The Impact of Vineyard Mechanization on Grape and Wine Phenolics, Aroma Compounds, and Sensory Properties
Abstract
:1. Introduction
2. Mechanical Harvesting
3. Mechanical Leaf Removal
4. Mechanical Shoot and Cluster Thinning
5. Mechanical Pruning
6. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- California Grape Acreage Report, 2021 Summary. Available online: https://www.nass.usda.gov/Statistics_by_State/California/Publications/Specialty_and_Other_Releases/Grapes/Acreage/2022/grpacSUMMARY2021Crop.pdf (accessed on 15 May 2022).
- U.S. Wine Market Size, Share & Trends Analysis Report By Product (Table Wine, Dessert Wine, Sparkling Wine), By Distribution Channel (On-trade, Off-trade), And Segment Forecasts, 2022–2030. Available online: https://www.grandviewresearch.com/industry-analysis/us-wine-market/request/rs1 (accessed on 30 June 2022).
- Developing a Viable Vineyard Workforce for the Future. Available online: https://grapesandwine.cals.cornell.edu/newsletters/appellation-cornell/2019-newsletters/issue-36-february-2019/viewpoints/ (accessed on 15 May 2022).
- Brady, M.P.; Gallardo, R.K.; Badruddozza, S.; Jiang, X. Regional equilibrium wage rate for hired farm workers in the tree fruit industry. Western Econ. Forum 2016, 15, 20–31. [Google Scholar]
- Brat, I. On U.S. Farms, Fewer Hands for the Harvest. Available online: https://www.newamericaneconomy.org/news/u-s-farms-fewer-hands-harvest/ (accessed on 12 May 2022).
- Winkler, A.J.; Lamouria, L.H.; Abernathy, G.H. Mechanical grape harvest problems and progress. Am. J. Enol. Vitic. 1957, 8, 182–187. [Google Scholar]
- Shaulis, N.J.; Shepardson, E.S.; Moyer, J.C. Grape harvesting research at Cornell NY State. Hort. Soc. 1960, 105, 250–254. [Google Scholar]
- Kurtural, S.K.; Fidelibus, M.W. Mechanization of Pruning, Canopy Management, and Harvest in Winegrape Vineyards. Catal. Discov. Pract. 2021, 5, 29–44. [Google Scholar] [CrossRef]
- Dominici, A.; Boncinelli, F.; Gerini, F.; Marone, E. Consumer Preference for Wine from Hand-Harvested Grapes. Br. Food J. 2019, 122, 2551–2567. [Google Scholar] [CrossRef]
- Johnson, S.S. Mechanical harvesting of wine grapes. USDA, Economic Research Service. Agric. Econ. Rep. 1977, 385, 1–22. [Google Scholar]
- Intrieri, C.; Filippetti, I. Innovations and outlook in grapevine training systems and mechanization in north-Central Italy. In Proceedings of the ASEV 50th Anniversary Annual Meeting, Seattle, WA, USA, 19–23 June 2000. [Google Scholar]
- Hendrickson, D.A.; Lerno, L.A.; Hjelmeland, A.K.; Ebeler, S.E.; HHeymann, H.; Hopfer, H.; Block, K.L.; Brenneman, C.A.; Oberholster, A. Impact of Mechanical Harvesting and Optical Berry Sorting on Grape and Wine Composition. Am. J. Enol. Vitic. 2016, 67, 385–397. [Google Scholar] [CrossRef]
- Clary, C.D.; Steinhauer, R.E.; Frisinger, J.E.; Peffer, T.E. Evaluation of machine- vs. hand-harvested Chardonnay. Am. J. Enol. Vitic. 1990, 41, 176–181. [Google Scholar]
- Noble, A.C.; Ough, C.S.; Kasimatis, A.N. Effect of leaf content and mechanical harvest on wine “quality”. Am. J. Enol. Vitic. 1975, 26, 158–163. [Google Scholar]
- Kilmartin, P.A.; Oberholster, A. Grape Harvesting and Effects on Wine Composition. In Managing Wine Quality, 2nd ed.; Reynold, A., Ed.; Woodhead Publishing: Sawston, UK, 2022; Volume 1, pp. 705–726. [Google Scholar]
