New Model High Temperature Pasting Analysis of Fermented Cassava Granules
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of Garri Samples
2.2. Particle Size Analysis
2.3. SEM Analysis
2.4. Rapid Viscosity Analysis
2.5. Statistical Analysis
3. Results
3.1. Particle Size Distribution
3.2. Microstructure of Yellow and White Garri
3.3. High-Temperature RVA Analysis
4. Discussion
4.1. Particle Size of Yellow and White Garri
4.2. Microstructure of Garri Granules
4.3. HT RVA 4800 Analysis
4.4. Factors That May Affect Garri Structure and Functionality at High Temperature
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Cases | Sum of Squares | df | Mean Square | F | p |
---|---|---|---|---|---|
Brand | 1.191 × 10 −7 | 9 | 1.323 × 10−6 | 327.170 | <0.001 |
Residuals | 80,866.000 | 20 | 4043.300 |
Brand | Mean | SD | N |
---|---|---|---|
Aw140 | 4686.667 | 98.637 | 3 |
Aw95 | 4471.000 | 26.514 | 3 |
Ay140 | 3251.000 | 16.523 | 3 |
Ay95 | 2982.333 | 24.987 | 3 |
Bw1 | 3529.000 | 74.344 | 3 |
Bw95 | 3696.000 | 75.439 | 3 |
By140 | 2955.333 | 68.149 | 3 |
By95 | 2612.000 | 76.974 | 3 |
Cw140 | 3954.000 | 65.023 | 3 |
Cw95 | 3619.000 | 55.570 | 3 |
F | df1 | df2 | p |
---|---|---|---|
1.720 | 9.000 | 20.000 | 0.150 |
Mean Difference | SE | t | ptukey | ||
---|---|---|---|---|---|
Aw140 | Aw95 | 215.667 | 51.919 | 4.154 | 0.014 |
Ay140 | 1435.667 | 51.919 | 27.652 | <0.001 | |
Ay95 | 1704.333 | 51.919 | 32.827 | <0.001 | |
Bw140 | 1157.667 | 51.919 | 22.298 | <0.001 | |
Bw95 | 990.667 | 51.919 | 19.081 | <0.001 | |
By140 | 1731.333 | 51.919 | 33.347 | <0.001 | |
By95 | 2074.667 | 51.919 | 39.960 | <0.001 | |
Cw140 | 732.667 | 51.919 | 14.112 | <0.001 | |
Cw95 | 1067.667 | 51.919 | 20.564 | <0.001 | |
Aw95 | Ay140 | 1220.000 | 51.919 | 23.498 | <0.001 |
Ay95 | 1488.667 | 51.919 | 28.673 | <0.001 | |
Bw140 | 942.000 | 51.919 | 18.144 | <0.001 | |
Bw95 | 775.000 | 51.919 | 14.927 | <0.001 | |
By140 | 1515.667 | 51.919 | 29.193 | <0.001 | |
By95 | 1859.000 | 51.919 | 35.806 | <0.001 | |
Cw140 | 517.000 | 51.919 | 9.958 | <0.001 | |
Cw95 | 852.000 | 51.919 | 16.410 | <0.001 | |
Ay140 | Ay95 | 268.667 | 51.919 | 5.175 | 0.001 |
Bw140 | −278.000 | 51.919 | −5.355 | 0.001 | |
Bw95 | −445.000 | 51.919 | −8.571 | <0.001 | |
By140 | 295.667 | 51.919 | 5.695 | <0.001 | |
By95 | 639.000 | 51.919 | 12.308 | <0.001 | |
Cw140 | −703.000 | 51.919 | −13.540 | <0.001 | |
Cw95 | −368.000 | 51.919 | −7.088 | <0.001 | |
Ay95 | Bw140 | −546.667 | 51.919 | −10.529 | <0.001 |
Bw95 | −713.667 | 51.919 | −13.746 | <0.001 | |
By140 | 27.000 | 51.919 | 0.520 | 1.000 | |
By95 | 370.333 | 51.919 | 7.133 | <0.001 | |
Cw140 | −971.667 | 51.919 | −18.715 | <0.001 | |
Cw95 | −636.667 | 51.919 | −12.263 | <0.001 | |
Bw140 | Bw95 | −167.000 | 51.919 | −3.217 | 0.095 |
By140 | 573.667 | 51.919 | 11.049 | <0.001 | |
By95 | 917.000 | 51.919 | 17.662 | <0.001 | |
Cw140 | −425.000 | 51.919 | −8.186 | <0.765 | |
Cw95 | −90.000 | 51.919 | −1.733 | <0.001 | |
Bw95 | By140 | 740.667 | 51.919 | 14.266 | <0.001 |
By95 | 1084.000 | 51.919 | 20.879 | <0.001 | |
Cw140 | −258.000 | 51.919 | −4.969 | 0.002 | |
Cw95 | 77.000 | 51.919 | 1.483 | 0.884 | |
By140 | By95 | 343.333 | 51.919 | 6.613 | <0.001 |
Cw140 | −998.667 | 51.919 | −19.235 | <0.001 | |
Cw95 | −663.667 | 51.919 | −12.783 | <0.001 | |
By95 | Cw140 | −1342.000 | 51.919 | −25.848 | <0.001 |
Cw95 | −1007.000 | 51.919 | −19.396 | <0.001 | |
