The Impact of Date Syrup on the Physicochemical, Microbiological, and Sensory Properties, and Antioxidant Activity of Bio-Fermented Camel Milk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Procedure
2.2.1. Preparation of Probiotic Fermented Camel Milk
- Whole camel milk as a control (C).
- Whole camel milk fortified with 6.0% date syrup (S1).
- Whole camel milk fortified with 8.0% date syrup (S2).
2.2.2. Examination of Physicochemical Properties
2.2.3. Determination of Mineral Content
2.2.4. Determination of Total Phenolic Compounds (TPC)
2.2.5. Determination of Total Flavonoids
2.2.6. Determination of Antioxidant Activity
2.2.7. Determination of Vitamin C
2.2.8. Microbiological Examinations
2.2.9. Sensory Evaluation
2.2.10. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition, Mineral Content, and Phytochemical Properties of Fresh Camel Milk and Date Syrup
3.2. Influence of Date Syrup Addition on the Chemical Composition of Camel Milk Yogurt
3.3. Influence of Date Syrup Addition on the pH, Acidity, Viscosity Values, and Acetaldehyde Content of Camel Milk Yogurt
3.4. Influence of Date Syrup Addition on the Mineral Content of Camel Milk Yogurt
3.5. Influence of Date Syrup Addition on the Phytochemical Properties of Camel Milk Yogurt
3.6. Influence of Date Syrup Addition on the Total Bacterial and Bifidobacteria Counts of Camel Milk Yogurt
3.7. Influence of Date Syrup Addition on the Sensory Evaluation of Camel Milk Yogurt
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Solanki, D.; Hati, S. Fermented camel milk: A Review on its bio-functional properties. Emir. J. Food Agric. 2018, 30, 268–274. [Google Scholar]
- Agrawal, R.; Budania, S.; Sharma, P.; Gupta, R.; Kochar, D.; Panwar, R.; Sahani, M. Zero prevalence of diabetes in camel milk consuming Raica community of north-west Rajasthan, India. Diabetes Res. Clin. Pract. 2007, 76, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Kaskous, S. Importance of camel milk for human health. Emir. J. Food Agric. 2016, 28, 158–163. [Google Scholar] [CrossRef]
- Omar, H.H.; EL-Nimer, A.M.; Ahamed, M.A.; Hassaan, H.M. Production of functional bio-yoghurt made from camel milk, skim milk retentate and fortified with sweet potato powder. Egypt. J. Agric. Res. 2019, 97, 441–458. [Google Scholar]
- Atwaa, E.; Hassan, M.; Ramadan, M.F. Production of probiotic stirred yoghurt from camel milk and oat milk. J. Food Dairy Sci. 2020, 11, 259–264. [Google Scholar] [CrossRef]
- Meena, S.; Rajput, Y.; Sharma, R. Comparative fat digestibility of goat, camel, cow and buffalo milk. Int. Dairy J. 2014, 35, 153–156. [Google Scholar] [CrossRef]
- Mudgil, P.; Kamal, H.; Yuen, G.C.; Maqsood, S. Characterization and identification of novel antidiabetic and anti-obesity peptides from camel milk protein hydrolysates. Food Chem. 2018, 259, 46–54. [Google Scholar] [CrossRef]
- Wada, M.; Fukiya, S.; Suzuki, A.; Matsumoto, N.; Matsuo, M.; Yokota, A. Methionine utilization by bifidobacteria: Possible existence of a reverse transsulfuration pathway. Biosci. Microbiota Food Health 2020, 40, 80–83. [Google Scholar] [CrossRef]
