Exploring the Prospects of Fermenting/Co-Fermenting Marine Biomass for Enhanced Bioethanol Production
Abstract
:1. Introduction
2. Chemical Composition of Different Feedstocks Hydrolysates
3. Macroalgae
3.1. Naturally-Growing Macroalgae
3.2. Macroalgae Farming
3.2.1. Hatchery Production
3.2.2. On-Site Seaweed Farming
4. Seagrass
4.1. Species Diversity
4.2. Cell Wall Structure
4.3. Seagrass Cultivation
5. Biochemical Composition of Macroalgae and Seagrass
5.1. Carbohydrates in Marine Biomass
5.1.1. Green Macroalgae
Polysaccharides | Macroalgae | Seagrass | ||
---|---|---|---|---|
Chlorophyta | Rhodophyta | Phaeophyta | ||
Crystalline polysaccharides |
|
|
|
|
Hemicellulose |
|
|
|
|
Matrix Carboxylic polysaccharides |
| Not available |
| Not available |
Matrix-sulfated polysaccharides |
|
|
| Not available |
Storage carbohydrates |
|
|
|
|
5.1.2. Red Macroalgae
5.1.3. Brown Macroalgae
5.1.4. Seagrass
6. Marine Biomass Conversion into Bioethanol
6.1. Pretreatment
6.1.1. Physical Pretreatment
6.1.2. Chemical Pretreatments
- (a)
- Steam explosion pretreatment
- (b)
- Acid pretreatment
- (c)
- Alkaline pretreatment
6.1.3. Biological Pretreatment
6.1.4. Combined Pretreatment Method
6.2. Hydrolysis
6.2.1. Acid and Alkaline Hydrolysis
6.2.2. Enzymatic Hydrolysis
Group | Algal Species | Substrate Concentration | Pretreatment Methods | Conditions of Process | Sugars (Yield) | Refs. |
---|---|---|---|---|---|---|
Red macroalgae | Gelidium elegans | 200 g L−1 | Acidolysis | 2.5% H2SO4, 120 °C, 40 min | Gal (0.238 g/g), Glu (0.243 g/g), Man (0.005 g/g), Xyl (0.010 g/g) | [175] |
G. amansii | 120 g L−1 | Acidolysis + enzymatic hydrolysis | 144 mM H2SO4, 150 °C, 10 min, 16 U/mL Viscozyme L and Celluclast 1.5 L (1:1), 45 °C, pH 5.0, 45 min | Gal (0.238 g/g), Glu (0.187 g/g) | [176] | |
Gracilaria salicornia | 168 g L−1 | Acidolysis Enzymatic hydrolysis | 2% H2SO4, 120 °C, 30 min 5 g/L cellulase, 40 °C, 4 h, pH 5.0 | RS (0.0043 g/g) RS (0.0138 g/g) | [133] | |
G. lemaneiformis | 30 g L−1 5 g L−1 | Acidolysis Enzymatic hydrolysis | 0.3 M HCl, 80 °C, 2 h 10 U/mL β-agarase, 55 °C, 2 h | RS (0.200 g/g) RS (0.896 g/g) | [177] | |
Green macroalgae | Ulva lactuca | 200 g L−1 | Acidolysis | 1% H2SO4, 125 °C, 30 min | RS (0.180 g/g), Glu (0.152 g/g) | [178] |
100 g L−1 | Acidolysis | 1% H2SO4, 125 °C, 30 min | Glu(0.041 g/g), Ara (0.087 g/g), Xyl (0.024 g/g) | [179] | ||
100 g L−1 | Acidolysis + enzymatic hydrolysis | 7.5% H2SO4, 150 °C, 10 min, 0.3 mL/g commercial cellulase cocktail, 50 °C, pH 5.0, 96 h | Glu (0.082 g/g), Rha (0.070 g/g), Xyl (0.045 g/g), Gal (0.010 g/g) | [152] | ||