Cw140 | Cw95 | 335.000 | 51.919 | 6.452 | <0.001 |
References
- Ferraro, V.; Piccirillo, C.; Pintado, M. Cassava (Manihot esculenta Crantz) and Yam (Discorea spp.) Crops and Their Derived Foodstuffs: Safety, Security and Nutritional Value. Crit. Rev. Food Sci. Nutr. 2016, 56, 2714–2727. [Google Scholar] [CrossRef] [PubMed]
- El-Sharkawy, M.A. Cassava biology and physiology. Plant Mol. Biol. 2004, 56, 481–501. [Google Scholar] [CrossRef] [PubMed]
- Burns, A.; Gleadow, R.; Cliff, J.; Zacarias, A.; Cavagnaro, T. Cassava: The Drought, War and Famine Crop in a Changing World. Sustainability 2010, 2, 3572–3607. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekara, A.; Josheph Kumar, T. Roots and Tuber Crops as Functional Foods: A Review on Phytochemical Constituents and Their Potential Health Benefits. Int. J. Food Sci. 2016, 2016, 3631647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adejumo, O.; Okoruwa, V.; Abass, A.; Salman, K. Post-harvest technology change in cassava processing: A choice paradigm. Sci. Afr. 2020, 7, e00276. [Google Scholar] [CrossRef]
- Montagnac, J.A.; Davis, C.R.; Tanumihardjo, S.A. Nutritional Value of Cassava for Use as a Staple Food and Recent Advances for Improvement. Compr. Rev. Food Sci. Food Saf. 2009, 8, 181–194. [Google Scholar] [CrossRef]
- Bayata, A. Review on Nutritional Value of Cassava for Use as a Staple Food. Sci. J. Anal. Chem. 2019, 7, 83. [Google Scholar] [CrossRef] [Green Version]
- Ogbo, F.C.; Okafor, E.N. The resistant starch content of some cassava based Nigerian foods. Niger. Food J. 2015, 33, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Adinsi, L.; Akissoé, N.; Escobar, A.; Prin, L.; Kougblenou, N.; Dufour, D.; Hounhouigan, D.J.; Fliedel, G. Sensory and physicochemical profiling of traditional and enriched gari in Benin. Food Sci. Nutr. 2019, 7, 3338–3348. [Google Scholar] [CrossRef] [Green Version]
- Laya, A.; Koubala, B.B.; Kouninki, H.; Nchiwan Nukenine, E. Effect of harvest period on the proximate composition and functional and sensory properties of gari produced from local and improved cassava (Manihot esculenta) varieties. Int. J. Food Sci. 2018, 2018, 6241035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Y.; Qian, X.; Sun, B.; Ma, S.; Tian, X.; Wang, X. Nutritional composition and physicochemical properties of oat flour sieving fractions with different particle size. LWT 2022, 154, 112757. [Google Scholar] [CrossRef]
- Qin, W.; Lin, Z.; Wang, A.; Chen, Z.; He, Y.; Wang, L.; Liu, L.; Wang, F.; Tong, L.-T. Influence of particle size on the properties of rice flour and quality of gluten-free rice bread. LWT 2021, 151, 112236. [Google Scholar] [CrossRef]
- Bressiani, J.; Santetti, G.S.; Oro, T.; Esteres, V.; Biduski, B.; de Miranda, M.Z.; Gutkoski, L.C.; de Almeida, J.L.; Gularte, M.A. Hydration properties and arabinoxylans content of whole wheat flour intended for cookie production as affected by particle size and Brazilian cultivars. LWT 2021, 150, 111918. [Google Scholar] [CrossRef]
- Bala, M.; Handa, S.; Mridula, D.; Singh, R.K. Physicochemical, functional and rheological properties of grass pea (Lathyrus sativus L.) flour as influenced by particle size. Heliyon 2020, 6, e05471. [Google Scholar] [CrossRef] [PubMed]
- Balet, S.; Guelpa, A.; Fox, G.; Manley, M. Rapid Visco Analyser (RVA) as a Tool for Measuring Starch-Related Physiochemical Properties in Cereals: A Review. Food Anal. Methods 2019, 12, 2344–2360. [Google Scholar] [CrossRef]
