Culture Age, Growth Medium, Ultrasound Amplitude, and Time of Exposure Influence the Kinetic Growth of Lactobacillus acidophilus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strain and Inoculum Preparation
2.2. Enumeration of Probiotic Bacteria
2.3. L. acidophilus Kinetic Growth Parameters
2.4. Factors Influencing the Growth of Lactobacillus acidophilus
2.5. Selection of the Culture Age
2.6. Selection of Culture Media
2.7. Effect of Sonication Time on the Kinetic Growth Parameters of L. acidophilus
2.8. Effect of Ultrasound Amplitude on the Kinetic Growth Parameters of Lactobacillus acidophilus
2.9. Statistical Analysis
3. Results and Discussion
3.1. Selection of the Culture Age
3.2. Selection of Culture Media
3.3. Effect of Sonication Time on the Kinetic Growth Parameters of L. acidophilus
3.4. Effect of Amplitude Variation on the Kinetic Growth Parameters of L. acidophilus
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef] [PubMed]
- Settanni, L.; Moschetti, G. Non-Starter Lactic Acid Bacteria Used to Improve Cheese Quality and Provide Health Benefits. Food Microbiol. 2010, 27, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Jawan, R.; Abbasiliasi, S.; Tan, J.S.; Mustafa, S.; Halim, M.; Ariff, A.B. Influence of Culture Conditions and Medium Compositions on the Production of Bacteriocin-like Inhibitory Substances by Lactococcus Lactis GH1. Microorganisms 2020, 8, 1454. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, V.F. Ultrasound and Matter—Physical Interactions. Prog. Biophys. Mol. Biol. 2007, 93, 195–211. [Google Scholar] [CrossRef]
- Guimarães, J.T.; Balthazar, C.F.; Scudino, H.; Pimentel, T.C.; Esmerino, E.A.; Ashokkumar, M.; Freitas, M.Q.; Cruz, A.G. High-Intensity Ultrasound: A Novel Technology for the Development of Probiotic and Prebiotic Dairy Products. Ultrason. Sonochem. 2019, 57, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Ojha, K.S.; Kerry, J.P.; Alvarez, C.; Walsh, D.; Tiwari, B.K. Effect of High Intensity Ultrasound on the Fermentation Profile of Lactobacillus Sakei in a Meat Model System. Ultrason. Sonochem. 2016, 31, 539–545. [Google Scholar] [CrossRef]
- Duck, F.; Leighton, T. Frequency Bands for Ultrasound, Suitable for the Consideration of Its Health Effects. J. Acoust. Soc. Am. 2018, 144, 2490–2500. [Google Scholar] [CrossRef] [Green Version]
- Chávez-Martínez, A.; Reyes-Villagrana, R.A.; Rentería-Monterrubio, A.L.; Sánchez-Vega, R.; Tirado-Gallegos, J.M.; Bolivar-Jacobo, N.A. Low and High-Intensity Ultrasound in Dairy Products: Applications and Effects on Physicochemical and Microbiological Quality. Foods 2020, 9, 1688. [Google Scholar] [CrossRef]
- Arakawa, K.; Kawai, Y.; Fujitani, K.; Nishimura, J.; Kitazawa, H.; Komine, K.I.; Kai, K.; Saito, T. Bacteriocin Production of Probiotic Lactobacillus Gasseri LA39 Isolated from Human Feces in Milk-Based Media. Anim. Sci. J. 2008, 79, 634–640. [Google Scholar] [CrossRef]