200 g L−1 | Enzymatic hydrolysis + acidolysis | Deionized water, 150 °C, 10 min, 0.3 mL/g cellulase, 50 °C, stirring 24 h, centrifugation, 12 M H2SO4, 30 °C, 1 h, 1 M H2SO4, 100 °C, 3 h | Glu (0.113 g/g), Rha (0.090 g/g), Xyl (0.029 g/g), Gal (0.007 g/g) | [180] | ||
U. reticulata | 50 g L−1 | Acidolysis + enzymatic hydrolysis | 0.5 M H2SO4, 120 °C, 90 min 50 IU/g Viscozyme L, 45 °C, 24 h | RS (0.609 g/g) | [181] | |
Rhizoclonium spp. | 300 g L−1 | Acidolysis + enzymatic hydrolysis | 3% H2SO4, 95 °C, 1 h, 2.0 mL commercial enzyme cocktail (CELLIC® C TEC2), 50 °C, pH 6.3, 160 rpm, 24 h | Glu (0.558 g/g) | [182] | |
Ulva (Enteromorpha) intestinalis | 100 g L−1 | Acidolysis + enzymatic hydrolysis | 270 mM H2SO4, 121 °C, 60 min, 16 U/mL Viscozyme L and Celluclast 1.5 L (1:1), 45 °C, pH 5.0, 150 rpm, 36 h | Glu (0.166 g/g), Xyl (0.076 g/g) | [183] | |
Brown macroalgae | Saccharina spp. | 100 g L−1 | Grinding extraction | 65 °C, Grinding for 1 h, 20 Volume diH2O, pH 2.0 | Man (0.261 g/g), Glu (0.047 g/g) | [184] |
Dilophus fasciola | 1 g L−1 whole biomass | Acidolysis | 5% H2SO4, 121 °C, 30 min | RS 31.98 g/L | [95] | |
1 g L−1 free lipid biomass | Acidolysis | 5% H2SO4, 121 °C, 30 min | RS 37.2 g/L | [95] | ||
Padina tetrastromatica | 2 g L−1 | Acidolysis | 1% H2SO4, 100 °C, 1 h | RS (0.045 g/g) | [185] | |
Laminaria japonica | 100 g L−1 | Acidolysis | 0.15 M H2SO4, 121 °C, 60 min | Glu (0.300 g/g) | [186] | |
50 g L−1 | Enzymatic hydrolysis | 10 mL/g Cellulases mixture, (NS81016; Novozymes A/S) 45 °C, 24 h | Man (0.092 g/g), Glu (0.180 g/g) | [187] | ||
100 g L−1 | Acid hydrolysis Acidolysis+ enzymatic hydrolysis | 0.2 M H2SO4, 121 °C, 20min Novozymes Biomass Kit, pH 5.5, 50 °C, 150 rpm, 18 h | RS (0.102 g/g) RS (0.293 g/g) | [188] | ||
Ascophylum nodosum | 100 g L−1 | Acid hydrolysis Acidolysis + enzymatic hydrolysis | 0.2 M H2SO4, 121 °C, 20min, Novozymes Biomass Kit, pH 5.5, 50 °C, 150 rpm, 18 h | RS (0.125 g/g) RS (0.156 g/g) | [188] | |
Sargassum fulvellum (72%), Hizikia fusiformis (18%), Undaria pinnatifida (6.2%) | 80 g L−1 | Acidolysis + enzymatic hydrolysis | 138 mM H2SO4, 160 °C, 10 min, 16 unit/mL Viscozyme L (1.2 FBG/mL), 45 °C, 48 h | Gal (0.188 g/g), Glu (0.2 g/g), Man (0.037 g/g) | [189] |
6.3. Fermentation
6.3.1. Separate Hydrolysis and Fermentation (SHF)
6.3.2. Simultaneous Saccharification and Fermentation (SSF)
6.3.3. Other Fermentation Methods
6.4. Bioethanol Recovery
7. Co-Fermentation
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- MMR Ethanol Market: Global Industry Analysis and Forecast (2023–2029). Available online: https://www.maximizemarketresearch.com/market-report/global-ethanol-market/25241/ (accessed on 25 September 2023).
