR Assays Used for SARS-CoV-2 Detection. Int. J. Mol. Sci. 2020, 21, 5585. [Google Scholar] [CrossRef] [PubMed]
- Uhlig, S.; Frost, K.; Colson, B.; Simon, K.; Made, D.; Reiting, R.; Gowig, P.; Grohmann, L. Validation of qualitative PCR methods on the basis of mathematical-statistical modelling of the probability of detection. Accred. Qual. Assur. 2015, 20, 75–83. [Google Scholar] [CrossRef]
- Grohmann, L.; Broll, H.; Dagand, E.; Hildebrandt, S.; Hübert, P.; Kiesecker, H.; Lieske, K.; Mäde, D.; Mankertz, J.; Reiting, R.; et al. Guidelines for the Validation of Qualitative Real-Time PCR Methods by Means of a Collaborative Study; Technical Report BVL1; Federal Office of Consumer Protection and Food Safety: Berlin, Germany, 2016. [Google Scholar]
- Berbers, B.; Saltykova, A.; Garcia-Graells, C.; Philipp, P.; Arella, F.; Marchal, K.; Winand, R.; Vanneste, K.; Roosens, N.H.; De Keersmaecker, S.C.J. Combining short and long read sequencing to characterize antimicrobial resistance genes on 2 plasmids applied to an unauthorized genetically modified Bacillus. Sci. Rep. 2020, 10, 4310. [Google Scholar] [CrossRef]
- Wattiau, P.; Renard, M.E.; Ledent, P.; Debois, V.; Blackman, G.; Agathos, S.N. A PCR test to identify bacillus subtilis and closely related species and its application to the monitoring of wastewater biotreatment. Appl. Microbiol. Biotechnol. 2001, 56, 816–819. [Google Scholar] [CrossRef]
- Borshchevskaya, L.N.; Kalinina, A.N.; Sineokii, S.P. Design of a PCR test based on the gyrA gene sequence for the identification of closely related species of the Bacillus subtilis group. Appl. Biochem. Microbiol. 2013, 49, 646–655. [Google Scholar] [CrossRef]
Targeted Sequences | |||
---|---|---|---|
B_pumilus_CP054310.1 | CGTGCGCCCTTTCTAACTTAACCATTTCTTACTTTAGAAAGAATCACTATGTGTGATGAA | ||
B_licheniformis_CP045814.1 | CGTGCGCCCTTTCTAACTTAACCG---------TTAAAAAGAATCACTACAGA----AAA | ||
B_amyloliquefaciens_CP054479.1 | CGTGCGCCCTTTCTAACTTAACCG---------TTAAAAAGAATCACTACGTG----ATA | ||
B_velezensis_CP055160.1 | CGTGCGCCCTTTCTAACTTAACCG---------TTAAAAAGAATCACTACGTG----ATA | ||
B_subtilis_CP054177.1 | CGTGCGCCCTTTCTAACTTAACCG---------TTAAAAAGAATCACTATGTG----ATA | ||
*********************** *** ************ * | |||
B_pumilus_CP054310.1 | CTTTGCATTGC--ATTCAATGTGAATGTATTACTTATTGTTATCTAGTTTTCAAAGAACA | ||
B_licheniformis_CP045814.1 | TTCT---------------TGTGAATGTCT--ACTTTCGTTATCTAGTTTTCAAAGAACA | ||
B_amyloliquefaciens_CP054479.1 | TCTTGCATTACTAATTGAATGTGAATTA-----CTTCTGTTATCTAGTTTTCAAAGAACA | ||
B_velezensis_CP055160.1 | TCTTGCATTACTAATTGAATGTGAATTA-----CTTCTGTTATCTAGTTTTCAAAGAACA | ||
B_subtilis_CP054177.1 | TCTTGTGTTACTAATTGAATGTG-ATGT-----CTACTGTTATCTAGTTTTCAAAGAACA | ||
* **** ** * ********************** | |||
B_pumilus_CP054310.1 | CGTTGGTGGAGCCTAGCGGGATCGAACCGCTGACCTCCTGCGTGCAA | ||
B_licheniformis_CP045814.1 | CGTTGGTGGAGCCTAGCGGGATCGAACCGCTGACCTCCTGCGTGCAA | ||
B_amyloliquefaciens_CP054479.1 | CGTTGGTGGAGCCTAGCGGGATCGAACCGCTGACCTCCTGCGTGCAA | ||
B_velezensis_CP055160.1 | CGTTGGTGGAGCCTAGCGGGATCGAACCGCTGACCTCCTGCGTGCAA | ||