- Kaltbach, S.B.A.; Kaltbach, P.; Santos, C.G.; Cunha, W.; Giacomini, M.; Domingues, F.; Malgarim, M.; Herter, F.G.; Costa, V.B.; Couto, J.A. Influence of manual and mechanical grape harvest on Merlot wine composition. J. Food Compos. Anal. 2022, 110, 1045–1048. [Google Scholar] [CrossRef]
- Jeffery, D.W. Spotlight on Varietal Thiols and Precursors in Grapes and Wines. Aust. J. Chem. 2017, 69, 1323–1330. [Google Scholar] [CrossRef] [Green Version]
- Bonnaffoux, H.; Delpech, S.; Rémond, E.; Schneider, R.; Roland, A.; Cavelier, F. Revisiting the evaluation strategy of varietal thiol biogenesis. Food Chem. 2018, 268, 126–133. [Google Scholar] [CrossRef]
- Jouanneau, S. Survey of Aroma Compounds in Marlborough Sauvignon Blanc Wines—Regionality and Small Scale Winemaking. Ph.D. Thesis, The University of Auckland, Auckland, New Zealand, 2011. [Google Scholar]
- Allen, T.; Herbst-Johnstone, M.; Girault, M.; Butler, P.; Logan, G.; Jouanneau, S. Influence of grape-harvesting steps on varietal thiol aromas in Sauvignon blanc wines. J. Agric. Food Chem. 2011, 59, 10641–10650. [Google Scholar] [CrossRef]
- Herbst-Johnstone, M.; Araujo, L.D.; Allen, T.A.; Logan, G.; Nicolau, L.; Kilmartin, P.A. Effects of Mechanical Harvesting on ‘Sauvignon Blanc’ Aroma. Acta Hortic. 2013, 978, 179–186. [Google Scholar] [CrossRef]
- Olejar, K.J.; Fedrizzi, B.; Kilmartin, P.A. Influence of Harvesting Technique and Maceration Process on Aroma and Phenolic Attributes of Sauvignon Blanc Wine. Food Chem. 2015, 183, 181–189. [Google Scholar] [CrossRef]
- Downey, M.O.; Dokoozlian, N.K.; Krstic, M.P. Cultural Practice and Environmental Impacts on the Flavonoid Composition of Grapes and Wine: A Review of Recent Research. Am. J. Enol. Vitic. 2006, 57, 257–268. [Google Scholar]
- Caspari, H.V.; Lang, A. Carbohydrate supply limits fruit-set in commercial Sauvignon blanc grapevines. In Proceedings of the 4th International Symposium on Cool Climate Enology and Viticulture, Rochester, NY, USA, 16–20 July 1996. [Google Scholar]
- Feng, H.; Qian, M.C.; Skinkis, P.A. Pinot Noir Wine Volatile and Anthocyanin Composition under Different Levels of Vine Fruit Zone Leaf Removal. Food Chem. 2017, 214, 736–744. [Google Scholar] [CrossRef]
- Bubola, M.; Sivilotti, P.; Janjanin, D.; Poni, S. Early Leaf Removal Has a Larger Effect than Cluster Thinning on Grape Phenolic Composition in Cv. Teran. Am. J. Enol. Vitic. 2017, 68, 234–242. [Google Scholar] [CrossRef]
- Osrečak, M.; Karoglan, M.; Kozina, B. Influence of Leaf Removal and Reflective Mulch on Phenolic Composition and Antioxidant Activity of Merlot, Teran and Plavac Mali Wines (Vitis Vinifera L.). Sci. Hortic. 2016, 209, 261–269. [Google Scholar] [CrossRef]
- Palliotti, A.; Gardi, T.; Berrios, J.G.; Civardi, S.; Poni, S. Early Source Limitation as a Tool for Yield Control and Wine Quality Improvement in a High-Yielding Red Vitis Vinifera L. Cultivar. Sci. Hortic. 2012, 145, 10–16. [Google Scholar] [CrossRef]
- Friedel, M.; Frotscher, J.; Nitsch, M.; Hofmann, M.; Bogs, J.; Stoll, M.; Dietrich, H. Light Promotes Expression of Monoterpene and Flavonol Metabolic Genes and Enhances Flavour of Winegrape Berries (Vitis Vinifera L. Cv. Riesling). Aust. J. Grape Wine Res. 2016, 22, 409–421. [Google Scholar] [CrossRef]