- Panahi, H.K.S.; Dehhaghi, M.; Aghbashlo, M.; Karimi, K.; Tabatabaei, M. Shifting Fuel Feedstock from Oil Wells to Sea: Iran Outlook and Potential for Biofuel Production from Brown Macroalgae (Ochrophyta; Phaeophyceae). Renew. Sustain. Energy Rev. 2019, 112, 626–642. [Google Scholar] [CrossRef]
- Abdelsalam, I.; Elshobary, M.; Eladawy, M.M.; Nagah, M. Utilization of Multi-Tasking Non-Edible Plants for Phytoremediation and Bioenergy Source—A Review. Phyton 2019, 88, 69–90. [Google Scholar] [CrossRef]
- Wargacki, A.J.; Leonard, E.; Win, M.N.; Regitsky, D.D.; Santos, C.N.S.; Kim, P.B.; Cooper, S.R.; Raisner, R.M.; Herman, A.; Sivitz, A.B. An Engineered Microbial Platform for Direct Biofuel Production from Brown Macroalgae. Science 2012, 335, 308–313. [Google Scholar] [CrossRef]
- Elsayed, M.; Abomohra, A.; Ai, P.; Wang, D.; El-Mashad, H.; Zhang, Y. Biorefining of Rice Straw by Sequential Fermentation and Anaerobic Digestion for Bioethanol and/or Biomethane Production: Comparison of Structural Properties and Energy Output. Bioresour. Technol. 2018, 268, 183–189. [Google Scholar] [CrossRef]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The Promising Future of Microalgae: Current Status, Challenges, and Optimization of a Sustainable and Renewable Industry for Biofuels, Feed, and Other Products. Microb. Cell Fact. 2018, 17, 36. [Google Scholar] [CrossRef]
- Abomohra, A.; Hanelt, D. Recent Advances in Micro-/Nanoplastic (MNPs) Removal by Microalgae and Possible Integrated Routes of Energy Recovery. Microorganisms 2022, 10, 2400. [Google Scholar] [CrossRef]
- Almutairi, A.W. Full Utilization of Marine Microalgal Hydrothermal Liquefaction Liquid Products through a Closed-Loop Route: Towards Enhanced Bio-Oil Production and Zero-Waste Approach. 3 Biotech 2022, 12, 209. [Google Scholar] [CrossRef]
- Lü, J.; Sheahan, C.; Fu, P. Metabolic Engineering of Algae for Fourth Generation Biofuels Production. Energy Environ. Sci. 2011, 4, 2451–2466. [Google Scholar] [CrossRef]
- Han, S.; Jin, W.; Chen, Y.; Tu, R.; Abomohra, A. Enhancement of Lipid Production of Chlorella Pyrenoidosa Cultivated in Municipal Wastewater by Magnetic Treatment. Appl. Biochem. Biotechnol. 2016, 180, 1043–1055. [Google Scholar] [CrossRef]
- Barati, B.; Zeng, K.; Baeyens, J.; Wang, S.; Addy, M.; Gan, S.Y.; Abomohra, A. Recent Progress in Genetically Modified Microalgae for Enhanced Carbon Dioxide Sequestration. Biomass Bioenergy 2021, 145, 105927. [Google Scholar] [CrossRef]
- Lin, H.; Qin, S. Tipping Points in Seaweed Genetic Engineering: Scaling up Opportunities in the Next Decade. Mar. Drugs 2014, 12, 3025. [Google Scholar] [CrossRef] [PubMed]
- Radakovits, R.; Jinkerson, R.E.; Darzins, A.; Posewitz, M.C. Genetic Engineering of Algae for Enhanced Biofuel Production. Eukaryot. Cell 2010, 9, 486–501. [Google Scholar] [CrossRef] [PubMed]
- Elshobary, M.E.; Zabed, H.M.; Qi, X.; El-Shenody, R.A. Enhancing Biomass and Lipid Productivity of a Green Microalga Parachlorella Kessleri for Biodiesel Production Using Rapid Mutation of Atmospheric and Room Temperature Plasma. Biotechnol. Biofuels Bioprod. 2022, 15, 122. [Google Scholar] [CrossRef] [PubMed]
- Duarte, C.M.; Gattuso, J.P.; Hancke, K.; Gundersen, H.; Filbee-Dexter, K.; Pedersen, M.F.; Middelburg, J.J.; Burrows, M.T.; Krumhansl, K.A.; Wernberg, T.; et al. Global Estimates of the Extent and Production of Macroalgal Forests. Glob. Ecol. Biogeogr. 2022, 31, 1422–1439. [Google Scholar] [CrossRef]