- Awoyale, W.; Oyedele, H.; Adenitan, A.A.; Alamu, E.O.; Maziya-Dixon, B. Comparing the functional and pasting properties of gari and the sensory attributes of the eba produced using backslopped and spontaneous fermentation methods. Cogent Food Agric. 2021, 7, 1883827. [Google Scholar] [CrossRef]
- da Costa Nunes, E.; Uarrota, V.G.; Moresco, R.; Maraschin, M. Physico-chemical profiling of edible or sweet cassava (Manihot esculenta Crantz) starches from Brazilian germplasm. Food Biosci. 2021, 43, 101305. [Google Scholar] [CrossRef]
- Liu, S.; Yuan, T.Z.; Wang, X.; Reimer, M.; Isaak, C.; Ai, Y. Behaviors of starches evaluated at high heating temperatures using a new model of Rapid Visco Analyzer—RVA 4800. Food Hydrocoll. 2019, 94, 217–228. [Google Scholar] [CrossRef]
- Nwaiwu, O.; Lad, M.; Davis, A.; Foster, T.; Rees, C. Preliminary Analysis of Structure and Chemical Composition of Extracellular Polymeric Substance Produced by Listeria Monocytogen. In International Symposium on Problem of Listeriosis; Universidade Católica Portuguesa: Porto, Portugal, 2010; p. 144. [Google Scholar]
- Olaosebikan, Y.O.; Aregbesola, O.A.; Sanni, L.A. Assessment of Quality of Garri Produced from a Conductive Rotary Dryer. Food Sci. Qual. Manag. 2016, 50, 94–102. [Google Scholar]
- Ahiakwo, A.A.; Simonyan, K.J.; Eke, A.B. Effects of sieve aperture modification on dewatered cassava mash sieving process. Niger. J. Technol. 2019, 38, 512. [Google Scholar] [CrossRef]
- Noordraven, L.E.C.; Bernaerts, T.; Mommens, L.; Hendrickx, M.E.; Van Loey, A.M. Impact of cell intactness and starch state on the thickening potential of chickpea flours in water-flour systems. LWT 2021, 146, 111409. [Google Scholar] [CrossRef]
- Jane, J.-L.; Kasemsuwan, T.; Leas, S.; Zobel, H.; Robyt, J.F. Anthology of Starch Granule Morphology by Scanning Electron Microscopy. Starch-Stärke 1994, 46, 121–129. [Google Scholar] [CrossRef]
- Monroy, Y.; Rivero, S.; García, M.A. Microstructural and techno-functional properties of cassava starch modified by ultrasound. Ultrason. Sonochem. 2018, 42, 795–804. [Google Scholar] [CrossRef] [PubMed]
- He, R.; Fu, N.-F.; Chen, H.-M.; Ye, J.-Q.; Chen, L.-Z.; Pu, Y.-F.; Zhang, W.-M. Comparison of the structural characterizatics and physicochemical properties of starches from sixteen cassava germplasms cultivated in China. Int. J. Food Prop. 2020, 23, 693–707. [Google Scholar] [CrossRef] [Green Version]
- Oyeyinka, S.A.; Adeloye, A.A.; Olaomo, O.O.; Kayitesi, E. Effect of fermentation time on physicochemical properties of starch extracted from cassava root. Food Biosci. 2020, 33, 100485. [Google Scholar] [CrossRef]
- Higley, J.S.; Love, S.L.; Price, W.J.; Nelson, J.E.; Huber, K.C. The Rapid Visco Analyzer (RVA) as a tool for differentiating potato cultivars on the basis of flour pasting properties. Am. J. Potato Res. 2003, 80, 195–206. [Google Scholar] [CrossRef]
- Lu, D.; YANG, H.; SHEN, X.; LU, W. Effects of high temperature during grain filling on physicochemical properties of waxy maize starch. J. Integr. Agric. 2016, 15, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Rittenauer, M.; Gladis, S.; Gastl, M.; Becker, T. Gelatinization or Pasting? The Impact of Different Temperature Levels on the Saccharification Efficiency of Barley Malt Starch. Foods 2021, 10, 1733. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, C.; Copeland, L.; Niu, Q.; Wang, S. Starch Retrogradation: A Comprehensive Review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 568–585. [Google Scholar] [CrossRef]