- Gregan, S.M.; Wargent, J.J.; Liu, L.; Shinkle, J.; Hofmann, R.; Winefield, C.; Trought, M.; Jordan, B. Effects of Solar Ultraviolet Radiation and Canopy Manipulation on the Biochemical Composition of Sauvignon Blanc Grapes. Aust. J. Grape Wine Res. 2012, 18, 227–238. [Google Scholar] [CrossRef]
- Martin, D.; Albright, A.; McLachlan, A.; Fedrizzi, B.; Grose, C.; Stuart, L. Grape Cluster Microclimate Influences the Aroma Composition of Sauvignon Blanc Wine. Food Chem. 2016, 210, 640–647. [Google Scholar] [CrossRef] [PubMed]
- Bubola, M.; Vanzo, A.; Bavčar, D.; Lukić, I.; Lisjak, K.; Grozić, K.; Sivilotti, P.; Radeka, S. Enhancement of Istrian Malvasia Wine Aroma and Hydroxycinnamate Composition by Hand and Mechanical Leaf Removal. J. Sci. Food Agric. 2019, 99, 904–914. [Google Scholar] [CrossRef]
- Lemut, M.S.; Sivilotti, P.; Franceschi, P.; Wehrens, R.; Vrhovsek, U. Use of Metabolic Profiling to Study Grape Skin Polyphenol Behavior as a Result of Canopy Microclimate Manipulation in a ‘Pinot Noir’ Vineyard. J. Agric. Food Chem. 2013, 61, 8976–8986. [Google Scholar] [CrossRef]
- Coniberti, A.; Ferrari, V.; Dellacassa, E.; Boido, E.; Carrau, F.; Gepp, V.; Disegna, E. Kaolin over Sun-Exposed Fruit Affects Berry Temperature, Must Composition and Wine Sensory Attributes of Sauvignon Blanc. Eur. J. Agron. 2013, 50, 75–81. [Google Scholar] [CrossRef]
- Šuklje, K.; Antalick, G.; Coetzee, Z.; Schmidtke, L.M.; Baša Česnik, H.; Brandt, J.; Toit, W.J.; Lisjak, K.; Deloire, A. Effect of Leaf Removal and Ultraviolet Radiation on the Composition and Sensory Perception of Vitis Vinifera L. Cv. Sauvignon Blanc Wine. Aust. J. Grape Wine Res. 2014, 20, 223–233. [Google Scholar] [CrossRef]
- Šuklje, K.; Antalick, G.; Buica, A.; Langlois, J.; Coetzee, Z.A.; Gouot, J.; Schmidtke, L.M.; Deloire, A. Clonal Differences and Impact of Defoliation on Sauvignon Blanc (Vitis Vinifera L.) Wines: A Chemical and Sensory Investigation. J. Sci. Food Agric. 2016, 96, 915–926. [Google Scholar] [CrossRef]
- Diago, M.P.; Vilanova, M.; Blanco, J.A.; Tardaguila, J. Effects of Timing of Manual and Mechanical Early Defoliation on the Aroma of Vitis vinifera L. Tempranillo Wine. Am. J. Enol. Vitic. 2010, 61, 382–391. [Google Scholar]
- Guidoni, S.; Oggero, G.; Cravero, S.; Rabino, M.; Cravero, M.C.; Balsari, P. Manual and Mechanical Leaf Removal in the Bunch Zone (Vitis Vinifera L., Cv Barbera): Effects on Berry Composition, Health, Yield and Wine Quality, in a Warm Temperate Area. OENO One 2008, 42, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Kemp, B.S.; Harrison, R.; Creasy, G.L. Effect of Mechanical Leaf Removal and Its Timing on Flavan-3-ol Composition and Concentrations in Vitis Vinifera L. Cv. Pinot Noir Wine. Aust. J. Grape Wine Res. 2011, 17, 270–279. [Google Scholar] [CrossRef]
- Smart, R.E. Shoot spacing and canopy light microclimate. Am. J. Enol. Vitic. 1988, 39, 325–333. [Google Scholar]
- Dean, S. Mechanical Shoot & Leaf Removal Practices. 2016. Available online: https://www.awri.com.au/wp-content/uploads/2016/06/4-Mechanical-Shoot-Leaf-Removal_Sean_Dean.pdf (accessed on 15 May 2022).