B_subtilis_CP054177.1 | CGTTGGTGGAGCCTAGCGGGATCGAACCGCTGACCTCCTGCGTGCAA | ||
*********************************************** | |||
Oligonucleotides | Annealing temperature | Expected amplicon sizes | |
Names | Sequences | ||
BSG-F | CGTGCGCCCTTTCTAAC | 64 °C | 137–165 bp |
BSG-P | FAM-CAAAGAACACGTTGGTGGAGCCTAGC-TAMRA | ||
BSG-R | TTGCACGCAGGAGGT |
Kingdom | Genus | Species | Strain Number | BSG Method |
---|---|---|---|---|
Fungi | Aspergillus | acidus | IHEM 26285 | - |
Aspergillus | aculeatus | IHEM 05796 | - | |
Aspergillus | fijiensis | IHEM 22812 | - | |
Aspergillus | melleus | IHEM 25956 | - | |
Aspergillus | niger | IHEM 25485 | - | |
Aspergillus | oryzae | IHEM 25836 | - | |
Candida | cylindracea | MUCL 041387 | - | |
Candida | rugosa | IHEM 01894 | - | |
Chaetomium | gracile | MUCL 053569 | - | |
Cryphonectria | parasitica | MUCL 007956 | - | |
Disporotrichum | dimorphosporum | MUCL 019341 | - | |
Fusarium | venenatum | MUCL 055417 | - | |
Hansenula | polymorpha | MUCL 027761 | - | |
Humicola | insolens | MUCL 015010 | - | |
Kluyveromyces | lactis | IHEM 02051 | - | |
Leptographium | procerum | MUCL 008094 | - | |
Mucor | javanicus | IHEM 05212 | - | |
Penicillium | camemberti | IHEM 06648 | - | |
Penicillium | chrysogenum | IHEM 03414 | - | |
Penicillium | citrinum | IHEM 26159 | - | |
Penicillium | decumbens | IHEM 05935 | - | |
Penicillium | funiculosum | MUCL 014091 | - | |
Penicillium | multicolour | CBS 501.73 | - | |
Penicillium | roqueforti | IHEM 20176 | - | |
Pichia | pastoris | MUCL 027793 | - | |
Rhizomucor | miehei | IHEM 26897 | - | |
Rhizopus | niveus | ATCC 200757 | - | |
Rhizopus | oryzae | IHEM 26078 | - | |
Saccharomyces | cerevisiae | IHEM 25104 | - | |
Sporobolomyces | singularis | MUCL 027849 | - | |
Talaromyces | cellulolyticus/pinophilus | IHEM 16004 | - | |
Talaromyces | emersonii | DSM 2432 | - | |
Trametes | hirsuta | MUCL 030869 | - | |
Trichoderma | citrinoviride | IHEM 25858 | - | |
Trichoderma | longibrachiatum | IHEM 00935 | - | |
Trichoderma | reesei | IHEM 05651 | - | |
Trichoderma | viride | IHEM 04146 | - | |
Bacteria | Arthrobacter | ramosus | LMG 17309 | - |
Bacillus | amyloliquefaciens | LMG 98140 | + (Cq: 16.6) | |
Bacillus | amyloliquefaciens | LMG12325 | + (Cq: 18.6) | |
Bacillus | amyloliquefaciens | LMG12329 | + (Cq: 16.7) | |
Bacillus | amyloliquefaciens | LMG12331 | + (Cq: 19.9) | |
Bacillus | amyloliquefaciens | LMG12326 | + (Cq: 19.8) | |
Bacillus | amyloliquefaciens | LMG12327 | + (Cq: 19.1) | |
Bacillus | brevis | LMG 7123 | - | |
Bacillus | cereus | ATCC 14579 | - | |
Bacillus | circulans | LMG 6926T | - | |
Bacillus | coagulans | LMG 6326 | - | |
Bacillus | firmus | LMG 7125 | - | |
Bacillus | flexus | LMG 11155 | - | |
Bacillus | lentus | TIAC 101 | - | |
Bacillus | licheniformis | LMG 6933T | + (Cq: 17.9) | |
Bacillus | licheniformis | LMG6934 | + (Cq: 19.0) | |
Bacillus | licheniformis | LMG7558 | + (Cq: 18.2) | |
Bacillus | licheniformis | LMG7634 | + (Cq: 17.9) | |