- Milledge, J.J.; Smith, B.; Dyer, P.W.; Harvey, P. Macroalgae-Derived Biofuel: A Review of Methods of Energy Extraction from Seaweed Biomass. Energies 2014, 7, 7194–7222. [Google Scholar] [CrossRef]
- Adams, J.M.; Gallagher, J.A.; Donnison, I.S. Fermentation Study on Saccharina latissima for Bioethanol Production Considering Variable Pre-Treatments. J. Appl. Phycol. 2009, 21, 569. [Google Scholar] [CrossRef]
- Dalena, F.; Senatore, A.; Iulianelli, A.; Di Paola, L.; Basile, M.; Basile, A. Ethanol from Biomass: Future and Perspectives. In Ethanol; Elsevier: Amsterdam, The Netherlands, 2019; pp. 25–59. [Google Scholar]
- Ravikumar, S. Production of Biofuel Ethanol from Pretreated Seagrass by Using Saccharomyces cerevisiae. Indian J. Sci. Technol. 2011, 4, 1087–1089. [Google Scholar] [CrossRef]
- Uchida, M.; Miyoshi, T.; Kaneniwa, M.; Ishihara, K.; Nakashimada, Y.; Urano, N. Production of 16.5% v/v Ethanol from Seagrass Seeds. J. Biosci. Bioeng. 2014, 118, 646–650. [Google Scholar] [CrossRef]
- Rajkumar, J.; Dilipan, E.; Ramachandran, M.; Panneerselvam, A.; Thajuddin, N. Bioethanol Production from Seagrass Waste, through Fermentation Process Using Cellulase Enzyme Isolated from Marine Actinobacteria. Vegetos 2021, 34, 581–591. [Google Scholar] [CrossRef]
- McMillan, J.D.; Jennings, E.W.; Mohagheghi, A.; Zuccarello, M. Comparative Performance of Precommercial Cellulases Hydrolyzing Pretreated Corn Stover. Biotechnol. Biofuels 2011, 4, 29. [Google Scholar] [CrossRef]
- Dobrowolski, A.; Nawijn, W.; Mirończuk, A.M. Brown Seaweed Hydrolysate as a Promising Growth Substrate for Biomass and Lipid Synthesis of the Yeast Yarrowia lipolytica. Front. Bioeng. Biotechnol. 2022, 10, 944228. [Google Scholar] [CrossRef]
- Wi, S.G.; Kim, H.J.; Mahadevan, S.A.; Yang, D.-J.; Bae, H.-J. The Potential Value of the Seaweed Ceylon Moss (Gelidium amansii) as an Alternative Bioenergy Resource. Bioresour. Technol. 2009, 100, 6658–6660. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Song, H.; Jeong, M.; Sim, S.; Park, D.; Yang, J.; Singal, R.; Grimes, S.R.; Kim, H.; Song, H.; et al. Enzymatic Saccharification of Salix viminalis Cv. Q683 Biomass for Bioethanol Production. Biotechniques 2011, 27, 143–149. [Google Scholar]
- Cosenza, V.A.; Navarro, D.A.; Ponce, N.M.A.; Stortz, C.A. Seaweed Polysaccharides: Structure and Applications. In Industrial Applications of Renewable Biomass Products: Past, Present, Future; Springer: Cham, Switzerland, 2017; pp. 75–116. [Google Scholar]
- Ibraheem, O.; Ndimba, B.K. Molecular Adaptation Mechanisms Employed by Ethanologenic Bacteria in Response to Lignocellulose-Derived Inhibitory Compounds. Int. J. Biol. Sci. 2013, 9, 598–612. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, L.; van Erven, G.; Sinclair, E.A.; Duarte, C.M.; Kabel, M.A.; Classen, B. Profiling the Cell Walls of Seagrasses from A (Amphibolis) to Z (Zostera). BMC Plant Biol. 2022, 22, 63. [Google Scholar] [CrossRef]
- Torbatinejad, N.M.; Annison, G.; Rutherfurd-Markwick, K.; Sabine, J.R. Structural Constituents of the Seagrass Posidonia australis. J. Agric. Food Chem. 2007, 55, 4021–4026. [Google Scholar] [CrossRef]