- Huang, G.; Chen, S.; Tang, Y.; Dai, C.; Sun, L.; Ma, H.; He, R. Stimulation of Low Intensity Ultrasound on Fermentation of Skim Milk Medium for Yield of Yoghurt Peptides by Lactobacillus Paracasei. Ultrason. Sonochem. 2019, 51, 315–324. [Google Scholar] [CrossRef]
- Abadía-García, L.; Castaño-Tostado, E.; Cardador-Martínez, A.; Martín-Del-campo, S.T.; Amaya-Llano, S.L. Production of ACE Inhibitory Peptides from Whey Proteins Modified by High Intensity Ultrasound Using Bromelain. Foods 2021, 10, 2099. [Google Scholar] [CrossRef] [PubMed]
- Ojha, K.S.; Mason, T.J.; O’Donnell, C.P.; Kerry, J.P.; Tiwari, B.K. Ultrasound Technology for Food Fermentation Applications. Ultrason. Sonochem. 2017, 34, 410–417. [Google Scholar] [CrossRef] [PubMed]
- de Almada, C.N.; Almada, C.N.; Martinez, R.C.R.; Sant’Ana, A.S. Paraprobiotics: Evidences on Their Ability to Modify Biological Responses, Inactivation Methods and Perspectives on Their Application in Foods. Trends Food Sci. Technol. 2016, 58, 96–114. [Google Scholar] [CrossRef]
- Żółkiewicz, J.; Marzec, A.; Ruszczyński, M.; Feleszko, W. Postbiotics—A Step beyond Pre-and Probiotics. Nutrients 2020, 12, 2189. [Google Scholar] [CrossRef] [PubMed]
- Rad, A.H.; Maleki, L.A.; Kafil, H.S.; Zavoshti, H.F.; Abbasi, A. Postbiotics as Promising Tools for Cancer Adjuvant Therapy. Adv. Pharm. Bull. 2021, 11, 1–5. [Google Scholar] [CrossRef]
- Dahroud, B.D.; Mokarram, R.R.; Khiabani, M.S.; Hamishehkar, H.; Bialvaei, A.Z.; Yousefi, M.; Kafil, H.S. Low Intensity Ultrasound Increases the Fermentation Efficiency of Lactobacillus Casei Subsp.Casei ATTC 39392. Int. J. Biol. Macromol. 2016, 86, 462–467. [Google Scholar] [CrossRef] [PubMed]
- Potoroko, I.; Kalinina, I.; Botvinnikova, V.; Krasulya, O.; Fatkullin, R.; Bagale, U.; Sonawane, S.H. Ultrasound Effects Based on Simulation of Milk Processing Properties. Ultrason. Sonochem. 2018, 48, 463–472. [Google Scholar] [CrossRef]
- Abesinghe, A.M.N.L.; Islam, N.; Vidanarachchi, J.K.; Prakash, S.; Silva, K.F.S.T.; Karim, M.A. Effects of Ultrasound on the Fermentation Profile of Fermented Milk Products Incorporated with Lactic Acid Bacteria. Int. Dairy J. 2019, 90, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Abbasiliasi, S.; Tan, J.S.; Ibrahim, T.A.T.; Bashokouh, F.; Ramakrishnan, N.R.; Mustafa, S.; Ariff, A.B. Fermentation Factors Influencing the Production of Bacteriocins by Lactic Acid Bacteria: A Review. RSC Adv. 2017, 7, 29395–29420. [Google Scholar] [CrossRef]
- Shortt, C.; O’Brien, J. Handbook of Functional Dairy Products, 1st ed.; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Meng, L.; Li, S.; Liu, G.; Fan, X.; Qiao, Y.; Zhang, A.; Lin, Y.; Zhao, X.; Huang, K.; Feng, Z. The Nutrient Requirements of Lactobacillus Acidophilus LA-5 and Their Application to Fermented Milk. J. Dairy Sci. 2021, 104, 138–150. [Google Scholar] [CrossRef]