- Swelum, A.A.; El-Saadony, M.T.; Abdo, M.; Ombarak, R.A.; Hussein, E.O.; Suliman, G.; Alhimaidi, A.R.; Ammari, A.A.; Ba-Awadh, H.; Taha, A.E. Nutritional, antimicrobial and medicinal properties of Camel’s milk: A review. Saudi J. Biol. Sci. 2021, 28, 3126–3136. [Google Scholar] [CrossRef]
- Górska, A.; Przystupski, D.; Niemczura, M.J.; Kulbacka, J. Probiotic bacteria: A promising tool in cancer prevention and therapy. Curr. Microbiol. 2019, 76, 939–949. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, L. Potential effect of probiotics in the treatment of breast cancer. Oncol. Rev. 2019, 13, 422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marco, M.L.; Sanders, M.E.; Gänzle, M.; Arrieta, M.C.; Cotter, P.D.; De Vuyst, L.; Hill, C.; Holzapfel, W.; Lebeer, S.; Merenstein, D. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 196–208. [Google Scholar] [CrossRef] [PubMed]
- Atwaa, E.S.H.; Shahein, M.R.; El-Sattar, E.S.A.; Hijazy, H.H.A.; Albrakati, A.; Elmahallawy, E.K. Bioactivity, Physicochemical and Sensory Properties of Probiotic Yoghurt Made from Whole Milk Powder Reconstituted in Aqueous Fennel Extract. Fermentation 2022, 8, 52. [Google Scholar] [CrossRef]
- Shahein, M.R.; Atwaa, E.S.H.; El-Zahar, K.M.; Elmaadawy, A.A.; Hijazy, H.H.A.; Sitohy, M.Z.; Albrakati, A.; Elmahallawy, E.K. Remedial Action of Yoghurt Enriched with Watermelon Seed Milk on Renal Injured Hyperuricemic Rats. Fermentation 2022, 8, 41. [Google Scholar] [CrossRef]
- Swelam, S.; Zommara, M.A.; Abd El-Aziz, A.E.-A.M.; Elgammal, N.A.; Baty, R.S.; Elmahallawy, E.K. Insights into Chufa Milk Frozen Yoghurt as Cheap Functional Frozen Yoghurt with High Nutritional Value. Fermentation 2021, 7, 255. [Google Scholar] [CrossRef]
- Beltrán-Barrientos, L.; Hernández-Mendoza, A.; Torres-Llanez, M.; González-Córdova, A.; Vallejo-Córdoba, B. Invited review: Fermented milk as antihypertensive functional food. J. Dairy Sci. 2016, 99, 4099–4110. [Google Scholar] [CrossRef] [Green Version]
- Parker, M.; Zobrist, S.; Donahue, C.; Edick, C.; Mansen, K.; Hassan Zade Nadjari, M.; Heerikhuisen, M.; Sybesma, W.; Molenaar, D.; Diallo, A.M. Naturally fermented milk from northern Senegal: Bacterial community composition and probiotic enrichment with Lactobacillus rhamnosus. Front. Microbiol. 2018, 9, 2218. [Google Scholar] [CrossRef] [Green Version]
- Dan, T.; Chen, H.; Li, T.; Tian, J.; Ren, W.; Zhang, H.; Sun, T. Influence of Lactobacillus plantarum P-8 on fermented milk flavor and storage stability. Front. Microbiol. 2019, 9, 3133. [Google Scholar] [CrossRef]
- Taghizadeh Moghaddam, S.; Javadi, A.; Matin, A.A. Reduction of bisphenol A by Lactobacillus acidophilus and Lactobacillus plantarum in yoghurt. Int. J. Dairy Technol. 2020, 73, 737–742. [Google Scholar] [CrossRef]
