Optimization of Solid-State Fermentation Conditions of Quercus liaotungensis by Bacillus subtilis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Culture Medium
2.2. Orthogonal Test to Optimize Fermentation Conditions
2.3. Determination of Conventional Nutrients, DPPH Clear Rate and Tannin Content
2.4. Data Statistics and Analysis
3. Results and Analysis
3.1. Orthogonal Test Results
3.1.1. Effect of Bacillus subtilis Inoculation Amount on Nutritional Value of Quercus liaotungensis
3.1.2. Effect of Soybean Meal Addition on Nutritional Value of Quercus liaotungensis
3.1.3. Effect of Fermentation Temperature on Nutritional Value of Quercus liaotungensis
3.1.4. Effect of Feed-Water Ratio on Nutritional Value of Quercus liaotungensis
3.2. Single Factor Test Results
3.3. Fermentation Results under Optimal Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arora, D.S.; Sharma, R.; Chandra, P. Biodelignification of wheat straw and its effect on in vitro digestibility and antioxidant properties. Int. Biodeterior. Biodegrad. 2011, 65, 352–358. [Google Scholar] [CrossRef]
- Jiguang, W.; Longshen, L.; Weijiang, Z.; Wen, Y. Research Progress on Precision Feeding System for Growing-Finishing Pigs. Chin. J. Anim. Nutr. 2022, 34, 2752–2763. [Google Scholar]
- Ya, D.; Yuexiang, Z.; Qiwen, L.; Yunlu, Z.; Xi, H.; Zhiyong, F.; Zehe, S. Nutritional Value Evaluation of Quercus liaotungensis Seeds in Diets for Growing Pigs in Vivo and in Vitro. Chin. J. Anim. Nutr. 2021, 33, 2568–2574. [Google Scholar]
- Zhang, W.; Zhao, Z.; Zhang, W.; Xue, W. Extraction Process and Antioxidant Activity of Tannins of Quercus Liaotungensis Valonia. Sci. Technol. Food Ind. 2018, 39, 215–221, 240. [Google Scholar] [CrossRef]
- Chen, Z.; Shiguang, J.; Xiuqi, W.; Chunqi, G. Research Progress of Microbial Fermentation Feed in Livestock and Poultry Production. Chin. J. Anim. Nutr. 2020, 32, 3516–3525. [Google Scholar]
- Xiaolin, W.; Zihan, L.; Chuanteng, C.; Guanzhi, F.; Guangning, Z.; Yonggen, Z. Optimization and Value Evaluation of Solid-State Fermentation Conditions for Aging Corn. Chin. J. Anim. Nutr. 2022, 34, 8138–8148. [Google Scholar]
- Song, Y.S.; Pérez, V.G.; Pettigrew, J.E.; Martinez-Villaluenga, C.; de Mejia, E.G. Fermentation of soybean meal and its inclusion in diets for newly weaned pigs reduced diarrhea and measures of immunoreactivity in the plasma. Anim. Feed. Sci. Technol. 2010, 159, 41–49. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, Y.; Lu, Z.; Wang, Y. Solid-state fermentation of corn-soybean meal mixed feed with Bacillus subtilis and Enterococcus faecium for degrading antinutritional factors and enh ancing nutritional value. J. Anim. Sci. Biotechnol. 2017, 8, 50. [Google Scholar] [CrossRef]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. Author Correction: The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2022, 18, 671. [Google Scholar] [CrossRef]
- Medeiros, S.; Xie, J.; Dyce, P.W.; Cai, H.Y.; DeLange, K.; Zhang, H.; Li, J. Isolation of bacteria from fermented food and grass carp intestine and their efficiencies in improving nutrient value of soybean meal in solid state f ermentation. J. Anim. Sci. Biotechnol. 2018, 9, 29. [Google Scholar] [CrossRef] [Green Version]