- Dokoozlian, N. The evolution of mechanized vineyard production systems in California. Acta Hortic. 2013, 978, 265–278. [Google Scholar] [CrossRef]
- Majeed, Y.; Karkee, M.; Zhang, Q.; Fu, L.; Whiting, M.D. Determining grapevine cordon shape for automated green shoot thinning using semantic segmentation-based deep learning networks. Comput. Electron. Agric. 2000, 171, 105308. [Google Scholar] [CrossRef]
- Diago, M.P.; Vilanova, M.; Blanco, J.A.; Tardaguila, J. Effects of Mechanical Thinning on Fruit and Wine Composition and Sensory Attributes of Grenache and Tempranillo Varieties (Vitis Vinifera L.): Mechanical Thinning on Fruit and Wine Composition. Aust. J. Grape Wine Res. 2010, 16, 314–326. [Google Scholar] [CrossRef]
- Brillante, L.; Martínez-Lüscher, J.; Kurtural, S.K. Applied Water and Mechanical Canopy Management Affect Berry and Wine Phenolic and Aroma Composition of Grapevine (Vitis Vinifera L., Cv. Syrah) in Central California. Sci. Hortic. 2018, 227, 261–271. [Google Scholar] [CrossRef]
- Petrie, P.R.; Clingeleffer, P.R. Crop Thinning (Hand versus Mechanical), Grape Maturity and Anthocyanin Concentration: Outcomes from Irrigated Cabernet Sauvignon (Vitis Vinifera L.) in a Warm Climate. Aust. J. Grape Wine Res. 2006, 12, 21–29. [Google Scholar] [CrossRef]
- Terry, D.B.; Kurtural, S.K. Achieving Vine Balance of Syrah with Mechanical Canopy Management and Regulated Deficit Irrigation. Am. J. Enol. Vitic. 2011, 62, 426–437. [Google Scholar] [CrossRef]
- Morris, J.R. Development and Commercialization of a Complete Vineyard Mechanization System. Horttechnology 2007, 17, 411–420. [Google Scholar] [CrossRef] [Green Version]
- Kurtural, S.K.; Beebe, A.E.; Martínez-Lüscher, J.; Zhuang, S.J.; Lund, K.T.; McGourty, G.; Bettiga, L.J. Conversion to Mechanical Pruning in Vineyards Maintains Fruit Composition While Reducing Labor Costs in “Merlot” Grape Production. Horttechnology 2019, 29, 128–139. [Google Scholar] [CrossRef]
- Poni, S.; Tombesi, S.; Palliotti, A.; Ughinia, V.; Gatti, M. Mechanical winter pruning of grapevine: Physiological bases and applications. Sci. Hortic. 2016, 204, 88–98. [Google Scholar] [CrossRef]
- Reynolds, A.G. Response of Okanagan Riesling Vines to Training System and Simulated Mechanical Pruning. Am. J. Enol. Vitic. 1988, 39, 205–212. [Google Scholar]
- Santos, A.O.; Pereira, S.E.; Moreira, C.A. Physical-Chemical Quality of Grapes and wine sensory profile for different varieties of vine subjected to mechanical pruning. Rev. Bras. Frutic. 2015, 37, 432–441. [Google Scholar] [CrossRef] [Green Version]
- Holt, H.E.; Francis, I.L.; Field, J.; Herderich, M.J.; Iland, P.G. Relationships between Wine Phenolic Composition and Wine Sensory Properties for Cabernet Sauvignon (Vitis Vinifera L.). Aust. J. Grape Wine Res. 2008, 14, 162–176. [Google Scholar]
- Harbertson, J.F.; Kennedy, J.A.; Adams, D.O. Tannin in Skins and Seeds of Cabernet Sauvignon, Syrah, and Pinot Noir Berries during Ripening. Am. J. Enol. Vitic. 2002, 53, 54–59. [Google Scholar]
