Pilot-Scale Anaerobic Treatment of Printing and Dyeing Wastewater and Performance Prediction Based on Support Vector Regression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Environmental Setup
2.2. Experimental Procedure
2.3. Analysis of Water Quality and Sludge Activity
2.3.1. Analysis of Water Quality
2.3.2. Analysis of Sludge Activity
2.4. Support Vector Regression (SVR)
2.4.1. Principle of SVR Algorithm
2.4.2. Application of SVR with LibSVM
2.4.3. Performance Evaluation of SVR
3. Results and Discussion
3.1. Performance of the ABR
3.1.1. Variation of VFA Content in the Wastewater
3.1.2. Variation of Alkalinity and pH of the Wastewater
3.1.3. Variation of Colority of the Wastewater
3.1.4. Variation of Sludge Activity in the ABR
3.2. SVR for the COD Removal
3.3. Advantages and Limitations of This Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Operation Period (d) | Influent COD (mg/L) | Effluent COD (mg/L) | Water Temperature (°C) | Flow Rate (m3/d) | VLR (kg COD/(m3·d)) | Influent SS (mg/L) |
---|---|---|---|---|---|---|
1 | 1125 | 970 | 15.6 | 7.2 | 0.45 | 120.5 |
3 | 1188 | 1043 | 16.7 | 7.3 | 0.48 | 115.0 |
5 | 1236 | 973 | 17.4 | 7.4 | 0.51 | 234.2 |
7 | 1164 | 982 | 16.3 | 7.6 | 0.49 | 166.2 |
9 | 1085 | 899 | 17.8 | 7.8 | 0.47 | 270.8 |
11 | 1311 | 1090 | 17.8 | 8.1 | 0.59 | 257.6 |
14 | 1263 | 1104 | 18.8 | 8.6 | 0.60 | 212.2 |
16 | 1231 | 1131 | 23.7 | 8.6 | 0.59 | 203.9 |
18 | 1090 | 864 | 24.3 | 11.4 | 0.69 | 266.0 |
21 | 1072 | 973 | 21.8 | 10.6 | 0.63 | 143.0 |
23 | 1012 | 858 | 20.8 | 11.0 | 0.62 | 133.9 |
25 | 936 | 832 | 23.8 | 10.6 | 0.55 | 188.4 |
28 | 809 | 629 | 22.8 | 13.8 | 0.62 | 237.0 |
30 | 936 | 722 | 20.9 | 13.3 | 0.69 | 336.5 |
32 | 970 | 856 | 20.9 | 11.0 | 0.59 | 190.3 |
35 | 989 | 865 | 21.5 | 11.1 | 0.61 | 210.3 |
37 | 963 | 804 | 22.4 | 11.8 | 0.63 | 210.3 |
39 | 977 | 760 | 23.6 | 12.9 | 0.70 | 184.3 |
42 | 925 | 697 | 24.4 | 14.4 | 0.74 | 253.3 |
44 | 905 | 795 | 24.0 | 13.7 | 0.69 | 139.6 |
46 | 911 | 761 | 23.8 | 14.0 | 0.71 | 201.3 |
49 | 817 | 697 | 24.1 | 13.9 | 0.63 | 228.6 |
51 | 891 | 744 | 25.0 | 14.6 | 0.72 | 206.6 |
53 | 875 | 687 | 24.5 | 16.9 | 0.82 | 209.4 |
56 | 1040 | 830 | 26.4 | 16.3 | 0.94 | 251.6 |
58 | 962 | 737 | 27.8 | 18.2 | 0.97 | 273.7 |
60 | 887 | 692 | 26.8 | 17.9 | 0.88 | 192.8 |
63 | 767 | 605 | 28.0 | 20.2 | 0.86 | 208.9 |
65 | 833 | 682 | 29.9 | 21.6 | 1.00 | 146.0 |
67 | 828 | 659 | 31.4 | 22.9 | 1.05 | 368.8 |
70 | 772 | 659 | 32.9 | 23.8 | 1.02 | 162.8 |
72 | 1313 | 1019 | 32.1 | 24.0 | 1.75 | 374.9 |
74 | 1004 | 708 | 31.4 | 24.4 | 1.36 | 395.3 |
77 | 1163 | 714 | 30.9 | 24.0 | 1.55 | 415.5 |
79 | 1134 | 764 | 32.4 | 31.4 | 1.98 | 364.5 |
81 | 974 | 736 | 32.9 | 33.8 | 1.83 | 335.9 |
84 | 1146 | 847 | 32.0 | 34.4 | 2.19 | 368.7 |
86 | 827 | 674 | 31.9 | 33.3 | 1.53 | 230.3 |
88 | 867 | 723 | 32.2 | 32.2 | 1.55 | 219.0 |
91 | 844 | 601 | 33.0 | 35.4 | 1.66 | 367.8 |