- Liu, L.; Chen, P.; Zhao, W.; Li, X.; Wang, H.; Qu, X. Effect of microencapsulation with the Maillard reaction products of whey proteins and isomaltooligosaccharide on the survival rate of Lactobacillus rhamnosus in white brined cheese. Food Control 2017, 79, 44–49. [Google Scholar] [CrossRef]
- Ningtyas, D.W.; Bhandari, B.; Bansal, N.; Prakash, S. The viability of probiotic Lactobacillus rhamnosus (non-encapsulated and encapsulated) in functional reduced-fat cream cheese and its textural properties during storage. Food Control 2019, 100, 8–16. [Google Scholar] [CrossRef]
- Yilmaz-Ersan, L. Fatty acid composition of cream fermented by probiotic bacteria. Mljekarstvo Časopis Unaprjeđenje Proizv. I Prerade Mlijeka 2013, 63, 132–139. [Google Scholar]
- Arslan, A.A.; Gocer, E.M.C.; Demir, M.; Atamer, Z.; Hinrichs, J.; Kücükcetin, A. Viability of Lactobacillus acidophilus ATCC 4356 incorporated into ice cream using three different methods. Dairy Sci. Technol. 2016, 96, 477–487. [Google Scholar] [CrossRef] [Green Version]
- Soukoulis, C.; Behboudi-Jobbehdar, S.; Yonekura, L.; Parmenter, C.; Fisk, I. Impact of milk protein type on the viability and storage stability of microencapsulated Lactobacillus acidophilus NCIMB 701748 using spray drying. Food Bioprocess Technol. 2014, 7, 1255–1268. [Google Scholar] [CrossRef]
- Al-Farsi, K.; Al-Habsi, N.A.; Al-Khusaibi, M. The potential antioxidant properties of date products: A concise update. Can. J. Clin. Nutr. 2018, 6, 84–104. [Google Scholar] [CrossRef]
- Yousif, A.; Alghamdi, A.; Hamad, A.; Mustafa, A. Processing and evaluation of a date juice-milk drink. Egypt. J. Dairy Sci. 1996, 24, 277–288. [Google Scholar]
- Ishurda, O.; John, F. The anti-cancer activity of polysaccharide prepared from Libyan dates (Phoenix Dactylifera L.) on ethanol-induced gastric ulcer in rats. J. Ethnopharmacol. 2005, 98, 313–317. [Google Scholar]
- Maqsood, S.; Adiamo, O.; Ahmad, M.; Mudgil, P. Bioactive compounds from date fruit and seed as potential nutraceutical and functional food ingredients. Food Chem. 2020, 308, 125522. [Google Scholar] [CrossRef]
- Allaith, A.A.A. Antioxidant activity of Bahraini date palm (Phoenix dactylifera L.) fruit of various cultivars. Int. J. Food Sci. Technol. 2008, 43, 1033–1040. [Google Scholar] [CrossRef]
- Ganbi, H. Production of nutritious high quality date (Phoenix dactylifera) fruits syrup (Dibs) by using some novel technological approaches. J. Appl. Sci. Res. 2012, 8, 1524–1538. [Google Scholar]
- Gad, A.; Kholif, A.; Sayed, A. Evaluation of the nutritional value of functional yogurt resulting from combination of date palm syrup and skim milk. Am. J. Food Technol. 2010, 5, 250–259. [Google Scholar] [CrossRef]
- Tammam, A.; Mansour, A.; Salman, K.; El-Gazzar, F. Preparation, and properties of bio-yoghurt containing date syrup (dibis). Egypt. J. Dairy Sci. 2013, 41, 69–76. [Google Scholar]
- Abdel-Ghany, A.S.; Zaki, D.A. Production of novel functional yoghurt fortified with bovine colostrum and date syrup for children. Alex. Sci. Exch. J. 2018, 39, 651–662. [Google Scholar] [CrossRef] [Green Version]