- Kronfli, E.J., III. Sensory Effect of Regulated Deficit Irrigation and Mechanical Pruning on Washington State Wines. Master’s Thesis, University of California, Davis, CA, USA, 2018. [Google Scholar]
- Botelho, M.; Cruz, A.; Ricardo-da-Silva, J.; de Castro, R.; Ribeiro, H. Mechanical Pruning and Soil Fertilization with Distinct Organic Amendments in Vineyards of Syrah: Effects on Vegetative and Reproductive Growth. Agronomy 2020, 10, 1090. [Google Scholar] [CrossRef]
- Botelho, M.; Ribeiro, H.; Cruz, A.; Duarte, D.F.; Faria, D.L.; de Castro, R.; Ricardo-Da-Silva, J. Mechanical Pruning and Soil Organic Amendments in Vineyards of Syrah: Effects on Grape Composition. OENO One 2021, 55, 267–277. [Google Scholar] [CrossRef]
- Botelho, M.; Ribeiro, H.; Cruz, A.; Duarte, D.F.; Faria, D.L.; Khairnar, K.S.; Pardal, R.; Susini, M.; Correia, C.; Catarino, S.; et al. Mechanical Pruning and Soil Organic Amending in Two Terroirs. Effects on Wine Chemical Composition and Sensory Profile. Am. J. Enol. Vitic. 2022, 73, 26–38. [Google Scholar] [CrossRef]
- Delgado, R.; Martin, P.; del Alamo, M.; Gonzalez, M.R. Changes in the Phenolic Composition of Grape Berries during Ripening in Relation to Vineyard Nitrogen and Potassium Fertilisation Rates. J. Sci. Food Agric. 2004, 84, 623–630. [Google Scholar] [CrossRef]
- Kennedy, J.A.; Saucier, C.; Glories, Y. Grape and Wine Phenolics: History and Perspective. Am. J. Enol. Vitic. 2006, 57, 239–248. [Google Scholar]
Phenolics | Functions | Vineyard Mechanization | Varieties | References | Impact |
---|---|---|---|---|---|
Hydroxycinnamate | Major phenolic compounds in white wine and are important in white wine color [60] | Mechanical harvesting | Merlot | Kaltbach et al. (2022) [16] | Reduced caffeic and coumaric acids in wines |
Mechanical leaf removal | Istrian Malvasia | Bubola et al. (2019) [32] | Reduced hydroxycinnamatein wines | ||
Anthocyanin | Responsible for red wine color [60] | Mechanical harvesting with optical sorting | Pinot noir | Hendrickson et al. (2016) [12] | Increased total anthocyanins in berries |
Mechanical leaf removal | Barbera | Guidoni et al. (2008) [38] | Comparable to hand leaf removal | ||
Mechanical crop thinning | Cabernet Sauvignon | Petrie et al. (2006) [46] | Increased total anthocyanins in berries | ||
Mechanical pruning | Merlot | Kurtural et al. (2019) [49] | Comparable to hand pruning | ||
Cabernet Sauvignon | Holt et al. (2008) [53] | Increased anthocyanins in both berries and wines | |||
Mechanical pruning and soil amendment | Syrah | Botelho et al. (2020) [58] | Combination of two practices reduced anthocyanins | ||
Flavan-3-ol monomers | Responsible for bitterness in wine and may also have some associated astringency [60] | Mechanical leaf removal | Pinot noir | Kemp et al. (2011) [39] | Increased flavan-3-ols in wines |
Mechanical pruning | Merlot | Kurtural et al. (2019) [49] | Comparable to hand pruning | ||