93 | 854 | 634 | 31.9 | 34.4 | 1.63 | 223.3 |
95 | 1004 | 691 | 32.9 | 35.3 | 1.97 | 229.5 |
97 | 1045 | 685 | 33.4 | 35.5 | 2.06 | 302.8 |
100 | 1002 | 779 | 34.0 | 32.3 | 1.80 | 213.9 |
102 | 918 | 662 | 33.0 | 30.6 | 1.56 | 267.2 |
105 | 1270 | 737 | 34.0 | 34.7 | 2.45 | 359.2 |
107 | 1317 | 723 | 34.9 | 34.7 | 2.54 | 481.5 |
109 | 1322 | 773 | 35.0 | 34.1 | 2.50 | 461.3 |
112 | 1346 | 781 | 36.5 | 30.9 | 2.31 | 464.6 |
114 | 1315 | 790 | 35.8 | 30.5 | 2.23 | 420.2 |
116 | 1316 | 928 | 35.4 | 30.2 | 2.21 | 405.1 |
119 | 1279 | 905 | 35.2 | 30.8 | 2.19 | 304.3 |
121 | 1272 | 840 | 35.8 | 32.4 | 2.29 | 347.3 |
123 | 1313 | 761 | 36.2 | 33.6 | 2.45 | 399.0 |
126 | 1165 | 774 | 35.8 | 31.1 | 2.01 | 328.5 |
128 | 1191 | 794 | 36.1 | 30.2 | 2.00 | 349.2 |
130 | 1140 | 820 | 36.0 | 36.0 | 2.28 | 299.6 |
References
- Shao, M.; Li, Y.; Meng, L.; Guo, J.; Gao, Y.; Liu, Y.; Huang, M. Simultaneous removal of antimony, chromium and aniline by forward osmosis membrane: Preparation, performance and mechanism. Desalination 2021, 520, 115363. [Google Scholar] [CrossRef]
- Zhai, Q.; Liu, R.; Wang, C.; Wen, X.; Li, X.; Sun, W. A novel scheme for the utilization of Cu slag flotation tailings in preparing internal electrolysis materials to degrade printing and dyeing wastewater. J. Hazard. Mater. 2022, 424, 127537. [Google Scholar] [CrossRef]
- Cui, M.H.; Gao, L.; Lee, H.S.; Wang, A.J. Mixed dye wastewater treatment in a bioelectrochemical system-centered process. Bioresour. Technol. 2020, 297, 122420. [Google Scholar] [CrossRef] [PubMed]
- Che, L.; Xu, H.; Wei, Z.; Wei, R.; Yang, B. Activated carbon modified with nano manganese dioxide triggered electron transport pathway changes for boosted anaerobic treatment of dyeing wastewater. Environ. Res. 2022, 203, 111944. [Google Scholar] [CrossRef] [PubMed]
- Romero-Soto, I.C.; García-Gómez, C.; Álvarez-Valencia, L.H.; Meza-Escalante, E.R.; Leyva-Soto, L.A.; Camacho-Ruiz, M.A.; Concha-Guzmán, M.O.; Ulloa-Mercado, R.G.; Díaz-Tenorio, L.M.; Gortáres-Moroyoqui, P. Sequential Congo Red elimination by UASB reactor coupled to electrochemical systems. Water 2021, 13, 3087. [Google Scholar] [CrossRef]
- Berkessa, Y.W.; Yan, B.; Li, T.; Jegatheesan, V.; Zhang, Y. Treatment of anthraquinone dye textile wastewater using anaerobic dynamic membrane bioreactor: Performance and microbial dynamics. Chemosphere 2020, 238, 124539. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, A.; Rai, B.N.; Singh, R.S.; Jaiswal, R.P. Comparative toxicity assessment using plant and luminescent bacterial assays after anaerobic treatments of dyeing wastewater in a recirculating fixed bed bioreactor. J. Environ. Chem. Eng. 2021, 9, 105466. [Google Scholar] [CrossRef]
