Impact of Nitrogen and Elemental Sulfur on Formation of Volatile Sulfur Compounds during Fermentation of Pinot Noir Grapes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Effect of Elemental Sulfur on Volatile Sulfur Compounds
2.2. Impact of Nitrogen Composition and Concentration, and Elemental Sulfur on Volatile Sulfur Compounds
2.3. Volatile Sulfur Compounds Analysis
2.4. Cysteine and Methionine Analysis
2.5. Glutathione Analysis
2.6. Statistical Analysis
3. Results
3.1. Elemental Sulfur and Pinot Noir Fermentation
3.2. Impact of Nitrogen Composition and Concentration, and Elemental Sulfur on Volatile Sulfur Compounds
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rauhut, D. Yeast production of sulfur compounds. In Wine Microbiology and Biotechnology; Fleet, G.H., Ed.; Harwood Academic Publishers: Chur, Switzerland, 1993. [Google Scholar]
- Acree, T.E.; Sonoff, E.P.; Splittstoesser, D.F. Effect of yeast strain and type of sulfur compound on hydrogen sulfide production. Am. J. Enol. Vitic. 1972, 23, 6–9. [Google Scholar] [CrossRef]
- Giudici, P.; Kunkee, R.E. The effect of nitrogen deficiency and sulfur-containing amino acids on the reduction of sulfate to hydrogen sulfide by wine yeasts. Am. J. Enol. Vitic. 1994, 45, 107–112. [Google Scholar] [CrossRef]
- Jiranek, V.; Langridge, P.; Henschke, P.A. Regulation of hydrogen sulfide liberation in wine-producing Saccharomyces cerevisiae strains by assimilable nitrogen. Appl. Environ. Microbiol. 1995, 61, 461–467. [Google Scholar] [CrossRef]
- Spiropoulos, A.; Tanaka, J.; Flerianos, I.; Bisson, L.F. Characterization of hydrogen sulfide formation in commercial and natural wine isolates of Saccharomyces. Am. J. Enol. Vitic. 2000, 51, 233–248. [Google Scholar] [CrossRef]
- Kumar, G.R.; Ramakrishnan, V.; Bisson, L.F. Survey of hydrogen sulfide production in wine strains of Saccharomyces cerevisiae. Am. J. Enol. Vitic. 2010, 61, 365–371. [Google Scholar] [CrossRef]
- Viviers, M.Z.; Smith, M.E.; Wilkes, E.; Smith, P. Effects of five metals on the evolution of hydrogen sulfide, methanethiol, and dimethyl sulfide during anaerobic storage of Chardonnay and Shiraz wines. J. Agric. Food Chem. 2011, 61, 12385–12396. [Google Scholar] [CrossRef]
- Schutz, M.; Kunkee, R.E. Formation of hydrogen sulfide from elemental sulfur during fermentation by wine yeast. Am. J. Enol. Vitic. 1977, 28, 137–144. [Google Scholar] [CrossRef]
- Linderholm, A.; Dietzel, K.; Hirst, M.; Bisson, L.F. Identification of MET10-932 and characterization as an allele reducing hydrogen sulfide formation in wine strains of Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2010, 76, 7699–7707. [Google Scholar] [CrossRef]
- Wang, X.D.; Bohlscheid, J.C.; Edwards, C.G. Fermentative activity and production of volatile compounds by Saccharomyces grown in synthetic grape juice media deficient in assimilable nitrogen and/or pantothenic acid. J. Appl. Microbiol. 2003, 94, 349–359. [Google Scholar] [CrossRef]
- Mendes-Ferreira, A.; Mendes-Faia, A.; Leão, C. Survey of hydrogen sulphide production by wine yeasts. J. Food Prot. 2002, 65, 1033–1037. [Google Scholar] [CrossRef]
- Karagiannis, S.; Lanaridis, P. The effect of various vinification parameters on the development of several volatile sulfur compounds in Greek white wines of the cultivars Batiki and Muscat of Hamburg. Am. J. Enol. Vitic. 1999, 50, 334–342. [Google Scholar] [CrossRef]