- Chang, Q.; Zheng, B.; Zhang, Y.; Zeng, H. A comprehensive review of the factors influencing the formation of retrograded starch. Int. J. Biol. Macromol. 2021, 186, 163–173. [Google Scholar] [CrossRef]
- Oke, M.O.; Bolarinwa, I.F. Effect of Fermentation on Physicochemical Properties and Oxalate Content of Cocoyam (Colocasia esculenta) Flour. ISRN Agron. 2012, 2012, 978709. [Google Scholar] [CrossRef] [Green Version]
- Kaur, M.; Singh, N. Studies on functional, thermal and pasting properties of flours from different chickpea (Cicer arietinum L.) cultivars. Food Chem. 2005, 91, 403–411. [Google Scholar] [CrossRef]
- Alozie, Y.E.; Ndaeyo, E.N. Proximate Compositions, Physicochemical and Sensory Properties of Gari Fortified with Soybean, Melon Seed and Moringa Seed Flours. Int. J. Nutr. Food. Sci. 2017, 6, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Nie, L.; Sun, J.; Hong, Y.; Yan, H.; Li, M.; You, X.; Zhu, L.; Fang, F. Impacts of Environmental Factors on Pasting Properties of Cassava Flour Mediated by Its Macronutrients. Front. Nutr. 2020, 7, 272. [Google Scholar] [CrossRef]
- Chisenga, S.M.; Workneh, T.S.; Bultosa, G.; Laing, M. Characterization of physicochemical properties of starches from improved cassava varieties grown in Zambia. AIMS Agric. Food 2019, 4, 939–966. [Google Scholar] [CrossRef]
- Devi, A.; Sindhu, R.; Khatkar, B.S. Morphological, pasting, and textural characterization of starches and their sub fractions of good and poor cookie making wheat varieties. J. Food Sci. Technol. 2019, 56, 846–853. [Google Scholar] [CrossRef]
- Kumar, R.; Khatkar, B.S. Thermal, pasting and morphological properties of starch granules of wheat (Triticum aestivum L.) varieties. J. Food Sci. Technol. 2017, 54, 2403–2410. [Google Scholar] [CrossRef] [PubMed]
- Ukhun, M.; Nkwocha, F. The hydrocyanic acid (HCN) content of garri flour made from cassava (Manihot spp.) and the influence of length of fermentation and location of source. Food Chem. 1989, 33, 107–113. [Google Scholar] [CrossRef]
- Ma, H.; Liu, M.; Liang, M.; Zheng, X.; Sun, L.; Dang, W.; Li, J.; Li, L.; Liu, C. Research progress on properties of pre-gelatinized starch and its application in wheat flour products. Grain Oil Sci. Technol. 2022; in press. [Google Scholar] [CrossRef]
- Wang, X.; Hongwei, W.; Song, J.; Zhang, Y.; Zhang, H. Understanding the structural characteristics, pasting and rheological behaviours of pregelatinised cassava starch. Int. J. Food Sci. Technol. 2018, 53, 2173–2180. [Google Scholar] [CrossRef]
- Li, M.; Witt, T.; Xie, F.; Warren, F.J.; Halley, P.J.; Gilbert, R.G. Biodegradation of starch films: The roles of molecular and crystalline structure. Carbohydr. Polym. 2015, 122, 115–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siloko, I.U.; Ukhurebor, K.E.; Siloko, E.A.; Enoyoze, E.; Bobadoye, A.O.; Ishiekwene, C.C.; Uddin, O.O.; Nwankwo, W. Effects of some meteorological variables on cassava production in Edo State, Nigeria via density estimation. Sci. Afr. 2021, 13, e00852. [Google Scholar] [CrossRef]