Bacillus | licheniformis | LMG7631 | + (Cq: 18.3) | |
Bacillus | megaterium | LMG 7127 | - | |
Bacillus | pumilus | DSMZ 1794 | + (Cq: 16.5) | |
Bacillus | smithii | LMG 6327 | - | |
Bacillus | subtilis | LMG 7135 T | + (Cq: 19.0) | |
Bacillus | subtilis | W04-510 | + (Cq: 22.4) | |
Bacillus | subtilis | E07-505 | + (Cq: 20.6) | |
Bacillus | subtilis | S10005 | + (Cq: 21.0) | |
Bacillus | subtilis | SUB033 | + (Cq: 21.3) | |
Bacillus | subtilis | BNB54 | + (Cq: 29.2) | |
Bacillus | subtilis | GMM RASFF2014.1249 | + (Cq: 19.7) | |
Bacillus | velezensis | LMG 12384 | + (Cq: 20.0) | |
Bacillus | velezensis | LMG 17599 | + (Cq: 16.4) | |
Bacillus | velezensis | LMG 22478 | + (Cq: 16.1) | |
Bacillus | velezensis | LMG 23203 | + (Cq: 16.4) | |
Bacillus | velezensis | LMG 26770 | + (Cq: 16.3) | |
Bacillus | velezensis | LMG 27586 | + (Cq: 16.4) | |
Bacillus | velezensis | GMM RASFF2019.3332 | + (Cq: 17.8) | |
Cellulosimicrobium | cellulans | LMG 16121 | - | |
Corynebacterium | glutamicum | LMG 3652 | - | |
Enterococcus | faecium | LMG 9430 | - | |
Escherichia | coli | LMG2092T | - | |
Geobacillus | caldoproteolyticus | DSM 15730 | - | |
Geobacillus | pallidus | LMG 11159T | - | |
Geobacillus | stearothermophilus | LMG 6939T | - | |
Klebsiella | pneumonia | LMG 3113T | - | |
Lactobacillus | casei | LMG 6904 | - | |
Lactobacillus | fermentum | LMG 6902 | - | |
Lactobacillus | plantarum | LMG 9208 | - | |
Lactobacillus | rhamnosus | LMG 18030 | - | |
Lactococcus | lactis | LMG 6890T | - | |
Leuconostoc | citreum | LMG 9824 | - | |
Microbacterium | imperiale | LMG 20190 | - | |
Paenibacillus | alginolyticus | LMG 18723 | - | |
Paenibacillus | macerans | LMG 6324 | - | |
Protaminobacter | rubrum | CBS 574.77 | - | |
Pseudomonas | amyloderamosa | ATCC-21262 | - | |
Pseudomonas | fluorescens | LMG1794T | - | |
Pullulanibacillus | naganoensis | LMG 12887 | - | |
Streptomyces | aureofaciens | LMG 5968 | - | |
Streptomyces | mobaraensis | DSM 40847 | - | |
Streptomyces | murinus | LMG 10475 | - | |
Streptomyces | netropsis | LMG 5977 | - | |
Streptomyces | rubiginosus | LMG20268 | - | |
Streptomyces | violaceoruber | LMG 7183 | - | |
Streptoverticillium | mobaraense | CBS 199.75 | - | |
Plantae | Zea | mays | / | - |
Animalia | Homo | sapiens | / | - |
Estimated Target Copy Number | |||||||
---|---|---|---|---|---|---|---|
100 | 20 | 10 | 5 | 1 | 0.1 | 0 | |
BSG method | + | + | + | + | + | − | − |
(12/12) | (12/12) | (8/12) | (6/12) | (1/12) | (0/12) | (0/12) | |
(Cq: 38.2) | (Cq: 41.1) | (Cq: 42.0) | (Cq: 42.6) | (Cq: 43.5) |
Samples | Sources | Forms | Application | BSG Method | Available Information | References | |
---|---|---|---|---|---|---|---|
1 | Feed additive vitamin B2 | Unknown | Solid | Livestock farming | + (Cq: 23.1) | GM B. subtilis producing vitamin B2 * | RASFF2014.1249, [3,14] |
2 | Feed additive vitamin B2 | Unknown | Solid | Livestock farming | + (Cq: 38.6) | GM B. subtilis producing vitamin B2 | RASFF2018.2755, [9,12,14] |