- Yang, B.; Xu, H.; Yang, S.; Bi, S.; Li, F.; Shen, C.; Ma, C.; Tian, Q.; Liu, J.; Song, X.; et al. Treatment of industrial dyeing wastewater with a pilot-scale strengthened circulation anaerobic reactor. Bioresour. Technol. 2018, 264, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Yang, B.; Liu, Y.B.; Li, F.; Shen, C.S.; Ma, C.Y.; Tian, Q.; Song, X.S.; Sand, W. Recent advances in anaerobic biological processes for textile printing and dyeing wastewater treatment: A mini-review. World J. Microbiol. Biotechnol. 2018, 34, 165. [Google Scholar] [CrossRef]
- Huang, R.M.; Liu, Z.; Zhou, X.J.; Mo, J.C.; Liu, X. Research on treatment of printing and dyeing wastewater by hybrid anaerobic baffled reactor. Desalin. Water Treat. 2015, 54, 590–597. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Watari, T.; Hatamoto, M.; Sutani, D.; Setiadi, T.; Yamaguchi, T. Evaluation of a combined anaerobic baffled reactor-downflow hanging sponge biosystem for treatment of synthetic dyeing wastewater. Environ. Technol. Innov. 2020, 19, 100913. [Google Scholar] [CrossRef]
- Pirsaheb, M.; Amini, J.; Hossaini, H. Application of ABR/zeolite for TKN removal from compost leachate. Environ. Technol. Innov. 2021, 24, 102020. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Watari, T.; Hatamoto, M.; Setiadi, T.; Yamaguchi, T. Enhanced decolorization of dyeing wastewater in a sponges-submerged anaerobic reactor. Chemosphere 2021, 279, 130475. [Google Scholar] [CrossRef]
- Liu, N.; Yun, Y.; Hu, L.; Xin, L.; Han, M.; Zhang, P. Study on start-up membraneless anaerobic baffled reactor coupled with microbial fuel cell for dye wastewater treatment. ACS Omega 2021, 6, 23515–23527. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wang, X.; Yuan, L.; Luo, Z.; Indira, H.K. Start-up and operational performance of Anammox process in an anaerobic baffled biofilm reactor (ABBR) at a moderate temperature. Bioresour. Technol. 2019, 279, 1–9. [Google Scholar] [CrossRef]
- Enitan, A.M.; Adeyemo, J.; Swalaha, F.M.; Kumari, S.; Bux, F. Optimization of biogas generation using anaerobic digestion models and computational intelligence approaches. Rev. Chem. Eng. 2017, 33, 309–335. [Google Scholar] [CrossRef]
- Shi, S.; Xu, G. Novel performance prediction model of a biofilm system treating domestic wastewater based on stacked denoising auto-encoders deep learning network. Chem. Eng. J. 2018, 347, 280–290. [Google Scholar] [CrossRef]
- Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995. [Google Scholar]
- Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intel. Syst. Technol. 2011, 27, 1–27. [Google Scholar] [CrossRef]
- Liu, J.; Kang, X.; Luan, X.; Gao, L.; Tian, H.; Liu, X. Performance and membrane fouling behaviors analysis with SVR-LibSVM model in a submerged anaerobic membrane bioreactor treating low-strength domestic sewage. Environ. Technol. Innov. 2020, 19, 100844. [Google Scholar] [CrossRef]
- Qi, Z.; Xiang, G.; Xiong, D. Performance evaluation of pilot-scale hybrid anaerobic baffled reactor (HABR) to process dyeing wastewater based on grey relational analysis. Appl. Sci. 2019, 9, 1974. [Google Scholar] [CrossRef] [Green Version]