- Bechoff, A.; Tomlins, K.I.; Chijioke, U.; Ilona, P.; Westby, A.; Boy, E. Physical losses could partially explain modest carotenoid retention in dried food products from biofortified cassava. PLoS ONE 2018, 13, e0194402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kayode, B.I.; Kayode, R.M.O.; Abiodun, O.A.; Nwosu, C.; Karim, O.R.; Oyeyinka, S.A. Chemical, functional and physicochemical properties of flour from cassava stored under freezing. J. Stored Prod. Res. 2021, 92, 101816. [Google Scholar] [CrossRef]
- Ndjouenkeu, R.; Ngoualem Kegah, F.; Teeken, B.; Okoye, B.; Madu, T.; Olaosebikan, O.D.; Chijioke, U.; Bello, A.; Oluwaseun Osunbade, A.; Owoade, D.; et al. From cassava to gari: Mapping of quality characteristics and end-user preferences in Cameroon and Nigeria. Int. J. Food Sci. Technol. 2021, 56, 1223–1238. [Google Scholar] [CrossRef]
- Marcos Valle, F.J.; Castellari, C.; Yommi, A.; Pereyra, M.A.; Bartosik, R. Evolution of grain microbiota during hermetic storage of corn (Zea mays L.). J. Stored Prod. Res. 2021, 92, 101788. [Google Scholar] [CrossRef]
Parameter | Brand A-y | Brand A-w | Brand B-y | Brand B-w | Brand C-w |
---|---|---|---|---|---|
Peak viscosity (cP) | |||||
95 °C profile | 2982 ± 24.99 | 4471 ± 26.51 | 2612 ± 76.97 | 3696 ± 75.43 | 3619 ± 55.56 |
140 °C profile | 3251 ± 16.52 | 4666 ± 98.64 | 2955 ± 68.15 | 3529 ± 74.34 | 3954 ± 65.02 |
Difference (%) | 9 | 5 | 13 | −5 | 9 |
Holding strength (cP) | |||||
95 °C | 2180 ± 79.19 | 2786 ± 80.31 | 2054 ± 97.13 | 2037 ± 42.57 | 2051 ± 66.09 |
140 °C | 346 ± 8.19 | 327 ± 7.09 | 262 ± 16.70 | 305 ± 16.17 | 304 ± 15.18 |
Difference (%) | −84 | −88 | −87 | −85 | −85 |
Breakdown viscosity (cP) | |||||
95 °C | 802 ± 59.23 | 1684 ± 60.01 | 558 ± 28.61 | 1659 ± 86.43 | 1568 ± 60.12 |
140 °C | 2905 ± 20.52 | 4360 ± 75.73 | 2693 ± 71.14 | 3224 ± 63.61 | 3650 ± 80.03 |
Difference (%) | 262 | 159 | 383 | 94 | 193 |
Final viscosity (cP) | |||||
95 °C | 3166 ± 61.70 | 4818 ± 57.00 | 2793 ± 26.90 | 3936 ± 33.71 | 3698 ± 87.50 |
140 °C | 867 ± 41.43 | 933 ± 9.71 | 707 ± 22.19 | 752 ± 26.10 | 824 ± 20.52 |
Difference (%) | −73 | −81 | −75 | −81 | −78 |
Setback viscosity (cP) | |||||
95 °C | 986 ± 60.34 | 2032 ± 73.52 | 739 ± 72.10 | 1899 ± 56.66 | 1647 ± 65.33 |
140 °C | 521 ± 48.91 | 606 ± 6.08 | 445 ± 29.30 | 448 ± 34.43 | 520 ± 20.90 |
Difference (%) | −47 | −70 | −40 | −76 | −68 |
Peak time (min) | |||||
95 °C | 9.49 ± 0.03 | 9.44 ± 0.11 | 10.33 ± 0.06 | 9.76 ± 00.12 | 8.37 ± 00.13 |
140 °C | 5.44 ± 0.22 | 5.77 ± 0.11 | 6.0 ± 0.02 | 5.85 ± 0.03 | 5.40 ± 0.17 |
Difference (%) | −43 | −39 | −42 | −40 | −35 |
Pasting temperature (°C) | |||||
95 °C | 82.62 ± 01.26 | 76.51 ± 0.45 | 90.16 ± 0.60 | 74.12 ± 0.27 | 71.60 ± 00.48 |
140 °C | 76.46 ± 00.10 | 75.50 ± 0.40 | 91.00 ± 0.28 | 77.23 ± 0.17 | 77.37 ± 0.44 |
Difference (%) | −7 | −1 | −1 | 4 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nwaiwu, O.; Onyeaka, H. New Model High Temperature Pasting Analysis of Fermented Cassava Granules. Fermentation 2022, 8, 89. https://doi.org/10.3390/fermentation8020089
Nwaiwu O, Onyeaka H. New Model High Temperature Pasting Analysis of Fermented Cassava Granules. Fermentation. 2022; 8(2):89. https://doi.org/10.3390/fermentation8020089
Chicago/Turabian StyleNwaiwu, Ogueri, and Helen Onyeaka. 2022. "New Model High Temperature Pasting Analysis of Fermented Cassava Granules" Fermentation 8, no. 2: 89. https://doi.org/10.3390/fermentation8020089
APA StyleNwaiwu, O., & Onyeaka, H. (2022). New Model High Temperature Pasting Analysis of Fermented Cassava Granules. Fermentation, 8(2), 89. https://doi.org/10.3390/fermentation8020089