Sugarcane Bagasse-Based Ethanol Production and Utilization of Its Vinasse for Xylitol Production as an Approach in Integrated Biorefinery
Abstract
:1. Introduction
2. Materials & Methods
2.1. Microorganisms
2.2. Culture Media for Yeast Growth and Fermentation
2.3. Ethanol Fermentation
2.4. Xylitol Fermentation
2.5. Analytical Methods
2.6. Statistical Analysis
3. Results and Discussions
3.1. Nitrogen Source Supplementation for Ethanol Fermentation Using Sugarcane Bagasse Hydrolysate
3.2. Evaluating the Supplementation of Nitrogen Sources for Xylitol Production Using Vinasse from Ethanol Fermentation
3.3. Effect of Dissolved Oxygen (DO) on Xylitol Production Using Vinasse from Ethanol Fermentation of Sugarcane Bagasse Hydrolysate
3.4. Effect of Molasses Addition to the Vinasse Medium on Xylitol Production
3.5. Proposed Process for Ethanol and Xylitol Production from Sugarcane Bagasse
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zoghlami, A.; Paës, G. Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis. Front. Chem. 2019, 7, 874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ullah, K.; Kumar Sharma, V.; Dhingra, S.; Braccio, G.; Ahmad, M.; Sofia, S. Assessing the Lignocellulosic Biomass Resources Potential in Developing Countries: A Critical Review. Renew. Sustain. Energy Rev. 2015, 51, 682–698. [Google Scholar] [CrossRef]
- OECD/FAO. Sugar Production Classified by Traditional Crops. In OECD-FAO Agricultural Outlook 2021–2030; OECD Publishing: Paris, France, 2021. [Google Scholar] [CrossRef]
- Office of the Cane and Sugar Board. Report on Sugarcane Plantation, Production Year 2019/20. Available online: http://www.ocsb.go.th/upload/journal/fileupload/923-1854.pdf (accessed on 6 September 2021).
- Office of the Cane and Sugarcane Board. Electricity and Steam Production of the Sugar Cane and Sugar Industry. Available online: http://www.ocsb.go.th/upload/bioindustry/fileupload/10169-3442.pdf (accessed on 17 May 2021).
- Cheng, H.H.; Whang, L.M. Resource Recovery from Lignocellulosic Wastes via Biological Technologies: Advancements and Prospects. Bioresour. Technol. 2022, 343, 126097. [Google Scholar] [CrossRef]
- Velvizhi, G.; Balakumar, K.; Shetti, N.P.; Ahmad, E.; Kishore Pant, K.; Aminabhavi, T.M. Integrated Biorefinery Processes for Conversion of Lignocellulosic Biomass to Value Added Materials: Paving a Path towards Circular Economy. Bioresour. Technol. 2022, 343, 126151. [Google Scholar] [CrossRef]
- Renewable Fuels Association. 2022 Ethanol Industry Outlook. Available online: https://ethanolrfa.org/media-and-news/category/news-releases/article/2022/02/rfa-s-2022-ethanol-industry-outlook-zeroes-in-on-new-opportunities (accessed on 13 May 2022).