- Tamime, A.; Robinson, R. Yoghurt: Science and Technology; Woodhead Publishing Limited England: Cambridge, UK, 1999. [Google Scholar]
- Pranoto, S. DAFTAR PUSTAKA. AOAC Official Methods of Analysis; Asociation of official analytical chemists: Gaithersburg, MD, USA, 1995. [Google Scholar]
- Lees, G.; Jago, G. Methods for the estimation of acetaldehyde in cultured dairy products. Aust. J. Dairy Technol. 1969, 24, 181–185. [Google Scholar]
- Aryana, K.J. Folic acid fortified fat-free plain set yoghurt. Int. J. Dairy Technol. 2003, 56, 219–222. [Google Scholar] [CrossRef]
- Horwitz, W. Official Methods of Analysis of AOAC International. Volume I, Agricultural Chemicals, Contaminants, Drugs/Edited by William Horwitz; AOAC International 1997: Gaithersburg, MD, USA, 2010. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Chang, C.-C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar]
- Van Hung, P.; Morita, N. Distribution of phenolic compounds in the graded flours milled from whole buckwheat grains and their antioxidant capacities. Food Chem. 2008, 109, 325–331. [Google Scholar] [CrossRef]
- Htay, Y.Y.; Htwe, T.M.M.; Moe, T.T.; Win, K.K.; Cho, T.T.; Phyu, S. The Nutrients, Lactic Acid and Vitamin C contents containing in commercial Yogurts. MERAL Portal 2020, 11, 1–9. [Google Scholar]
- Association, A.P.H. Compendium of Methods for the Microbiological Examination of Foods; American Public Health Association: Washington, DC, USA, 2001. [Google Scholar]
- Package, S. Software Package for Social Science for Windows; SPSS Amos: Chicago, IL, USA, 2012. [Google Scholar]
- Alhamdan, A.M.; Al Juhaimi, F.Y.; Hassan, B.H.; Ehmed, K.A.; Mohamed Ahmed, I.A. Physicochemical, Microbiological, and Sensorial Quality Attributes of a Fermented Milk Drink (Laban) Fortified with Date Syrup (Dibs) during Cold Storage. Foods 2021, 10, 3157. [Google Scholar] [CrossRef]
- Amerinasab, A.; Labbafi, M.; Mousavi, M.; Khodaiyan, F. Development of a novel yoghurt based on date liquid sugar: Physicochemical and sensory characterization. J. Food Sci. Technol. 2015, 52, 6583–6590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jafarpour, D.; Amirzadeh, A.; Maleki, M.; Mahmoudi, M. Comparison of physicochemical properties and general acceptance of flavored drinking yogurt containing date and fig syrups. Foods Raw Mater. 2017, 5, 36–43. [Google Scholar] [CrossRef]
- Farahnaky, A.; Mardani, M.; Mesbahi, G.; Majzoobi, M.; Golmakani, M. Some Physicochemical Properties of Date Syrup, Conc entrate, and Liquid Sugar in Comparison with Sucrose Solutio ns. J. Agric. Sci. Technol. 2018, 18, 657–668. [Google Scholar]
- Aludatt, M.H.; Ereifej, K.; Alothman, A.M.; Almajwal, A.; Alkhalidy, H.; Al-Tawaha, A.R.; Alli, I. Variations of physical and chemical properties and mineral and vitamin composition of camel milk from eight locations in Jordan. J. Food Agric. Environ. 2010, 8, 16–20. [Google Scholar]
- Ahmed, A.A.-H.; Saad, N.M.; Wahba, N.M.; Sayed, R.G. Nutritional Value and Antioxidant Activity of Camel’s Milk. J. Adv. Vet. Res. 2018, 8, 90–94. [Google Scholar]