- Opsahl, S.; Benner, R. Decomposition of Senescent Blades of the Seagrass Halodule wrightii in a Subtropical Lagoon. Mar. Ecol. Prog. Ser. 1993, 94, 191. [Google Scholar] [CrossRef]
- Syed, N.F.N.; Zakaria, M.H.; Bujang, J.S. Fiber Characteristics and Papermaking of Seagrass Using Hand-Beaten and Blended Pulp. BioResources 2016, 11, 5358–5380. [Google Scholar] [CrossRef]
- Silva, J.; Dantas-Santos, N.; Gomes, D.L.; Costa, L.S.; Cordeiro, S.L.; Costa, M.S.S.P.; Silva, N.B.; Freitas, M.L.; Scortecci, K.C.; Leite, E.L. Biological Activities of the Sulfated Polysaccharide from the Vascular Plant Halodule wrightii. Rev. Bras. Farmacogn. 2012, 22, 94–101. [Google Scholar] [CrossRef]
- Kolsi, R.B.A.; Fakhfakh, J.; Krichen, F.; Jribi, I.; Chiarore, A.; Patti, F.P.; Blecker, C.; Allouche, N.; Belghith, H.; Belghith, K. Structural Characterization and Functional Properties of Antihypertensive Cymodocea nodosa Sulfated Polysaccharide. Carbohydr. Polym. 2016, 151, 511–522. [Google Scholar] [CrossRef]
- Barakat, K.M.; Ismail, M.M.; Abou El Hassayeb, H.E.; El Sersy, N.A.; Elshobary, M.E. Chemical Characterization and Biological Activities of Ulvan Extracted from Ulva fasciata (Chlorophyta). Rend. Lincei. Sci. Fis. e Nat. 2022, 33, 829–841. [Google Scholar] [CrossRef]
- Gloaguen, V.; Brudieux, V.; Closs, B.; Barbat, A.; Krausz, P.; Sainte-Catherine, O.; Kraemer, M.; Maes, E.; Guerardel, Y. Structural Characterization and Cytotoxic Properties of an Apiose-Rich Pectic Polysaccharide Obtained from the Cell Wall of the Marine Phanerogam Zostera marina. J. Nat. Prod. 2010, 73, 1087–1092. [Google Scholar] [CrossRef]
- Lv, Y.; Shan, X.; Zhao, X.; Cai, C.; Zhao, X.; Lang, Y.; Zhu, H.; Yu, G. Extraction, Isolation, Structural Characterization and Anti-Tumor Properties of an Apigalacturonan-Rich Polysaccharide from the Sea Grass Zostera caespitosa Miki. Mar. Drugs 2015, 13, 3710–3731. [Google Scholar] [CrossRef]
- Cunha, J.T.; Soares, P.O.; Romaní, A.; Thevelein, J.M.; Domingues, L. Xylose Fermentation Efficiency of Industrial Saccharomyces cerevisiae Yeast with Separate or Combined Xylose Reductase/Xylitol Dehydrogenase and Xylose Isomerase Pathways. Biotechnol. Biofuels 2019, 12, 20. [Google Scholar] [CrossRef]
- Katahira, S.; Mizuike, A.; Fukuda, H.; Kondo, A. Ethanol Fermentation from Lignocellulosic Hydrolysate by a Recombinant Xylose- and Cellooligosaccharide-Assimilating Yeast Strain. Appl. Microbiol. Biotechnol. 2006, 72, 1136–1143. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.S.; Alper, H.; Yang, Y.T.; Stephanopoulos, G. Improvement of Xylose Uptake and Ethanol Production in Recombinant Saccharomyces cerevisiae through an Inverse Metabolic Engineering Approach. Appl. Environ. Microbiol. 2005, 71, 8249–8256. [Google Scholar] [CrossRef]
- Oh, E.J.; Jin, Y.-S. Engineering of Saccharomyces cerevisiae for Efficient Fermentation of Cellulose. FEMS Yeast Res. 2020, 20, foz089. [Google Scholar] [CrossRef]
- Sze, P. A Biology of the Algae, 2nd ed.; Wm, C., Ed.; Brown Publishers: Dubuque, IA, USA, 1993. [Google Scholar]
- Lobban, C.S.; Harrison, P.J.; Duncan, M.J. The Physiological Ecology of Seaweeds; Cambridge University Press: New York, NY, USA, 1985. [Google Scholar]
- Gao, G.; Burgess, J.G.; Wu, M.; Wang, S.; Gao, K. Using Macroalgae as Biofuel: Current Opportunities and Challenges. Bot. Mar. 2020, 63, 355–370. [Google Scholar] [CrossRef]