- Sánchez, Ó.J.; Barragán, P.J.; Serna, L. Review of Lactobacillus in the Food Industry and Their Culture Media. Rev. Colomb. Biotecnol. 2019, 21, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Tavakoli, M.; Najafi, M.B.H.; Mohebbi, M. Effect of the Milk Fat Content and Starter Culture Selection on Proteolysis and Antioxidant Activity of Probiotic Yogurt. Heliyon 2019, 5, 1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baranyi, J.; Roberts, T.A. Review Paper A Dynamic Approach to Predicting Bacterial Growth in Food. Int. J. Food Microbiol. 1994, 23, 277–294. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaie, F.; Mortazavi, A. Studying the Effects of Ultrasound Shock on Cell Wall Permeability and Survival of Some LAB in Milk. World Appl. Sci. J. 2008, 3, 119–121. [Google Scholar]
- Wang, D.; Sakakibara, M. Lactose Hydrolysis and β-Galactosidase Activity in Sonicated Fermentation with Lactobacillus Strains. Ultrason. Sonochem. 1997, 4, 255–261. [Google Scholar] [CrossRef]
- Racioppo, A.; Corbo, M.R.; Piccoli, C.; Sinigaglia, M.; Speranza, B.; Bevilacqua, A. Ultrasound Attenuation of Lactobacilli and Bifidobacteria: Effect on Some Technological and Probiotic Properties. Int. J. Food Microbiol. 2017, 243, 78–83. [Google Scholar] [CrossRef]
- Kassem, A.; Meade, J.; McGill, K.; Walsh, C.; Gibbons, J.; Lyng, J.; Whyte, P. An Investigation of High Intensity Ultrasonication and Chemical Immersion Treatments on Campylobacter Jejuni and Spoilage Bacteria in Chicken. Innov. Food Sci. Emerg. Technol. 2018, 45, 298–305. [Google Scholar] [CrossRef]
- Gao, S.; Hemar, Y.; Lewis, G.D.; Ashokkumar, M. Inactivation of Enterobacter Aerogenes in Reconstituted Skim Milk by High- and Low-Frequency Ultrasound. Ultrason. Sonochem. 2014, 21, 2099–2106. [Google Scholar] [CrossRef]
- Shokri, S.; Shekarforoush, S.S.; Hosseinzadeh, S. Efficacy of Low Intensity Ultrasound on Fermentative Activity Intensification and Growth Kinetic of Leuconostoc Mesenteroides. Chem. Eng. Process.-Process. Intensif. 2020, 153, 107955. [Google Scholar] [CrossRef]
- Sfakianakis, P.; Topakas, E.; Tzia, C. Comparative Study on High-Intensity Ultrasound and Pressure Milk Homogenization: Effect on the Kinetics of Yogurt Fermentation Process. Food Bioproc. Technol. 2014, 8, 548–557. [Google Scholar] [CrossRef]
- Nöbel, S.; Ross, N.L.; Protte, K.; Körzendörfer, A.; Hitzmann, B.; Hinrichs, J. Microgel Particle Formation in Yogurt as Influenced by Sonication during Fermentation. J Food Eng. 2016, 180, 29–38. [Google Scholar] [CrossRef]
- Ewe, J.A.; Abdullah, W.N.W.; Bhat, R.; Karim, A.A.; Liong, M.T. Enhanced Growth of Lactobacilli and Bioconversion of Isoflavones in Biotin-Supplemented Soymilk upon Ultrasound-Treatment. Ultrason. Sonochem. 2012, 19, 160–173. [Google Scholar] [CrossRef] [PubMed]
Inoculum Age (Days) | yo | Lag | Rate (μmax) | Tmax | R2 |