Proanthocyanidins (condensed tannin) | Impart astringency to red wines [60] | Mechanical leaf removal | Barbera | Guidoni et al. (2008) [38] | Comparable to hand leaf removal |
Pinot noir | Kemp et al. (2011) [39] | Increased tannin in wines | |||
Mechanical pruning and soil amendment | Syrah | Botelho et al. (2020) [58] | Combination of two practices reduced tannin in wines |
Aroma Compounds | Odor Descriptor | Precursors | Vineyard Mechanization | Varieties | References | Impact | |
---|---|---|---|---|---|---|---|
Varietal thiols | 3-Mercaptohexanol (3MH or 3SH); 3-mercaptohexyl acetate (3MHA or 3SHA) | Passion fruit, Grapefruit | S-3-(hexan-1-ol)-L-cysteine (Cys-3MH); S-3-(hexan-1-ol)-glutathione (Glut-3MH) | Mechanical harvesting | Sauvignon blanc | Jouanneau (2011) [19] Allen et al. (2011) [20] Herbst-Johnstone et al. (2013) [21] Olejar et al. (2015) [22] | Increased 3MH and 3MHA in both berries and wines |
Mechanical leaf removal | Sauvignon blanc | Bubola et al. (2019) [32] | Increased 3MH in wines | ||||
Methoxypyrazine | IBMP | Bell pepper | Leucine | Mechanical shoot thinning and deficit irrigation | Syrah | Brillante et al. (2018) [45] | Reduced IBMP in wines |
C13-norisoprenoid | β-Damascenone | Cooked apple, quince, floral | Glycosylated aroma compound | Mechanical leaf removal | Sauvignon blanc | Bubola et al. (2019) [32] | Increased β-Damascenone in wines |
Mechanical harvesting with optical sorting | Pinot noir | Hendrickson et al. (2016) [12] | Increased β-Damascenone in wines | ||||
Alcohols | C6 Alcohol | Grass, green | Linoleic acid and linolenic acid | Mechanical shoot thinning and deficit irrigation | Syrah | Brillante et al. (2018) [45] | Reduced C6 alcohol in wines |
Monoterpenes | Citronellol Nerol Geraniol α-terpinene | Rose, citrus Floral | Glycosylated aroma compound | Mechanical leaf removal | Sauvignon blanc | Bubola et al. (2019) [32] | Increased monoterpenes in wines |
Mechanical harvesting with optical sorting | Pinot noir | Hendrickson et al. (2016) [12] | Increased α-terpinene in berries |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Q.; Ebersole, C.; Wong, D.P.; Curtis, K. The Impact of Vineyard Mechanization on Grape and Wine Phenolics, Aroma Compounds, and Sensory Properties. Fermentation 2022, 8, 318. https://doi.org/10.3390/fermentation8070318
Sun Q, Ebersole C, Wong DP, Curtis K. The Impact of Vineyard Mechanization on Grape and Wine Phenolics, Aroma Compounds, and Sensory Properties. Fermentation. 2022; 8(7):318. https://doi.org/10.3390/fermentation8070318
Chicago/Turabian StyleSun, Qun, Craig Ebersole, Deborah Parker Wong, and Karley Curtis. 2022. "The Impact of Vineyard Mechanization on Grape and Wine Phenolics, Aroma Compounds, and Sensory Properties" Fermentation 8, no. 7: 318. https://doi.org/10.3390/fermentation8070318
APA StyleSun, Q., Ebersole, C., Wong, D. P., & Curtis, K. (2022). The Impact of Vineyard Mechanization on Grape and Wine Phenolics, Aroma Compounds, and Sensory Properties. Fermentation, 8(7), 318. https://doi.org/10.3390/fermentation8070318