- Elshobary, M.E.; Essa, D.I.; Attiah, A.M.; Salem, Z.E.; Qi, X. Algal Community and Pollution Indicators for the Assessment of Water Quality of Ismailia Canal, Egypt. Stoch. Environ. Res. Risk Assess. 2020, 34, 1089–1103. [Google Scholar] [CrossRef]
- Ismail, M.M.; Ismail, G.A.; Elshobary, M.E. Morpho-Anatomical, and Chemical Characterization of Some Calcareous Mediterranean Red Algae Species. Bot. Stud. 2023, 64, 10. [Google Scholar] [CrossRef]
- Knoll, A.H. The Multiple Origins of Complex Multicellularity. Annu. Rev. Earth Planet. Sci. 2011, 39, 217–239. [Google Scholar] [CrossRef]
- Miyashita, K.; Mikami, N.; Hosokawa, M. Chemical and Nutritional Characteristics of Brown Seaweed Lipids: A Review. J. Funct. Foods 2013, 5, 1507–1517. [Google Scholar] [CrossRef]
- Kim, H.; Ra, C.H.; Kim, S.-K. Ethanol Production from Seaweed (Undaria pinnatifida) Using Yeast Acclimated to Specific Sugars. Biotechnol. Bioprocess Eng. 2013, 18, 533–537. [Google Scholar] [CrossRef]
- Yazdani, P.; Zamani, A.; Karimi, K.; Taherzadeh, M.J. Characterization of Nizimuddinia zanardini Macroalgae Biomass Composition and Its Potential for Biofuel Production. Bioresour. Technol. 2015, 176, 196–202. [Google Scholar] [CrossRef]
- Ghadiryanfar, M.; Rosentrater, K.A.; Keyhani, A.; Omid, M. A Review of Macroalgae Production, with Potential Applications in Biofuels and Bioenergy. Renew. Sustain. Energy Rev. 2016, 54, 473–481. [Google Scholar] [CrossRef]
- Gao, K.; McKinley, K.R. Use of Macroalgae for Marine Biomass Production and CO2 Remediation: A Review. J. Appl. Phycol. 1994, 6, 45–60. [Google Scholar] [CrossRef]
- Jung, K.A.; Lim, S.-R.; Kim, Y.; Park, J.M. Potentials of Macroalgae as Feedstocks for Biorefinery. Bioresour. Technol. 2013, 135, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.G.; Bidwell, R.G.S. Mechanism of Photosynthetic Carbon Dioxide Uptake by the Red Macroalga, Chondrus crispus. Plant Physiol. 1989, 89, 93–99. [Google Scholar] [CrossRef]
- Duarte, C.M. Reviews and Syntheses: Hidden Forests, the Role of Vegetated Coastal Habitats in the Ocean Carbon Budget. Biogeosciences 2017, 14, 301–310. [Google Scholar] [CrossRef]
- Serrano, O.; Lovelock, C.E.; Atwood, T.B.; Macreadie, P.I.; Canto, R.; Phinn, S.; Arias-Ortiz, A.; Bai, L.; Baldock, J.; Bedulli, C.; et al. Australian Vegetated Coastal Ecosystems as Global Hotspots for Climate Change Mitigation. Nat. Commun. 2019, 10, 4313. [Google Scholar] [CrossRef] [PubMed]
- Weathers, K.C.; Strayer, D.L.; Likens, G.E. Fundamentals of Ecosystem Science, 2nd ed.; Academic Press: Cambridge, MA, USA, 2021; ISBN 9780128127629. [Google Scholar]
- FAO. The State of Food and Agriculture 2021; FAO: Rome, Italy, 2021. [Google Scholar]
- McHugh, D.J. A Guide to the Seaweed Industry. FAO Fish. Tech. Pap. 2003, 441, 105. [Google Scholar]
- Mišurcová, L.; Škrovánková, S.; Samek, D.; Ambrožová, J.; Machů, L. Health Benefits of Algal Polysaccharides in Human Nutrition. Adv. Food Nutr. Res. 2012, 66, 75–145. [Google Scholar] [PubMed]
- Zhang, L.; Liao, W.; Huang, Y.; Wen, Y.; Chu, Y.; Zhao, C. Global Seaweed Farming and Processing in the Past 20 Years. Food Prod. Process. Nutr. 2022, 4, 23. [Google Scholar] [CrossRef]
- Roesijadi, G.; Jones, S.B.; Snowden-Swan, L.J.; Zhu, Y. Macroalgae as a Biomass Feedstock: A Preliminary Analysis; Pacific Northwest National Lab. (PNNL): Richland, WA, USA, 2010.