- Raj, T.; Chandrasekhar, K.; Naresh Kumar, A.; Rajesh Banu, J.; Yoon, J.J.; Kant Bhatia, S.; Yang, Y.H.; Varjani, S.; Kim, S.H. Recent Advances in Commercial Biorefineries for Lignocellulosic Ethanol Production: Current Status, Challenges and Future Perspectives. Bioresour. Technol. 2022, 344, 126292. [Google Scholar] [CrossRef] [PubMed]
- Yuvadetkun, P.; Boonmee, M. Ethanol Production Capability of Candida shehatae in Mixed Sugars and Rice Straw Hydrolysate. Sains Malays. 2016, 45, 581–587. [Google Scholar]
- Kongkeitkajorn, M.B.; Sae-Kuay, C.; Reungsang, A. Evaluation of Napier Grass for Bioethanol Production through a Fermentation Process. Processes 2020, 8, 567. [Google Scholar] [CrossRef]
- Delgado Arcaño, Y.; Valmaña García, O.D.; Mandelli, D.; Carvalho, W.A.; Magalhães Pontes, L.A. Xylitol: A Review on the Progress and Challenges of Its Production by Chemical Route. Catal. Today 2020, 344, 2–14. [Google Scholar] [CrossRef]
- Felipe Hernández-Pérez, A.; de Arruda, P.V.; Sene, L.; da Silva, S.S.; Kumar Chandel, A.; de Almeida Felipe, M.D.G. Xylitol Bioproduction: State-of-the-Art, Industrial Paradigm Shift, and Opportunities for Integrated Biorefineries. Crit. Rev. Biotechnol. 2019, 39, 924–943. [Google Scholar] [CrossRef]
- West, T.P. Xylitol Production by Candida Species from Hydrolysates of Agricultural Residues and Grasses. Fermentation 2021, 7, 243. [Google Scholar] [CrossRef]
- Antunes, F.A.F.; Thomé, L.C.; Santos, J.C.; Ingle, A.P.; Costa, C.B.; Dos Anjos, V.; Bell, M.J.V.; Rosa, C.A.; Silva, S.S.D. Multi-Scale Study of the Integrated Use of the Carbohydrate Fractions of Sugarcane Bagasse for Ethanol and Xylitol Production. Renew. Energy 2021, 163, 1343–1355. [Google Scholar] [CrossRef]
- De Souza Queiroz, S.; Jofre, F.M.; dos Santos, H.A.; Hernández-Pérez, A.F.; das Graças de Almeida Felipe, M. Xylitol and Ethanol Co-Production from Sugarcane Bagasse and Straw Hemicellulosic Hydrolysate Supplemented with Molasses. Biomass Convers. Biorefinery 2021, 1–10. [Google Scholar] [CrossRef]
- Unrean, P.; Ketsub, N. Integrated Lignocellulosic Bioprocess for Co-Production of Ethanol and Xylitol from Sugarcane Bagasse. Ind. Crops Prod. 2018, 123, 238–246. [Google Scholar] [CrossRef]
- Raj, K.; Krishnan, C. Improved Co-Production of Ethanol and Xylitol from Low-Temperature Aqueous Ammonia Pretreated Sugarcane Bagasse Using Two-Stage High Solids Enzymatic Hydrolysis and Candida tropicalis. Renew. Energy 2020, 153, 392–403. [Google Scholar] [CrossRef]
- Shankar, K.; Kulkarni, N.S.; Sajjanshetty, R.; Jayalakshmi, S.K.; Sreeramulu, K. Co-Production of Xylitol and Ethanol by the Fermentation of the Lignocellulosic Hydrolysates of Banana and Water Hyacinth Leaves by Individual Yeast Strains. Ind. Crops Prod. 2020, 155, 112809. [Google Scholar] [CrossRef]
- Dasgupta, D.; Ghosh, D.; Bandhu, S.; Adhikari, D.K. Lignocellulosic Sugar Management for Xylitol and Ethanol Fermentation with Multiple Cell Recycling by Kluyveromyces marxianus IIPE453. Microbiol. Res. 2017, 200, 64–72. [Google Scholar] [CrossRef]
- Zahed, O.; Jouzani, G.S.; Abbasalizadeh, S.; Khodaiyan, F.; Tabatabaei, M. Continuous Co-Production of Ethanol and Xylitol from Rice Straw Hydrolysate in a Membrane Bioreactor. Folia Microbiol. 2016, 61, 179–189. [Google Scholar] [CrossRef]