- Mehta, B.M. Chemical composition of milk and milk products. Handb. Food Chem. 2015, 511–553. [Google Scholar]
- Kumari, A.; Ranadheera, C.; Prasanna, P.; Senevirathne, N.; Vidanarachchi, J. Development of a rice incorporated synbiotic yogurt with low retrogradation properties. Int. Food Res. J. 2015, 22, 2032. [Google Scholar]
- Al-Rwaily, M.A.; Herzallah, S.; Humeid, M.A.; Yamani, M.I. Effect of dried dates extract on the growth and viability of Bifidobacteria in different milk types. Pak. J. Nutr. 2005, 4, 142–147. [Google Scholar]
- Singh, G.; Kapoor, I.P.S.; Singh, P. Effect of volatile oil and oleoresin of anise on the shelf life of yogurt. J. Food Processing Preserv. 2011, 35, 778–783. [Google Scholar] [CrossRef]
- Sendra, E.; Kuri, V.; Fernández-López, J.; Sayas-Barbera, E.; Navarro, C.; Pérez-Alvarez, J. Viscoelastic properties of orange fiber enriched yogurt as a function of fiber dose, size and thermal treatment. LWT Food Sci. Technol. 2010, 43, 708–714. [Google Scholar] [CrossRef]
- Tamime, A.; Deeth, H. Yogurt: Technology and biochemistry. J. Food Prot. 1980, 43, 939–977. [Google Scholar] [CrossRef] [PubMed]
- Dan, T.; Wang, D.; Jin, R.; Zhang, H.; Zhou, T.; Sun, T. Characterization of volatile compounds in fermented milk using solid-phase microextraction methods coupled with gas chromatography-mass spectrometry. J. Dairy Sci. 2017, 100, 2488–2500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aljasass, F.; Aleid, S.; El-Neshwy, A. Utilization of Dates in the Manufacture of New Probiotic Dairy Food; No. PR3; Date Palm Research Center, King Faisal University: Al-Ahsa, Saudi Arabia, 2010. [Google Scholar]
- Yu, M.; Gouvinhas, I.; Rocha, J.; Barros, A.I. Phytochemical and antioxidant analysis of medicinal and food plants towards bioactive food and pharmaceutical resources. Sci. Rep. 2021, 11, 10041. [Google Scholar] [CrossRef]
- Terpinc, P.; Čeh, B.; Ulrih, N.P.; Abramovič, H. Studies of the correlation between antioxidant properties and the total phenolic content of different oil cake extracts. Ind. Crops Prod. 2012, 39, 210–217. [Google Scholar] [CrossRef]
- Hashem, H.A.; Abd El-Daym, H.H.; El-Sharnouby, G.A.; Farghal, S.M.; Badr, H.A. The Effect of Extraction Method, Bleaching and Clarification Processes on Quality Second Grade Siwi Date Dibs. Ind. Eng. 2017, 1, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Drake, M. Invited review: Sensory analysis of dairy foods. J. Dairy Sci. 2007, 90, 4925–4937. [Google Scholar] [CrossRef] [Green Version]
Components (%) | Camel Milk | Date Syrup (Dibs) |
---|---|---|
Total Solids | 11.42 ± 0.48 | 80.42 ± 4.36 |
Protein | 3.26 ± 0.12 | 1.76 ± 0.18 |
Fat | 3.18 ± 0.14 | 0.98 ± 0.04 |
Ash | 0.72 ± 0.02 | 2.08 ± 0.06 |
Fiber | - | 2.44 ± 0.32 |
Minerals (mg/100 gm) | ||
Na | 62.50 ± 3.84 | 78.62 ± 4.08 |
K | 152.40 ± 9.12 | 272.36 ± 14.26 |
Fe | 0.34 ± 0.03 | 4.78 ± 0.84 |
Phytochemical properties | ||
Vitamin C (mg·L−1) | 32.96 ± 2.14 | 66.48 ± 2.65 |