- Bisson, L.F.; Butzke, C.E. Diagnosis and Rectification of Stuck and Sluggish Fermentations. Am. J. Enol. Vitic. 2000, 51, 168–177. [Google Scholar] [CrossRef]
- Park, S.K.; Boulton, R.B.; Noble, A.C. Formation of hydrogen sulfide and glutathione during fermentation of white grape musts. Am. J. Enol. Vitic. 2000, 51, 91–97. [Google Scholar] [CrossRef]
- Mendes-Ferreira, A.; Barbosa, C.; Falco, V.; Leao, C.; Mendes-Faia, A. The production of hydrogen sulphide and other aroma compounds by wine strains of Saccharomyces cerevisiae in synthetic media with different nitrogen concentrations. J. Ind. Microbiol. Biotechnol. 2009, 36, 527. [Google Scholar] [CrossRef]
- Ugliano, M.; Fedrizzi, B.; Siebert, T.; Travis, B.; Magno, F.; Versini, G.; Henschke, P.A. Effect of nitrogen supplementation and Saccharomyces species on hydrogen sulfide and other volatile sulfur compounds in Shiraz fermentation and wine. J. Agric. Food Chem. 2009, 57, 4948–4955. [Google Scholar] [CrossRef]
- Fang, Y.; Watson, B.; Zhu, D.; Tsai, I.-M.; Qian, M.C. Volatile sulfur compounds in Pinot noir wines affected by vineyard irrigation, tillage, and nitrogen supplementation. J. Food Bioact. 2022, 20, 72–79. [Google Scholar] [CrossRef]
- Ugliano, M.; Kolouchova, R.; Henschke, P.A. Occurrence of hydrogen sulfide in wine and in fermentation: Influence of yeast strain and supplementation of yeast available nitrogen. J. Ind. Microbiol. Biotechnol. 2011, 38, 423–429. [Google Scholar] [CrossRef]
- Jastrzembski, J.A.; Allison, R.B.; Friedberg, E.; Sacks, G.L. Role of elemental sulfur in forming latent precursors of H2S in wine. J. Agric. Chem. Food Chem. 2017, 65, 10542–10549. [Google Scholar] [CrossRef]
- Thomas, C.S.; Gubler, D.W.; Silacci, M.W.; Miller, R. Changes in elemental sulfur residue on Pinot noir and Cabernet sauvignon grape berries during the growing season. Am. J. Enol. Vitic. 1993, 44, 205–210. [Google Scholar] [CrossRef]
- Thomas, C.S.; Boutlon, R.B.; Silacci, M.W.; Gubler, D.W. The effect of elemental sulfur, yeast strain, and fermentation medium on hydrogen sulfide production during fermentation. Am. J. Enol. Vitic. 1993, 44, 211–216. [Google Scholar] [CrossRef]
- Kwasniewski, M.T.; Sacks, G.L.; Wilcox, W.F. Persistence of elemental sulfur spray residue on grapes during ripening and vinification. Am. J. Enol. Vitic. 2014, 65, 453–462. [Google Scholar] [CrossRef]
- Rohwerder, T. The sulfane sulfur of persulfides is the actual substrate of the sulfur-oxidizing enzymes from Acidithiobacillus and Acidiphilium spp. Microbiology 2003, 149, 1699–1710. [Google Scholar] [CrossRef] [PubMed]
- Kwasniewski, M.T.; Allison, R.B.; Wilcox, W.F.; Sacks, G.L. Convenient, inexpensive quantification of elemental sulfur by simultaneous in situ reduction and colorimetric detection. Anal. Chim. Acta 2011, 703, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Takush, D.T.; Osborne, J.P. Investigating high hydrostatic pressure processing as a tool for studying yeast during red winemaking. Am. J. Enol. Vitic. 2011, 62, 536–541. [Google Scholar] [CrossRef]
- Dukes, B.C.; Butzke, C.E. Rapid determination of primary amino acids in grape juice using an o-phthaldialdehyde/N-acetyl L-cysteine spectrophotometric assay. Am. J. Enol. Vitic. 1998, 49, 125–134. [Google Scholar] [CrossRef]
- Ugliano, M.; Henschke, P.A. Comparison of three methods for accurate quantification of hydrogen sulfide during fermentation. Anal. Chim. Acta 2010, 660, 87–91. [Google Scholar] [CrossRef]