- Morales-Rodriguez, R.; Perez-Cisneros, E.S.; de Los Reyes-Heredia, J.A.; Rodriguez-Gomez, D. Evaluation of Biorefinery Configurations through a Dynamic Model-Based Platform: Integrated Operation for Bioethanol and Xylitol Co-Production from Lignocellulose. Renew. Energy 2016, 89, 135–143. [Google Scholar] [CrossRef]
- Ngamsirisomsakul, M.; Reungsang, A.; Kongkeitkajorn, M.B. Assessing Oleaginous Yeasts for Their Potentials on Microbial Lipid Production from Sugarcane Bagasse and the Effects of Physical Changes on Lipid Production. Bioresour. Technol. Rep. 2021, 14, 100650. [Google Scholar] [CrossRef]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Martínez-Moreno, R.; Morales, P.; Gonzalez, R.; Mas, A.; Beltran, G. Biomass Production and Alcoholic Fermentation Performance of Saccharomyces cerevisiae as a Function of Nitrogen Source. FEMS Yeast Res. 2012, 12, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, D.; Shi, Y.-C. Effects of Nitrogen Source on Ethanol Production in Very High Gravity Fermentation of Corn Starch. J. Taiwan Inst. Chem. Eng. 2017, 70, 229–235. [Google Scholar] [CrossRef]
- Zhao, Z.; Xian, M.; Liu, M.; Zhao, G. Biochemical Routes for Uptake and Conversion of Xylose by Microorganisms. Biotechnol. Biofuels 2020, 13, 21. [Google Scholar] [CrossRef] [PubMed]
- Subtil, T.; Boles, E. Competition between Pentoses and Glucose during Uptake and Catabolism in Recombinant Saccharomyces cerevisiae. Biotechnol. Biofuels 2012, 5, 14. [Google Scholar] [CrossRef] [Green Version]
- Salmon, J.M.; Vincent, O.; Mauricio, J.C.; Bely, M.; Barre, P. Sugar Transport Inhibition and Apparent Loss of Activity in Saccharomyces cerevisiae as a Major Limiting Factor of Enological Fermentations. Am. J. Enol. Vitic. 1993, 44, 56–64. [Google Scholar]
- Batt, C.A.; Caryallo, S.; Easson, D.D.; Akedo, M.; Sinskey, A.J. Direct Evidence for a Xylose Metabolic Pathway In Saccharomyces cerevisiae. Biotechnol. Bioeng. 1986, 28, 549–553. [Google Scholar] [CrossRef]
- Toivari, M.H.; Salusjärvi, L.; Ruohonen, L.; Penttilä, M. Endogenous Xylose Pathway in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2004, 70, 3681–3686. [Google Scholar] [CrossRef] [Green Version]
- Stoklosa, R.J.; Nghiem, N.P.; Latona, R.J. Xylose-Enriched Ethanol Fermentation Stillage from Sweet Sorghum for Xylitol and Astaxanthin Production. Fermentation 2019, 5, 84. [Google Scholar] [CrossRef] [Green Version]
- Silva, S.S.; Afschar, A.S. Microbial Production of Xylitol from D-Xylose Using Candida tropicalis. Bioprocess Eng. 1994, 11, 129–134. [Google Scholar] [CrossRef]
- Silva, S.S.; Quesada-Chanto, A.; Vitolo, M. Upstream Parameters Affecting the Cell Growth and Xylitol Production by Candida guilliermondii FTI 20037. Zeitschrift Für Naturforsch. C 1997, 52, 359–363. [Google Scholar] [CrossRef]
- Mushtaq, Z.; Imran, M.; Zahoor, T.; Ahmad, R.S.; Arshad, M.U. Biochemical Perspectives of Xylitol Extracted from Indigenous Agricultural By-Product Mung Bean (Vigna Radiata) Hulls in a Rat Model. J. Sci. Food Agric. 2014, 94, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Vongsuvanlert, V.; Tani, Y. Xylitol Production by a Methanol Yeast, Candida boidinii (Kloeckera Sp.) No. 2201. J. Ferment. Bioeng. 1989, 67, 35–39. [Google Scholar] [CrossRef]