Total phenolic (TP) mg/100 g | 6.34 ± 0.84 | 472.14 ± 9.12 |
Total Flavonoids (TF) mg/100 g | 0.42 ± 0.02 | 16.52 ± 5.64 |
Antioxidant activity (AO)% | 5.24 ± 1.04 | 72.84 ± 3.06 |
Storage Period (Days) | Fresh Camel Milk and Date Syrup | Fermented Camel Milk Samples | |||
---|---|---|---|---|---|
Camel Milk | Date Syrup (Dibs) | Control (0.0% Date Syrup) | Fermented Camel Milk (6% Date Syrup) | Fermented Camel Milk (8% Date Syrup) | |
Total Solids % | |||||
1 | 11.42 ± 0.48 c | 80.42 ± 4.36 a | 11.67 ± 2.52 c | 16.52 ± 1.00 bc | 17.73 ± 1.01 b |
15 | - | - | 11.85 ± 3.26 c | 16.72 ± 2.23 b | 17.92 ± 1.57 a |
Fat (%) | |||||
1 | 3.18 ± 0.14 ab | 0.98 ± 0.04 b | 3.32 ± 0.24 a | 3.31 ± 0.10 a | 3.30 ± 0.24 a |
15 | - | - | 3.41 ± 0.35 a | 3.35 ± 0.22 a | 3.36 ± 0.184 a |
Protein (%) | |||||
1 | 3.26 ± 0.12 a | 1.76 ± 0.18 b | 3.26 ± 0.31 a | 3.31 ± 0.10 a | 3.38 ± 0.35 a |
15 | - | - | 3.18 ± 0.14 b | 3.35 ± 0.22 a | 3.31 ± 0.06 a |
Ash (%) | |||||
1 | 0.72 ± 0.02 c | 2.08 ± 0.06 a | 0.74 ± 0.05 c | 0.88 ± 0.10 b | 0.91 ± 0.05 b |
15 | - | - | 0.80 ± 0.06 b | 0.95 ± 0.11 a | 0.98 ± 0.04 a |
Control (0.0% Date Syrup) | Fermented Camel Milk (6% Date Syrup) | Fermented Camel Milk (8% Date Syrup) | |
---|---|---|---|
pH | |||
1 | 4.80 ± 0.05 a | 4.53 ± 0.03 b | 4.41 ± 0.02 c |
15 | 4.38 ± 0.08 a | 4.22 ± 0.02 b | 4.20 ± 0.01 c |
Acidity (as lactic acid %) | |||
1 | 0.78 ± 0.03 c | 0.84 ± 0.05 b | 0.87 ± 0.020 a |
15 | 0.91 ± 0.02 c | 0.97 ± 0.01 b | 1.14 ± 0.03 a |
Acetaldehyde (µg/100 g) | |||
1 | 24 ± 1.27 c | 36 ± 1.25 b | 42 ± 1.80 a |
15 | 22 ± 1.38 c | 30 ± 1.95 a | 34 ± 1.0 b |
Viscosity (as cp) | |||
1 | 30 ± 4.84 d | 57 ± 3.74 b | 61 ± 2.00 a |
15 | 41 ± 2.58 c | 67 ± 2.08 b | 74 ± 1.70 a |
Storage Period (Days) | Fresh Camel Milk and Date Syrup | Fermented Camel Milk Samples | |||
---|---|---|---|---|---|
Camel Milk | Date Syrup (Dibs) | Control (0.0% Date Syrup) | Fermented Camel Milk (6% Date Syrup) | Fermented Camel Milk (8% Date Syrup) | |
Na (mg/100 gm) | |||||
1 | 62.50 ± 3.84 e | 78.62 ± 4.08 c | 69.6 ± 1.64 d | 86.8 ± 1.09 b | 95.2 ± 1.26 a |
15 | - | - | 77.4 ± 1.59 c | 114.2 ± 1.08 b | 122.6 ± 2.76 a |
K (mg/100 gm) | |||||
1 | 152.40 ± 9.12 e | 272.36 ± 14.26 a | 198.3 ± 2.00 d | 224.7 ± 2.00 c | 238.7 ± 1.64 b |
15 | - | - | 217.2 ± 2.39 c | 227.5 ± 3.02 b | 249.3 ± 3. 36 a |
Fe (mg/100 gm) | |||||
1 | 0.34 ± 0.03 e | 4.78 ± 0.84 a | 0.486 ± 0.07 d | 0.795 ± 0.09 c | 1.135 ± 0.15 b |
15 | - | - | 0.528 ± 0.13 c | 0.953 ± 0.05 b | 1.777 ± 0.23 a |
Storage Period (Days) | Fresh Camel Milk and Date Syrup | Fermented Camel Milk Samples | |||
---|---|---|---|---|---|
Camel Milk | Date Syrup (Dibs) | Control (0.0% Date Syrup) | Fermented Camel Milk (6% Date Syrup) | Fermented Camel Milk (8% Date Syrup) | |
Total phenolic (TP) mg/100 g | |||||
1 | 6.34 ± 0.84 e | 472.14 ± 9.12 a | 1.68 ± 0.12 d | 22.40 ± 1.98 c | 40.28 ± 1.86 b |
15 | - | - | 0.94 ± 0.11 c | 17.32 ± 1.74 b | 36.56 ± 2.16 a |
Total Flavonoids (TF) mg/100 g | |||||