- Somerville, C.; Youngs, H.; Taylor, C.; Davis, S.C.; Long, S.P. Feedstocks for Lignocellulosic Biofuels. Science 2010, 329, 790–792. [Google Scholar] [CrossRef] [PubMed]
- Roesijadi, G.; Copping, A.E.; Huesemann, M.H.; Forster, J.; Benemann, J.R. Techno-Economic Feasibility Analysis of Offshore Seaweed Farming for Bioenergy and Biobased Products; Battelle Pacific Northwest Div. Rep. Number PNWD-3931; Battelle Pacific Northwest Division: Richland, WA, USA, 2008; p. 115.
- Mooney-McAuley, K.M.; Edwards, M.D.; Champenois, J.; Gorman, E. Best Practice Guidelines for Seaweed Cultivation and Analysis: Public Output Report Report [WP1A5. 01] of the EnAlgae Project; EnAlgae, Swansea University, Centre for Sustainable Aquatic Research: Swansea, UK, 2016. [Google Scholar]
- de los Santos, C.B.; Krause-Jensen, D.; Alcoverro, T.; Marbà, N.; Duarte, C.M.; van Katwijk, M.M.; Pérez, M.; Romero, J.; Sánchez-Lizaso, J.L.; Roca, G.; et al. Recent Trend Reversal for Declining European Seagrass Meadows. Nat. Commun. 2019, 10, 3356. [Google Scholar] [CrossRef]
- Papenbrock, J.; Teichberg, M. Editorial: Current Advances in Seagrass Research. Front. Plant Sci. 2023, 14, 1196437. [Google Scholar] [CrossRef]
- Yue, S.; Zhou, Y.; Xu, S.; Zhang, X.; Liu, M.; Qiao, Y.; Gu, R.; Xu, S.; Zhang, Y. Can the Non-Native Salt Marsh Halophyte Spartina Alterniflora Threaten Native Seagrass (Zostera japonica) Habitats? A Case Study in the Yellow River Delta, China. Front. Plant Sci. 2021, 12, 643425. [Google Scholar] [CrossRef]
- Han, Q.; Liu, D. Macroalgae Blooms and Their Effects on Seagrass Ecosystems. J. Ocean Univ. China 2014, 13, 791–798. [Google Scholar] [CrossRef]
- El-Shaffai, A.A.; Hanafy, M.H.; Gab-Alla, A.A. Distribution, Abundance and Species Composition of Seagrasses in Wadi El-Gemal National Park, Red Sea, Egypt. Indian J. Appl. Sci. 2011, 4, 1–8. [Google Scholar] [CrossRef]
- Waycott, M.; McMahon, K.; Mellors, J.; Calladine, A.; Kleine, D. A Guide to Tropical Seagrasses of the Indo-West Pacific; James Cook University: Townsville, Australia, 2004. [Google Scholar]
- Group, A.P.; Chase, M.W.; Christenhusz, M.J.M.; Fay, M.F.; Byng, J.W.; Judd, W.S.; Soltis, D.E.; Mabberley, D.J.; Sennikov, A.N.; Soltis, P.S. An Update of the Angiosperm Phylogeny Group Classification for the Orders and Families of Flowering Plants: APG IV. Bot. J. Linn. Soc. 2016, 181, 1–20. [Google Scholar]
- Hemminga, M.A.; Duarte, C.M. Seagrass Ecology; Cambridge University Press: Cambridge, UK, 2000; ISBN 0521661846. [Google Scholar]
- Reynolds, P.L.; Duffy, E.; Knowlton, N. Seagrass and Seagrass Beds. Ocean Portal. 2018. Available online: https://www.dcbd.nl/sites/default/files/documents/SeagrassAndSeagrass%20Beds%20_%20SmithsonianOceanPortal.pdf (accessed on 26 September 2023).