- Ling, H.; Cheng, K.; Ge, J.; Ping, W. Statistical Optimization of Xylitol Production from Corncob Hemicellulose Hydrolysate by Candida tropicalis HDY-02. New Biotechnol. 2011, 28, 673–678. [Google Scholar] [CrossRef] [PubMed]
- Cortez, D.V.; Roberto, I.C. Effect of Phosphate Buffer Concentration on the Batch Xylitol Production by Candida guilliermondii. Lett. Appl. Microbiol. 2006, 42, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Winkelhausen, E.; Amartey, S.A.; Kuzmanova, S. Xylitol Production from D-Xylose at Different Oxygen Transfer Coefficients in a Batch Bioreactor. Eng. Life Sci. 2004, 4, 150–154. [Google Scholar] [CrossRef]
- Ding, X.; Xia, L. Effect of Aeration Rate on Production of Xylitol from Corncob Hemicellulose Hydrolysate. Appl. Biochem. Biotechnol. 2006, 133, 263–270. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Roberto, I.C. Xylitol Production from High Xylose Concentration: Evaluation of the Fermentation in Bioreactor under Different Stirring Rates. J. Appl. Microbiol. 2003, 95, 331–337. [Google Scholar] [CrossRef]
- Faria, L.F.F.; Gimenes, M.A.P.; Nobrega, R.; Pereira, N. Influence of Oxygen Availability on Cell Growth and Xylitol Production by Candida guilliermondii. In Biotechnology for Fuels and Chemicals; Humana Press: Totowa, NJ, USA, 2002; pp. 449–458. [Google Scholar] [CrossRef]
- Tani, T.; Taguchi, H.; Akamatsu, T. Analysis of Metabolisms and Transports of Xylitol Using Xylose- and Xylitol-Assimilating Saccharomyces cerevisiae. J. Biosci. Bioeng. 2017, 123, 613–620. [Google Scholar] [CrossRef]
- Schirmer-Michel, Â.C.; Flôres, S.H.; Hertz, P.F.; Matos, G.S.; Ayub, M.A.Z. Production of Ethanol from Soybean Hull Hydrolysate by Osmotolerant Candida guilliermondii NRRL Y-2075. Bioresour. Technol. 2008, 99, 2898–2904. [Google Scholar] [CrossRef]
- Da Silva, R.O.; Serpa, M.D.N.; Brod, F.C.A. Influence of Agitation and Aeration on Xylitol Production by the Yeast Starmerella meliponinorum. Quim. Nova 2020, 43, 705–710. [Google Scholar] [CrossRef]
- Wannawilai, S.; Lee, W.C.; Chisti, Y.; Sirisansaneeyakul, S. Furfural and Glucose Can Enhance Conversion of Xylose to Xylitol by Candida magnoliae TISTR 5663. J. Biotechnol. 2017, 241, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Pérez, A.F.; de Arruda, P.V.; Felipe, M.D.G.D.A. Sugarcane Straw as a Feedstock for Xylitol Production by Candida guilliermondii FTI 20037. Braz. J. Microbiol. 2016, 47, 489–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamburini, E.; Bianchini, E.; Bruni, A.; Forlani, G. Cosubstrate Effect on Xylose Reductase and Xylitol Dehydrogenase Activity Levels, and Its Consequence on Xylitol Production by Candida tropicalis. Enzyme Microb. Technol. 2010, 46, 352–359. [Google Scholar] [CrossRef]
- Castañón-Rodríguez, J.F.; Domínguez-González, J.M.; Ortíz-Muñiz, B.; Torrestiana-Sanchez, B.; de León, J.A.R.; Aguilar-Uscanga, M.G. Continuous Multistep versus Fed-Batch Production of Ethanol and Xylitol in a Simulated Medium of Sugarcane Bagasse Hydrolyzates. Eng. Life Sci. 2015, 15, 96–107. [Google Scholar] [CrossRef]
- Snoek, T.; Verstrepen, K.J.; Voordeckers, K. How Do Yeast Cells Become Tolerant to High Ethanol Concentrations? Curr. Genet. 2016, 62, 475–480. [Google Scholar] [CrossRef]