3 | Food enzyme neutral protease | Bacillus sp. | Solid | Baking, distillery, brewing | + (Cq: 19.5) | GM B. velezensis producing protease * GM B. amyloliquefaciens producing alpha-amylase | RASFF2019.3332, [4,8,14] |
4 | Food enzyme alpha-amylase | Bacillus sp. | Solid | Distillery, brewing | + (Cq: 20.1) | GM B. velezensis producing protease GM B. amyloliquefaciens producing alpha-amylase | RASFF2019.3332, [4,10,14] |
5 | Food enzyme alpha-amylase | Bacillus sp. | Liquid | Distillery, brewing | + (Cq: 34.4) | GM B. velezensis producing protease GM B. amyloliquefaciens producing alpha-amylase | RASFF2020.2576, [4,10,14] |
6 | Food enzyme alpha-amylase, protease, cellulose, xylanase, beta-glucanase | Aspergillus sp., Bacillus sp., Trichoderma sp. | Solid | Distillery, brewing | + (Cq: 20.6) | GM B. velezensis producing protease * GM B. amyloliquefaciens producing alpha-amylase | RASFF2019.3332, [4,10,14] |
7 | Food enzyme alpha-amylase | Aspergillus sp. | Solid | Distillery, brewing, baking | + (Cq: 40.3) | GM B. velezensis producing protease GM B. amyloliquefaciens producing alpha-amylase | RASFF2019.3332, [4,10,14] |
8 | Food enzyme alpha-amylase | Unknown | Liquid | Unknown | + (Cq: 27.9) | GM B. velezensis producing protease GM B. amyloliquefaciens producing alpha-amylase | RASFF2019.3332, [4,10,14] |
9 | Food enzyme alpha-amylase | Unknown | Liquid | Distillery | + (Cq: 42.4) | GM B. velezensis producing protease GM B. amyloliquefaciens producing alpha-amylase | RASFF2020.2870, [4,10,14] |
10 | Food enzyme alpha-amylase | Bacteria | Liquid | Distillery, brewing | + (Cq: 19.8) | GM B. velezensis producing protease GM B. amyloliquefaciens producing alpha-amylase | RASFF2020.2846, [14] |
11 | Food enzyme alpha-amylase | Bacteria | Solid | Distillery, brewing | + (Cq: 22.6) | GM B. velezensis producing protease GM B. amyloliquefaciens producing alpha-amylase | RASFF2020.2579, [14] |
12 | Food enzyme alpha-amylase | Unknown | Solid | Distillery | + (Cq: 19.4) | GM B. velezensis producing protease GM B. amyloliquefaciens producing alpha-amylase | RASFF2020.2577, [14] |
13 | Food enzyme alpha-amylase | Unknown | Solid | Distillery | + (Cq: 19.5) | GM B. velezensis producing protease * GM B. amyloliquefaciens producing alpha-amylase | RASFF2020.2582, [14] |
14 | Food enzyme alpha-amylase | Unknown | Solid | Distillery, brewing | + (Cq: 31.2) | GM B. velezensis producing protease* GM B. amyloliquefaciens producing alpha-amylase | RASFF2020.2582, [14] |
15 | Food enzyme alpha-amylase | Unknown | Solid | Distillery, brewing | + (Cq: 31.4) | GM B. velezensis producing protease GM B. amyloliquefaciens producing alpha-amylase | RASFF2020.2570, [14] |
16 | Food enzyme alpha-amylase | Unknown | Solid | Distillery, brewing | + (Cq: 36.9) | GM B. velezensis producing protease GM B. amyloliquefaciens producing alpha-amylase | RASFF2020.2572, [14] |
17 | Food enzyme alpha-amylase | Bacillus sp. | Liquid | Distillery, brewing | + (Cq: 25.1) | GM B. amyloliquefaciens producing alpha-amylase | [4] |