- Swain, T.; Hillis, W.E. The phenolic constituents of Prunus domestica. I.—The quantitative analysis of phenolic constituents. J. Sci. Food Agric. 1959, 10, 63–68. [Google Scholar] [CrossRef]
- Jinghong, H.; Meng, Z.; Hui, L.; Henan, S.; Chaojie, L.; Yinyan, H.; Shuangxi, F. Analysis of anthocyanin content and antioxidant activity of different varieties of purple leaf lettuce. J. Beijing Univ. Agric. 2014, 29, 4. [Google Scholar]
- Fei, Z.; Di, S.; Lei, R.; Caiyun, F.; Zijun, Z.; Zhengquan, L.; Xiaochun, W.; Jianbo, C. Nutritional Improvement of Tea Residue by Solid-State Fermentation with Aspergillus niger. Chin. J. Anim. Nutr. 2018, 30, 4269–4278. [Google Scholar]
- Zhao, H.; Wang, X.; Tang, J.; Tang, X.; Jia, G.; Liu, G.; Chen, X.; Long, D.; Wang, K. Study on improving the nutritional value of sweet potato residue by solid-state fermentation of compound probiotics. J. Anim. Nutr. 2015, 27, 1191–1198. [Google Scholar]
- Xiaopeng, T.; Hua, Z.; Jiayong, T.; Xuetao, W.; Gang, J.; Guangmang, L.; Xiaoling, C.; Dingbiao, L. Study on the improvement of cassava residue quality by Aspergillus niger solid-state fermentation. J. Anim. Nutr. 2014, 26, 2026–2034. [Google Scholar]
- Krishna, C. Solid-State Fermentation Systems—An Overview. Crit. Rev. Biotechnol. 2008, 25, 1–30. [Google Scholar] [CrossRef]
- Junjun, G.; Tianyong, Z.; Tianzeng, G.; Zhixiang, W. Study on the technology of solid-state fermentation of piglet formula feed by Bacillus subtilis. Feed. Ind. 2018, 39, 49–56. [Google Scholar]
- Rongdi, O.; Juexin, F.; Shengping, W.; Laiqiang, W.; Lili, L.; Bin, Z. Optimization of solid-state fermentation conditions of sweet potato residue. J. Anim. Nutr. 2015, 27, 3302–3310. [Google Scholar]
- Brijwani; Oberoi, H.; Vadlani, P. Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Process Biochem. 2010, 45, 120–128. [Google Scholar] [CrossRef]
- Xiaoyan, L.; Chunmiao, Y.; Lidong, G.; Guoli, Y.; Qingyu, Y. Study on the optimum fermentation conditions for preparing polypeptide feed by solid-state fermentation of high-temperature soybean meal. Soybean Sci. 2011, 30, 285–289. [Google Scholar]
- Yunhe, X.; Yuhong, S.; Yumin, T.; Lili, Z. Study on solid-state fermentation of soybean meal by Bacillus subtilis. Feed. Res. 2013, 3, 85–87. [Google Scholar]
- Biyan, A.; Changzhong, L.; Jiankang, C.; Yang, Y.; Benzhong, M.; Qianni, H.; Xiingfang, Q. Process Screening of Cassava Residue Fermented Feed. Feed. Ind. 2012, 33, 57–60. [Google Scholar]
- Gervais, P.; Molin, P. The role of water in solid-state fermentation. Biochem. Eng. J. 2003, 13, 85–101. [Google Scholar] [CrossRef]
- Min, F.; Jun, H.; Bing, Y.; Ping, Z.; Zhiqing, H.; Xiangbing, M.; Jie, Y.; Daiwen, C. Effect of mixed bacteria solid-state fermentation on nutritional value and anti-nutritional factors of rapeseed cake. J. Anim. Nutr. 2013, 25, 1579–1586. [Google Scholar]
Levels | Factors | |||
---|---|---|---|---|
Substrate/Moisture (A) | Inoculation (B) cfu/mL | Soybean (C) | Fermentation Temperature (D) | |
1 | 1:1.5 | 106 | 1% | 28 °C |
2 | 1:1 | 107 | 5% | 33 °C |
3 | 1:0.8 | 108 | 10% | 38 °C |
Experiment Number | Factors | Tannin % | CP % | |||
---|---|---|---|---|---|---|
A | B | C | D | |||
1 | 1 | 1 | 1 | 1 | 11.75 | 6.09 |