N Source | Xylitol Yield (g/g) | Cell Yield (g/g) | ||
---|---|---|---|---|
(g/L) | YE | DAP | YE | DAP |
No N-supp | 0.671 ± 0.012 ab | 0.339 ± 0.006 a | ||
1 | 0.796 ± 0.039 a | 0.645 ± 0.005 ab | 0.315 ± 0.018 a | 0.332 ± 0.004 a |
3 | 0.732 ± 0.065 a | 0.690 ± 0.025 ab | 0.334 ± 0.015 a | 0.341 ± 0.055 a |
5 | 0.692 ± 0.056 ab | 0.658 ± 0.008 ab | 0.336 ± 0.002 a | 0.291 ± 0.061 a |
7 | 0.704 ± 0.098 ab | 0.612 ± 0.011 ab | 0.411 ± 0.060 a | 0.295 ± 0.116 a |
10 | 0.622 ± 0.143 ab | 0.526 ± 0.007 b | 0.354 ± 0.038 a | 0.261 ± 0.018 a |
Aeration Conditions | Xylose Used (%) | Xylitol * (g/L) | Qp* (g/L.h) | Yp/s * (g/gxylose) | CDW (g/L) | Yx/s (g/gxylose) |
---|---|---|---|---|---|---|
100 rpm | 28.1 ± 0.0 b | 0.04 ± 0.00 b | 0.001 ± 0.000 d | 0.010 ± 0.001 c | 1.3 ± 0.8 c | 0.308 ± 0.202 c |
1 vvm & 100 rpm | 90.9 ± 1.5 a | 9.67 ± 0.10 a | 0.134 ± 0.001 c | 0.610 ± 0.014 b | 5.4 ± 0.8 b | 0.342 ± 0.064 c |
5% DO | 88.3 ± 4.7 a | 9.54 ± 0.53 a | 0.159 ± 0.009 b | 0.656 ± 0.022 b | 6.0 ± 0.8 b | 0.408 ± 0.048 bc |
10% DO | 91.9 ± 2.1 a | 9.96 ± 0.55 a | 0.186 ± 0.010 a | 0.685 ± 0.029 a | 11.0 ± 0.5 a | 0.765 ± 0.106 ab |
15% DO | 90.3 ± 1.9 a | 10.4 ± 0.3 a | 0.177 ± 0.018 a | 0.697 ± 0.027 a | 12.3 ± 0.8 a | 0.826 ± 0.044 a |
Molasses Supp. | Qxylose (g/L.h) | Xylitol ** (g/L) | Yp/s (g/gxylose) | Qp (g/L.h) | CDW (g/L) | Yx/s (g/gtotal sugar) |
---|---|---|---|---|---|---|
V-only | 0.357 ± 0.029 a | 9.27 ± 0.05 a | 0.499 ± 0.004 a | 0.150 ± 0.001 a | 5.82 ± 0.05 c | 0.193 ± 0.002 b |
M-only | - | - | - | - | 6.57 ± 0.27 a | 0.349 ± 0.013 a |
0.5 g/L | 0.239 ± 0.038 b | 8.19 ± 0.09 b | 0.443 ± 0.005 b | 0.136 ± 0.002 b | 5.25 ± 0.08 d | 0.176 ± 0.020 b |
1 g/L | 0.299 ± 0.000 ab | 8.33 ± 0.04 b | 0.471 ± 0.002 b | 0.139 ± 0.001 b | 5.80 ± 0.03 c | 0.174 ± 0.001 b |
2 g/L | 0.247 ± 0.003 b | 7.70 ± 0.05 c | 0.454 ± 0.003 b | 0.107 ± 0.001 c | 6.03 ± 0.03 bc | 0.168 ± 0.002 b |
3 g/L | 0.263 ± 0.006 b | 6.87 ± 0.14 e | 0.360 ± 0.006 d | 0.096 ± 0.003 d | 6.42 ± 0.02 ab | 0.176 ± 0.001 b |
3.5 g/L | 0.242 ± 0.009 b | 7.26 ± 0.01 d | 0.394 ± 0.020 d | 0.101 ± 0.000 cd | 6.47 ± 0.20 ab | 0.185 ± 0.006 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hor, S.; Kongkeitkajorn, M.B.; Reungsang, A. Sugarcane Bagasse-Based Ethanol Production and Utilization of Its Vinasse for Xylitol Production as an Approach in Integrated Biorefinery. Fermentation 2022, 8, 340. https://doi.org/10.3390/fermentation8070340
Hor S, Kongkeitkajorn MB, Reungsang A. Sugarcane Bagasse-Based Ethanol Production and Utilization of Its Vinasse for Xylitol Production as an Approach in Integrated Biorefinery. Fermentation. 2022; 8(7):340. https://doi.org/10.3390/fermentation8070340
Chicago/Turabian StyleHor, Sreyden, Mallika Boonmee Kongkeitkajorn, and Alissara Reungsang. 2022. "Sugarcane Bagasse-Based Ethanol Production and Utilization of Its Vinasse for Xylitol Production as an Approach in Integrated Biorefinery" Fermentation 8, no. 7: 340. https://doi.org/10.3390/fermentation8070340
APA StyleHor, S., Kongkeitkajorn, M. B., & Reungsang, A. (2022). Sugarcane Bagasse-Based Ethanol Production and Utilization of Its Vinasse for Xylitol Production as an Approach in Integrated Biorefinery. Fermentation, 8(7), 340. https://doi.org/10.3390/fermentation8070340