- APHA/AWWA/WEF. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Vasilaki, V.; Conca, V.; Frison, N.; Eusebi, A.L.; Fatone, F.; Katsou, E. A knowledge discovery framework to predict the N2O emissions in the wastewater sector. Water Res. 2020, 178, 115799. [Google Scholar] [CrossRef]
- Platt, J.C. Probabilistic outputs for support vector machines and comparison to regularized likelihood methods. In Advances in Large Margin Classifiers; Smola, A., Bartlett, P., Schölkopf, B., Schuurmans, D., Eds.; MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Zhang, C.; Wu, K.; Huang, L.; Sun, K.; Zou, Y.; Xiong, Z.; Li, B. Virtual screening and discovery of matrix metalloproteinase-12 inhibitors by swarm intelligence optimization algorithm-based machine learning. ChemistrySelect 2020, 5, 11112–11119. [Google Scholar] [CrossRef]
- Granata, F.; Papirio, S.; Esposito, G.; Gargano, R.; de Marinis, G. Machine learning algorithms for the forecasting of wastewater quality indicators. Water 2017, 9, 105. [Google Scholar] [CrossRef] [Green Version]
- Bertacchi, S.; Ruusunen, M.; Sorsa, A.; Sirviö, A.; Branduardi, P. Mathematical analysis and update of ADM1 model for biomethane production by anaerobic digestion. Fermentation 2021, 7, 237. [Google Scholar] [CrossRef]
- Feng, Y.; Feng, L.; Liu, S.; Duan, J.; Zhang, Y.; Li, S.; Sun, X.; Wang, S.; Yuan, X. Emerging investigator series: Inhibition and recovery of anaerobic granular sludge performance in response to short-term polystyrene nanoparticle exposure. Environ. Sci. Water Res. Technol. 2018, 4, 1902–1911. [Google Scholar] [CrossRef]
- Feng, D.; Xia, A.; Huang, Y.; Zhu, X.; Zhu, X.; Liao, Q. Effects of carbon cloth on anaerobic digestion of high concentration organic wastewater under various mixing conditions. J. Hazard. Mater. 2022, 423, 127100. [Google Scholar] [CrossRef]
- Lim, J.X.; Zhou, Y.; Vadivelu, V.M. Enhanced volatile fatty acid production and microbial population analysis in anaerobic treatment of high strength wastewater. J. Water Process Eng. 2020, 33, 101058. [Google Scholar] [CrossRef]
- Khan, M.A.; Ngo, H.H.; Guo, W.; Liu, Y.; Nghiem, L.D.; Chang, S.W.; Nguyen, D.D.; Zhang, S.; Luo, G.; Jia, H. Optimization of hydraulic retention time and organic loading rate for volatile fatty acid production from low strength wastewater in an anaerobic membrane bioreactor. Bioresour. Technol. 2019, 271, 100–108. [Google Scholar] [CrossRef]
- Seneesrisakul, K.; Jantaruksa, T.; Jiraprasertwong, A.; Pornmai, K.; Rangsunvigit, P.; Chavadej, S. Effects of the reactor volumetric ratio and recycle ratio on the methane and energy productivity of a three-step anaerobic sequencing batch reactor (3S-ASBR) treating ethanol wastewater. Energy 2021, 227, 120512. [Google Scholar] [CrossRef]