18 | Food enzyme protease | Bacillus sp. | Solid | Baking | + (Cq: 43.8) | GM B. amyloliquefaciens producing protease | RASFF2021.1641, [11,14] |
19 | Feed additive vitamin B2 | Unknown | Solid | Livestock farming | + (Cq: 38.0) | No known GMM Bacterial DNA | [4,12] |
20 | Food enzyme transglutaminase | Unknown | Solid | Protein processing | − | No known GMM Bacterial DNA | [4] |
21 | Food enzyme transglutaminase | Unknown | Solid | Protein processing | − | No known GMM Bacterial DNA | [4] |
22 | Food enzyme unknown | Unknown | Solid | Baking | − | No known GMM Bacterial DNA | [4] |
23 | Food enzyme beta-glucosidase | Aspergillus niger | Solid | Distillery, fruit processing | − | No known GMM No bacterial DNA | [4] |
24 | Food enzyme alpha-amylase | Unknown | Liquid | Distillery, brewing | − | No known GMM No bacterial DNA | [4] |
25 | Food enzyme rennet | Rhizomucor miehei | Solid | Diary processing | − | No known GMM No bacterial DNA | [4] |
Samples | First-Line Screening Methods | Reported GMM Contaminations | References | ||||
---|---|---|---|---|---|---|---|
BSG | cat | tet-l | aadD | pUB110 | |||
2 | + | + | − | + | − | GM B. subtilis producing vitamin B2 | RASFF2018.2755, [9,12,14] |
3 | + | − | − | + | + | GM B. velezensis producing protease GM B. amyloliquefaciens producing alpha-amylase | RASFF2019.3332, [4,8,14] |
4 | + | − | − | + | + | GM B. velezensis producing protease GM B. amyloliquefaciens producing alpha-amylase | RASFF2019.3332, [4,10,14] |
6 | + | − | + | + | + | GM B. velezensis producing protease GM B. amyloliquefaciens producing alpha-amylase | RASFF2019.3332, [4,10,14] |
19 | + | − | − | − | − | / | [4,12] |
20 | − | − | − | + | − | / | [4] |
22 | − | − | − | − | − | / | [4] |
25 | − | − | − | − | − | / | [4] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fraiture, M.-A.; Gobbo, A.; Papazova, N.; Roosens, N.H.C. Development of a Taxon-Specific Real-Time PCR Method Targeting the Bacillus subtilis Group to Strengthen the Control of Genetically Modified Bacteria in Fermentation Products. Fermentation 2022, 8, 78. https://doi.org/10.3390/fermentation8020078
Fraiture M-A, Gobbo A, Papazova N, Roosens NHC. Development of a Taxon-Specific Real-Time PCR Method Targeting the Bacillus subtilis Group to Strengthen the Control of Genetically Modified Bacteria in Fermentation Products. Fermentation. 2022; 8(2):78. https://doi.org/10.3390/fermentation8020078
Chicago/Turabian StyleFraiture, Marie-Alice, Andrea Gobbo, Nina Papazova, and Nancy H. C. Roosens. 2022. "Development of a Taxon-Specific Real-Time PCR Method Targeting the Bacillus subtilis Group to Strengthen the Control of Genetically Modified Bacteria in Fermentation Products" Fermentation 8, no. 2: 78. https://doi.org/10.3390/fermentation8020078
APA StyleFraiture, M. -A., Gobbo, A., Papazova, N., & Roosens, N. H. C. (2022). Development of a Taxon-Specific Real-Time PCR Method Targeting the Bacillus subtilis Group to Strengthen the Control of Genetically Modified Bacteria in Fermentation Products. Fermentation, 8(2), 78. https://doi.org/10.3390/fermentation8020078