- Lee, J.; Schreiner, P.R. Free amino acid profiles from ‘Pinot noir’ grapes are influenced by vine N-status and sample preparation method. Food Chem. 2010, 119, 484–489. [Google Scholar] [CrossRef]
- Fang, Y.; Qian, M.C. Sensitive quantification of sulfur compounds in wine by headspace solid-phase microextraction technique. J. Chrom. A 2005, 1080, 177–185. [Google Scholar] [CrossRef]
- Henderson, J.W.; Ricker, R.D.; Bidlingmeyer, B.A.; Woodward, C. Rapid, Accurate, Sensitive, and Reproducible HPLC Analysis of Amino Acids; Publication Part No. 5980-1193E; Agilent: Santa Clara, CA, USA, 2001. [Google Scholar]
- Kraft, D. Impact of Lees Content, Nitrogen, and Elemental Sulfur on Volatile Sulfur Compound Formation in Vitis vinifera L. cv. ‘Pinot noir’ Wine. Master’s Thesis, Oregon State University, Corvallis, OR, USA, 2015. [Google Scholar]
- Moore, T.; Le, A.; Niemi, A.-K.; Kwan, T.; Cusmano-Ozog, K.; Enns, G.M.; Cowan, T.M. A new LC–MS/MS method for the clinical determination of reduced and oxidized glutathione from whole blood. J. Chrom. B 2013, 929, 51–55. [Google Scholar] [CrossRef]
- Zeeman, W.; Snyman, J.P.; van Wyk, C.J. The influence of yeast strain and malolactic fermentation on some volatile bouquet substances and on quality of table wines. In Grape and Wine Centennial Symposium; University of California Press: Berkeley, CA, USA, 1982; pp. 79–80. [Google Scholar]
- Franco-Luesma, E.; Ferreira, V. Reductive off-odors in wines: Formation and release of H2S and methanethiol during accelerated anoxic storage of wines. Food Chem. 2015, 199, 42–50. [Google Scholar] [CrossRef]
- Bekker, M.Z.; Wilkes, E.N.; Smith, P.A. Evaluation of putative precursors of key ‘reductive’ compounds in wines post-bottling. Food Chem. 2018, 245, 676–686. [Google Scholar] [CrossRef] [PubMed]
- Leppanen, O.A.; Denslow, J.; Ronkainen, P.P. Determination of thioacetates and some other volatile sulfur compounds in alcoholic beverages. J. Agric. Food Chem. 1980, 28, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Ugliano, M. Oxygen contribution to wine aroma evolution during bottle aging. J. Agric. Food Chem. 2013, 61, 6125–6136. [Google Scholar] [CrossRef] [PubMed]
- Winter, G.; Cordente, A.G.; Curtin, C. Formation of hydrogen sulfide from cysteine in Saccharomyces cerevisiae BY4742: Genome wide screen reveals a central role of the vacuole. PLoS ONE 2014, 9, e113869. [Google Scholar] [CrossRef]
- Janeš, L.; Lisjak, K.; Vanzo, A. Determination of glutathione content in grape juice and wine by high-performance liquid chromatography with fluorescence detection. Anal. Chim. Acta 2010, 674, 239–242. [Google Scholar] [CrossRef]
- Eschenbruch, R. Sulfite and sulfide formation during winemaking—A review. Am. J. Enol. Vitic. 1974, 25, 157–161. [Google Scholar] [CrossRef]
Treatment | Total H2S (ug/L) | <1 °Brix H2S (ug/L) | |
---|---|---|---|
P1Y1 | 0 µg/g S0 | ND † | ND † |
5 µg/g S0 | 35.7 ± 8.8 c | 2.0 ± 3.5 c | |
15 µg/g S0 | 619.9 ± 98.6 b | 136.8 ± 84.1 b | |
UCD522 | 0 µg/g S0 | 489.9 ± 68.9 b | 6.8 ± 8.4 c |
5 µg/g S0 | 870.9 ± 342.2 b | 5.4 ± 6.2 c | |
15 µg/g S0 | 2796.5 ± 124.4 a | 221.8 ± 37.9 a | |
Source of variation | |||
Yeast | *** | ** | |
S0 | *** | *** | |
Yeast x S0 | *** | * |
Treatment | Met (mg/L) | Cys (mg/L) | GSH (µg/L) | GSSG (µg/L) | |
---|---|---|---|---|---|
UCD522 | 0 µg/g S0 | 2.6 ± 1.2 b | 2.0 ± 0.2 | 0.5 ± 0.2 | 296.3 ± 153.2 d |