2 | 1 | 2 | 2 | 2 | 10.80 | 6.94 |
3 | 1 | 3 | 3 | 3 | 7.43 | 8.51 |
4 | 2 | 1 | 2 | 3 | 8.49 | 7.01 |
5 | 2 | 2 | 3 | 1 | 8.06 | 9.02 |
6 | 2 | 3 | 1 | 2 | 8.22 | 5.82 |
7 | 3 | 1 | 3 | 2 | 5.79 | 6.49 |
8 | 3 | 2 | 1 | 3 | 11.06 | 5.72 |
9 | 3 | 3 | 2 | 1 | 9.14 | 7.78 |
Tannin % | ||||||
K1 | 10.00 | 8.68 | 10.34 | 9.65 | ||
K2 | 8.26 | 9.97 | 9.48 | 8.27 | ||
K3 | 8.66 | 8.26 | 7.09 | 9.00 | ||
R | 1.74 | 1.71 | 3.25 | 1.38 | ||
Optimum combination | A1B2C1D1 | |||||
CP % | ||||||
K1 | 7.18 | 6.53 | 5.88 | 7.63 | ||
K2 | 7.28 | 7.23 | 7.24 | 6.42 | ||
K3 | 6.66 | 7.37 | 8.01 | 7.08 | ||
R | 0.62 | 0.84 | 2.13 | 1.21 | ||
Optimum combination | A2B3C3D1 |
Items | Inoculation of Inoculum | ||
---|---|---|---|
106 | 107 | 108 | |
Tannin % CP % | 5.73 ± 0.39 8.78 ± 0.15 a | 6.07 ± 0.29 8.69 ± 0.09 a | 6.02 ± 1.28 8.23 ± 0.21 b |
Items | Soybean Meal Addition Soybean | ||
---|---|---|---|
1% | 5% | 10% | |
Tannin % | 9.67 ± 0.25 a | 8.30 ± 0.22 b | 7.29 ± 0.13 c |
CP % | 6.44 ± 0.49 c | 7.71 ± 0.31 b | 9.43 ± 0.13 a |
Items | Fermentation Temperature | ||
---|---|---|---|
28 °C | 33 °C | 38 °C | |
Tannin % | 7.47 ± 0.27 | 6.02 ± 1.28 | 6.70 ± 0.13 |
CP % | 9.39 ± 0.33 a | 8.23 ± 0.21 b | 8.42 ± 0.14 b |
Items | Substrate/Moisture | ||
---|---|---|---|
1:1.5 | 1:1 | 1:0.8 | |
Tannin % | 7.83 ± 0.26 a | 7.35 ± 0.21 b | 7.16 ± 0.10 b |
CP % | 9.24 ± 0.36 | 8.96 ± 0.06 | 9.35 ± 0.25 |
Items | Fermentation Time/d | ||
---|---|---|---|
1 d | 2 d | 3 d | |
Tannin % | 6.58 ± 0.13 a | 6.00 ± 0.17 b | 4.71 ± 0.10 c |
CP % | 8.28 ± 0.12 b | 8.65 ± 0.13 b | 9.08 ± 0.10 a |
Items | Control Group | Fermentation Group | Improvement Rate |
---|---|---|---|
Tannin % | 12.65 ± 0.10 a | 4.71 ± 0.10 b | −62.77 |
DPPH clear rate % | 73.33 ± 0.02 a | 40.00 ± 0.03 b | −45.45 |
CP % | 5.47 ± 0.09 b | 9.07 ± 0.10 a | 65.81 |
EE % | 4.51 ± 0.39 a | 1.49 ± 0.27 b | −66.96 |
Ash % | 2.81 ± 0.06 b | 2.94 ± 0.03 a | 4.63 |
CF % | 4.93 ± 0.11 a | 1.63 ± 0.07 b | −66.94 |
GE (kcal/g) | 4.08 ± 0.01 b | 4.31 ± 0.01 a | 5.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Ma, L.; Wang, L.; Zhang, Z.; Chen, Y.; Chen, J.; Jiang, Q.; Song, Z.; He, X.; Tan, B.; et al. Optimization of Solid-State Fermentation Conditions of Quercus liaotungensis by Bacillus subtilis. Fermentation 2023, 9, 75. https://doi.org/10.3390/fermentation9010075
Li C, Ma L, Wang L, Zhang Z, Chen Y, Chen J, Jiang Q, Song Z, He X, Tan B, et al. Optimization of Solid-State Fermentation Conditions of Quercus liaotungensis by Bacillus subtilis. Fermentation. 2023; 9(1):75. https://doi.org/10.3390/fermentation9010075
Chicago/Turabian StyleLi, Cong, Longteng Ma, Lifen Wang, Zixi Zhang, Yuguang Chen, Jiashun Chen, Qian Jiang, Zehe Song, Xi He, Bie Tan, and et al. 2023. "Optimization of Solid-State Fermentation Conditions of Quercus liaotungensis by Bacillus subtilis" Fermentation 9, no. 1: 75. https://doi.org/10.3390/fermentation9010075
APA StyleLi, C., Ma, L., Wang, L., Zhang, Z., Chen, Y., Chen, J., Jiang, Q., Song, Z., He, X., Tan, B., Xiao, D., & Ma, X. (2023). Optimization of Solid-State Fermentation Conditions of Quercus liaotungensis by Bacillus subtilis. Fermentation, 9(1), 75. https://doi.org/10.3390/fermentation9010075