- Costa, J.M.; de Castro, K.C.; Rodriguez, R.P.; Sancinetti, G.P. Anaerobic reactors for the treatment of sulphate and metal-rich wastewater: A review. Int. J. Environ. Anal. Chem. 2020. [Google Scholar] [CrossRef]
- Chang, M.; Wang, Y.; Zhong, R.; Zhang, K.; Pan, Y.; Lyu, L.; Zhu, T. Performance of HABR + MSABP system for the treatment of dairy wastewater and analyses of microbial community structure and low excess sludge production. Bioresour. Technol. 2020, 311, 123576. [Google Scholar] [CrossRef]
- Mao, C.; Feng, Y.; Wang, X.; Ren, G. Review on research achievements of biogas from anaerobic digestion. Renew. Sust. Energ. Rev. 2015, 45, 540–555. [Google Scholar] [CrossRef]
- Atasoy, M.; Eyice, O.; Cetecioglu, Z. A comprehensive study of volatile fatty acids production from batch reactor to anaerobic sequencing batch reactor by using cheese processing wastewater. Bioresour. Technol. 2020, 311, 123529. [Google Scholar] [CrossRef] [PubMed]
- Menezes, O.; Brito, R.; Hallwass, F.; Florêncio, L.; Kato, M.T.; Gavazza, S. Coupling intermittent micro-aeration to anaerobic digestion improves tetra-azo dye Direct Black 22 treatment in sequencing batch reactors. Chem. Eng. Res. Des. 2019, 146, 369–378. [Google Scholar] [CrossRef]
- Franca, R.D.G.; Vieira, A.; Carvalho, G.; Oehmen, A.; Pinheiro, H.M.; Crespo, M.T.B.; Lourenco, N.D. Oerskovia paurometabola can efficiently decolorize azo dye Acid Red 14 and remove its recalcitrant metabolite. Ecotox. Environ. Safe. 2020, 191, 110007. [Google Scholar] [CrossRef] [PubMed]
- Wijetunga, S.; Li, X.; Jian, C. Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor. J. Hazard. Mater. 2010, 177, 792–798. [Google Scholar] [CrossRef]
- Georgiou, G.; Metallinou, C.; Aivasidis, A.; Voudrias, E.; Gimouhopoulos, K. Decolorization of azo-reactive dyes and cotton-textile wastewater using anaerobic digestion and acetate-consuming bacteria. Biochem. Eng. J. 2004, 9, 75–79. [Google Scholar] [CrossRef]
- Liu, W.; You, Y.; Sun, D.; Wang, S.; Zhu, J.; Liu, C. Decolorization and detoxification of water-insoluble Sudan dye by Shewanella putrefaciens CN32 co-cultured with Bacillus circulans BWL1061. Ecotoxicol. Environ. Safe. 2018, 166, 11–17. [Google Scholar] [CrossRef]
- Xie, E.; Xu, X.; Luo, G. Study on a novel reactor of sludge process reduction for domestic sewage treatment. Environ. Technol. 2013, 34, 1593–1599. [Google Scholar]
- Liu, W.; Lian, J.; Guo, J.; Guo, Y.; Yue, L.; Niu, Y.; Duan, L. Perchlorate bioreduction by anaerobic granular sludge immobilised with FeHA complex: Performance, extracellular polymeric substances and microbial community structure. J. Hazard. Mater. 2020, 398, 122898. [Google Scholar] [CrossRef]