5 µg/g S0 | 1.9 ± 0.9 b | 1.9 ± 0.4 | 0.9 ± 0.1 | 1009.6 ± 46.8 c | |
15 µg/g S0 | 1.2 ± 0.2 b | 2.2 ± 0.1 | 0.6 ± 0.1 | 2159.7 ± 319.1 a | |
P1Y2 | 0 µg/g S0 | 6.7 ± 2.7 a | 2.7 ± 0.8 | 0.3 ± 0.3 | 1047.5 ± 360.4 c |
5 µg/g S0 | 1.9 ± 0.3 b | 3.3 ± 0.1 | 0.6 ± 0.6 | 1149.8 ± 249.4 c | |
15 µg/g S0 | 2.7 ± 0.8 b | 2.0 ± 0.6 | 0.8 ± 0.3 | 1529.6 ± 239.4 b | |
Source of variation | |||||
Yeast | ns | ns | ns | * | |
S0 | * | ns | ns | ** | |
Yeast x S0 | ns | ns | ns | ** |
H2S | MeSH | CS2 | DMS | DES | MeSOAc | DMDS | EtSOAc | DEDS | DMTS | ||
---|---|---|---|---|---|---|---|---|---|---|---|
UCD522 | 0 µg/g S0 | ND † | ND | 0.09 ± 0.01 ab | ND | ND | ND | ND | ND | ND | ND |
5 µg/g S0 | ND | ND | 0.06 ± 0.01 bc | ND | ND | 2.06 ± 1.02 c | ND | ND | ND | ND | |
15 µg/g S0 | ND | ND | 0.08 ± 0.02 b | ND | ND | 8.02 ± 0.15 b | ND | ND | ND | ND | |
P1Y2 | 0 µg/g S0 | ND | ND | 0.04 ± 0.01 c | ND | ND | ND | ND | ND | ND | ND |
5 µg/g S0 | ND | ND | 0.08 ± 0.01 b | ND | ND | 2.31 ± 0.17 c | ND | ND | ND | ND | |
15 µg/g S0 | ND | ND | 0.11 ± 0.01 a | ND | ND | 11.89 ± 0.93 a | ND | ND | ND | ND | |
Source of variation | |||||||||||
Yeast | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | |
S0 | ns | ns | * | ns | ns | ** | ns | ns | ns | ns | |
Yeast x S0 | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Treatment | Total H2S (ug/L) | <1 °Brix H2S (ug/L) |
---|---|---|
Control | 595.2 ± 107.1 c | ND † |
DAP | 1146.1 ± 67.92 b | 6.7 ± 1.1 d |
AA | 642.9 ± 46.8 c | 13.6 ± 1.2 c |
10 µg/g S0 | 1302.7 ± 108.2 b | 6.8 ± 0.7 d |
DAP + 10 µg/g S0 | 2068.1 ± 339.8 a | 241.5 ± 14.5 b |
AA + 10 µg/g S0 | 812.9 ± 56.2 c | 122.4 ± 4.9 a |
H2S | MeSH | CS2 | DMS | DES | MeSOAc | DMDS | EtSOAc | DEDS | DMTS | |
---|---|---|---|---|---|---|---|---|---|---|
Control | ND † | 0.83 ± 0.72 | 0.16 ± 0.03 b | ND | ND | 2.88 ± 1.34 d | ND | ND | ND | ND |
S0 | 1.25 ± 2.17 c | 0.53 ± 0.91 | 0.24 ± 0.03 ab | ND | ND | 6.83 ± 1.81 c | ND | ND | ND | ND |
DAP | ND | 1.54 ± 0.24 | 0.16 ± 0.03 b | ND | ND | 11.76 ± 2.62 b | ND | ND | ND | ND |
DAP & S0 | 2.60 ± 2.68 bc | 1.75 ± 0.23 | 0.15 ± 0.02 b | ND | ND | 16.08 ± 0.56 a | ND | 0.71 ± 0.19 ab | ND | ND |
AA | 8.55 ± 1.01 a | 1.97 ± 0.23 | 0.17 ± 0.04 b | ND | ND | 15.09 ± 1.17 a | ND | 0.35 ± 0.30 b | ND | ND |
AA & S0 | 5.70 ± 2.09 b | 1.66 ± 0.41 | 0.26 ± 0.06 a | ND | ND | 16.50 ± 2.52 a | ND | 0.93 ± 0.06 a | ND | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kraft, D.; Zhou, Q.; Qian, M.; Osborne, J. Impact of Nitrogen and Elemental Sulfur on Formation of Volatile Sulfur Compounds during Fermentation of Pinot Noir Grapes. Fermentation 2023, 9, 904. https://doi.org/10.3390/fermentation9100904
Kraft D, Zhou Q, Qian M, Osborne J. Impact of Nitrogen and Elemental Sulfur on Formation of Volatile Sulfur Compounds during Fermentation of Pinot Noir Grapes. Fermentation. 2023; 9(10):904. https://doi.org/10.3390/fermentation9100904
Chicago/Turabian StyleKraft, Daniel, Qin Zhou, Michael Qian, and James Osborne. 2023. "Impact of Nitrogen and Elemental Sulfur on Formation of Volatile Sulfur Compounds during Fermentation of Pinot Noir Grapes" Fermentation 9, no. 10: 904. https://doi.org/10.3390/fermentation9100904
APA StyleKraft, D., Zhou, Q., Qian, M., & Osborne, J. (2023). Impact of Nitrogen and Elemental Sulfur on Formation of Volatile Sulfur Compounds during Fermentation of Pinot Noir Grapes. Fermentation, 9(10), 904. https://doi.org/10.3390/fermentation9100904