---|---|---|---|---|---|
7 | 8.95 ± 0.005 a | 7.198 ± 0.355 a | 0.047 ± 0.001 a | 16.87 ± 0.120 a | 0.955 |
1 | 8.71 ± 0.044 b | 1.001 ± 0.091 b | 0.108 ± 0.006 b | 9.42 ± 0.042 b | 0.986 |
Growth Medium | pH * | Counts (Log10 CFU/mL) | ||
---|---|---|---|---|
Initial | Final | Initial | Final | |
MRS | 6.70 ± 0.00 a | 4.12 ± 0.07 a | 6.18 ± 0.00 a | 7.30 ± 0.04 b |
Whole milk | 6.30 ± 0.00 b | 3.93 ± 0.05 b | 6.18 ± 0.00 a | 7.30 ± 0.02 b |
Skim milk | 6.26 ± 0.00 c | 3.91 ± 0.01 b | 6.18 ± 0.00 a | 8.31 ± 0.02 a |
Treatment | yo | Lag | Rate (μmax) | Tmax | R2 |
---|---|---|---|---|---|
Control | 8.71 ± 0.044 a | 1.001 ± 0.091 a | 0.108 ± 0.006 a | 9.420 ± 0.042 c | 0.986 |
60 s | 8.74 ± 0.122 a | 0.882 ± 0.008 a | 0.093 ± 0.013 ab | 10.169 ± 0.163 b | 0.985 |
90 s | 8.81 ± 0.049 a | 0.923 ± 0.133 a | 0.083 ± 0.003 b | 10.449 ± 0.067 a | 0.988 |
Treatment | yo | Lag | Rate (μmax) | Tmax | R2 |
---|---|---|---|---|---|
Control | 8.08 ± 0.000 a | 0.870 ± 0.017 b | 0.500 ± 0.014 b | 2.578 ± 0.024 b | 0.96 |
20%–3 min | 8.08 ± 0.000 a | 0.861 ± 0.019 b | 0.470 ± 0.014 b | 2.622 ± 0.031 b | 0.93 |
30%–3 min | 8.08 ± 0.000 a | 0.923 ± 0.000 a | 1.065 ± 0.000 a | 1.998 ± 0.000 c | 0.93 |
40%–3 min | 8.08 ± 0.000 a | 0.748 ± 0.000 c | 0.475 ± 0.007 b | 2.985 ± 0.031 a | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolivar-Jacobo, N.A.; Reyes-Villagrana, R.A.; Rentería-Monterrubio, A.L.; Sánchez-Vega, R.; Santellano-Estrada, E.; Tirado-Gallegos, J.M.; Chávez-Martínez, A. Culture Age, Growth Medium, Ultrasound Amplitude, and Time of Exposure Influence the Kinetic Growth of Lactobacillus acidophilus. Fermentation 2023, 9, 63. https://doi.org/10.3390/fermentation9010063
Bolivar-Jacobo NA, Reyes-Villagrana RA, Rentería-Monterrubio AL, Sánchez-Vega R, Santellano-Estrada E, Tirado-Gallegos JM, Chávez-Martínez A. Culture Age, Growth Medium, Ultrasound Amplitude, and Time of Exposure Influence the Kinetic Growth of Lactobacillus acidophilus. Fermentation. 2023; 9(1):63. https://doi.org/10.3390/fermentation9010063
Chicago/Turabian StyleBolivar-Jacobo, Norma Angélica, Raúl Alberto Reyes-Villagrana, Ana Luisa Rentería-Monterrubio, Rogelio Sánchez-Vega, Eduardo Santellano-Estrada, Juan Manuel Tirado-Gallegos, and América Chávez-Martínez. 2023. "Culture Age, Growth Medium, Ultrasound Amplitude, and Time of Exposure Influence the Kinetic Growth of Lactobacillus acidophilus" Fermentation 9, no. 1: 63. https://doi.org/10.3390/fermentation9010063
APA StyleBolivar-Jacobo, N. A., Reyes-Villagrana, R. A., Rentería-Monterrubio, A. L., Sánchez-Vega, R., Santellano-Estrada, E., Tirado-Gallegos, J. M., & Chávez-Martínez, A. (2023). Culture Age, Growth Medium, Ultrasound Amplitude, and Time of Exposure Influence the Kinetic Growth of Lactobacillus acidophilus. Fermentation, 9(1), 63. https://doi.org/10.3390/fermentation9010063