- Sun, X.; Liu, B.; Zhang, L.; Aketagawa, K.; Xue, B.; Ren, Y.; Bai, J.; Zhan, Y.; Chen, S.; Dong, B. Partial ozonation of returned sludge via high-concentration ozone to reduce excess sludge production: A pilot study. Sci. Total Environ. 2022, 807, 150773. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wan, J.; Ma, Y.; Wang, Y. Online prediction of effluent COD in the anaerobic wastewater treatment system based on PCA-LSSVM algorithm. Environ. Sci. Pollut. Res. 2019, 26, 12828–12841. [Google Scholar] [CrossRef] [PubMed]
Index | COD (mg/L) | pH | Colority (Times) | VFA (mmol/L) | Alkalinity (mg/L) |
---|---|---|---|---|---|
Value | 670–1280 | 6.4–9.5 | 220–340 | 1.0–4.0 | 570–1300 |
Water Quality Index | Analytical Method | Standard Followed |
---|---|---|
Water temperature | Thermometer method | China national standard GB 13195-1991 |
pH | Glass electrode method | China national standard GB/T6920-1986 |
COD | Potassium dichromate method | China national standard GB 11914-1989 |
SS | Gravimetric method | China trade standard CJ/T 51-2018 |
Colority | Dilution multiple method | China national standard GB 11903-1989 |
Alkalinity | Neutralization-titration method | China national standard GB/T 9736-2008 |
VFA 1 | Distillation-titration method | China trade standard Q/YZJ10-03-02-2000 |
SVR Type | Kernel Function Type | Training | Validation | ||
RMSE (%) | R2 | RMSE (%) | R2 | ||
ν-SVR | Linear | 4.05 | 0.701 | 4.77 | 0.737 |
RBF | 4.05 | 0.700 | 4.88 | 0.737 | |
Sigmoid | 4.09 | 0.694 | 5.05 | 0.738 | |
ε-SVR | Linear | 4.27 | 0.689 | 6.85 | 0.715 |
RBF | 4.27 | 0.688 | 6.86 | 0.715 | |
Sigmoid | 4.27 | 0.688 | 6.89 | 0.715 |
SVR Type | Kernel Function Type | Number of Support Vectors | ν | b | c | |
ν-SVR | Linear | 34 | 0.696 | −0.118 | 0.22 | - |
RBF | 34 | 0.696 | −0.384 | 21.11 | 0.0052 | |
Sigmoid | 34 | 0.702 | −0.129 | 2.64 | 0.109 | |
SVR Type | Kernel Function Type | Number of Support Vectors | ε | b | c | |
ε-SVR | Linear | 25 | 0.214 | −0.184 | 0.13 | - |
RBF | 25 | 0.214 | −0.193 | 48.50 | 0.0013 | |
Sigmoid | 25 | 0.214 | −0.184 | 3.03 | 0.041 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Z.; Wang, Z.; Chen, M.; Xiong, D. Pilot-Scale Anaerobic Treatment of Printing and Dyeing Wastewater and Performance Prediction Based on Support Vector Regression. Fermentation 2022, 8, 99. https://doi.org/10.3390/fermentation8030099
Qi Z, Wang Z, Chen M, Xiong D. Pilot-Scale Anaerobic Treatment of Printing and Dyeing Wastewater and Performance Prediction Based on Support Vector Regression. Fermentation. 2022; 8(3):99. https://doi.org/10.3390/fermentation8030099
Chicago/Turabian StyleQi, Zhixin, Zhennan Wang, Meiting Chen, and Deqi Xiong. 2022. "Pilot-Scale Anaerobic Treatment of Printing and Dyeing Wastewater and Performance Prediction Based on Support Vector Regression" Fermentation 8, no. 3: 99. https://doi.org/10.3390/fermentation8030099
APA StyleQi, Z., Wang, Z., Chen, M., & Xiong, D. (2022). Pilot-Scale Anaerobic Treatment of Printing and Dyeing Wastewater and Performance Prediction Based on Support Vector Regression. Fermentation, 8(3), 99. https://doi.org/10.3390/fermentation8030099