0.42 ± 0.02 e | 16.52 ± 5.64 a | 0.54 ± 0.02 d | 3.42 ± 0.94 c | 4.86 ± 0.90 b | |
- | - | 0.42 ± 0.03 c | 2.58 ± 0.74 b | 4.02 ± 0.88 a | |
Antioxidant activity (AO) % | |||||
1 | 5.24 ± 1.04 e | 72.84 ± 3.06 a | 6.33 ± 1.0 d | 24.70 ± 2.18 c | 29.84 ± 1.94 b |
15 | - | - | 4.42 ± 0.13 c | 20.55 ± 1.89 b | 25.38 ± 1.76 a |
Vitamin C (mg/1000 gm) | |||||
0 | 32.96 ± 2.14 e | 66.48 ± 2.65 a | 21.53 ± 0.08 d | 24.12 ± 0.28 c | 25.05 ± 0.09 b |
15 | - | - | 20.07 ± 0.03 c | 23.18 ± 0.12 b | 24.20 ± 0.13 a |
Storage Period (Days) | Control (0.0% Date Syrup) | Fermented Camel Milk (6% Date Syrup) | Fermented Camel Milk (8% Date Syrup) |
---|---|---|---|
Total bacterial counts (Log10 cfu/mL) | |||
1 | 7.982 ± 0.39 b | 8.461 ± 0.60 a | 8.476 ± 0.60 a |
15 | 7.389 ± 0.57 b | 7.687 ± 0.36 a | 7.653 ± 0.22 a |
Bifidobacteria counts (Log10 cfu/mL) | |||
1 | 7.789 ± 0.45 b | 8.459 ± 0.06 a | 8.598 ± 0.11 a |
15 | 6.554 ± 0.72 c | 8.129 ± 0.17 a | 7.581 ± 0.76 b |
Control (0.0% Date Syrup) | Fermented Camel Milk (6% Date Syrup) | Fermented Camel Milk (8% Date Syrup) | ||
---|---|---|---|---|
Flavor (50) | 1 | 25.43 ± 4.0 c | 40.14 ± 2.51 b | 45.43 ± 3.51 a |
15 | 25.15 ± 2.33 c | 37.35 ± 2.28 b | 42.25 ± 2.35 a | |
Consistency (30) | 1 | 23.57 ± 2.36 c | 25.28 ± 1.72 b | 26.14 ± 1.05 a |
15 | 20.63 ± 3.28 c | 24.27 ± 1.57 b | 27.74 ± 2.40 a | |
Appearance (20) | 1 | 15.57 ± 1.25 c | 18.24 ± 1.06 b | 19.35 ± 1.50 a |
15 | 14.13 ± 1.23 c | 16.35 ± 1.06 b | 17.28 ± 1.21 a | |
Total (100) | 1 | 64.57 ± 2.42 c | 84.66 ± 2.06 b | 90.92 ± 2.78 a |
15 | 59.91 ± 3.65 c | 77.97 ± 6.09 b | 87.272 ± 3.72 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahein, M.R.; Atwaa, E.S.H.; Elkot, W.F.; Hijazy, H.H.A.; Kassab, R.B.; Alblihed, M.A.; Elmahallawy, E.K. The Impact of Date Syrup on the Physicochemical, Microbiological, and Sensory Properties, and Antioxidant Activity of Bio-Fermented Camel Milk. Fermentation 2022, 8, 192. https://doi.org/10.3390/fermentation8050192
Shahein MR, Atwaa ESH, Elkot WF, Hijazy HHA, Kassab RB, Alblihed MA, Elmahallawy EK. The Impact of Date Syrup on the Physicochemical, Microbiological, and Sensory Properties, and Antioxidant Activity of Bio-Fermented Camel Milk. Fermentation. 2022; 8(5):192. https://doi.org/10.3390/fermentation8050192
Chicago/Turabian StyleShahein, Magdy Ramadan, El Sayed Hassan Atwaa, Wael F. Elkot, Hayfa Hussin Ali Hijazy, Rami B. Kassab, Mohamed A. Alblihed, and Ehab Kotb Elmahallawy. 2022. "The Impact of Date Syrup on the Physicochemical, Microbiological, and Sensory Properties, and Antioxidant Activity of Bio-Fermented Camel Milk" Fermentation 8, no. 5: 192. https://doi.org/10.3390/fermentation8050192
APA StyleShahein, M. R., Atwaa, E. S. H., Elkot, W. F., Hijazy, H. H. A., Kassab, R. B., Alblihed, M. A., & Elmahallawy, E. K. (2022). The Impact of Date Syrup on the Physicochemical, Microbiological, and Sensory Properties, and Antioxidant Activity of Bio-Fermented Camel Milk. Fermentation, 8(5), 192. https://doi.org/10.3390/fermentation8050192