- Short, F.; Carruthers, T.; Dennison, W.; Waycott, M. Global Seagrass Distribution and Diversity: A Bioregional Model. J. Exp. Mar. Bio. Ecol. 2007, 350, 3–20. [Google Scholar] [CrossRef]
- Green, E.P.; Edmund, P.; Short, F.T. World Atlas of Seagrasses; University of California Press: Oakland, CA, USA, 2003; p. 298. [Google Scholar]
- Lee, H.; Golicz, A.A.; Bayer, P.E.; Jiao, Y.; Tang, H.; Paterson, A.H.; Sablok, G.; Krishnaraj, R.R.; Chan, C.-K.K.; Batley, J. The Genome of a Southern Hemisphere Seagrass Species (Zostera muelleri). Plant Physiol. 2016, 172, 272–283. [Google Scholar] [CrossRef] [PubMed]
- Olsen, J.L.; Rouzé, P.; Verhelst, B.; Lin, Y.-C.; Bayer, T.; Collen, J.; Dattolo, E.; De Paoli, E.; Dittami, S.; Maumus, F. The Genome of the Seagrass Zostera marina Reveals Angiosperm Adaptation to the Sea. Nature 2016, 530, 331–335. [Google Scholar] [CrossRef]
- Aquino, R.S.; Landeira-Fernandez, A.M.; Valente, A.P.; Andrade, L.R.; Mourao, P.A.S. Occurrence of Sulfated Galactans in Marine Angiosperms: Evolutionary Implications. Glycobiology 2005, 15, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Ellis, M.; Egelund, J.; Schultz, C.J.; Bacic, A. Arabinogalactan-Proteins: Key Regulators at the Cell Surface? Plant Physiol. 2010, 153, 403–419. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Zeng, W.; Bacic, A.; Johnson, K. AGPs through Time and Space. Annu. Plant Rev. Online 2018, 1, 767–804. [Google Scholar]
- Pfeifer, L.; Classen, B. The Cell Wall of Seagrasses: Fascinating, Peculiar and a Blank Canvas for Future Research. Front. Plant Sci. 2020, 11, 588754. [Google Scholar] [CrossRef] [PubMed]
- Klap, V.A.; Hemminga, M.A.; Boon, J.J. Retention of Lignin in Seagrasses: Angiosperms That Returned to the Sea. Mar. Ecol. Prog. Ser. 2000, 194, 1–11. [Google Scholar] [CrossRef]
- Martone, P.T.; Estevez, J.M.; Lu, F.; Ruel, K.; Denny, M.W.; Somerville, C.; Ralph, J. Discovery of Lignin in Seaweed Reveals Convergent Evolution of Cell-Wall Architecture. Curr. Biol. 2009, 19, 169–175. [Google Scholar] [CrossRef]
- Kaal, J.; Serrano, O.; del Río, J.C.; Rencoret, J. Radically Different Lignin Composition in Posidonia Species May Link to Differences in Organic Carbon Sequestration Capacity. Org. Geochem. 2018, 124, 247–256. [Google Scholar] [CrossRef]
- ReMEDIES Seagrass Cultivation Lab—Save Our Seabed. Available online: https://saveourseabed.co.uk/seagrass-cultivation-lab/ (accessed on 4 September 2023).
- Yue, S.; Zhang, X.; Xu, S.; Zhang, Y.; Zhao, P.; Wang, X.; Zhou, Y. Reproductive Strategies of the Seagrass Zostera japonica under Different Geographic Conditions in Northern China. Front. Mar. Sci. 2020, 7, 574790. [Google Scholar] [CrossRef]
- Subhashini, P.; Raja, S.; Thangaradjou, T. Establishment of Cell Suspension Culture Protocol for a Seagrass (Halodule pinifolia): Growth Kinetics and Histomorphological Characterization. Aquat. Bot. 2014, 117, 33–40. [Google Scholar] [CrossRef]
- Potouroglou, M.; Pedder, K.; Wood, K.; Scalenghe, D. What to Know About Seagrass, the Ocean’s Overlooked Powerhouse 2022. Available online: https://www.wri.org/insights/understanding-seagrass?utm_campaign=wridigest&utm_source=wridigest-2022-08-09&utm_medium=email&utm_content=image (accessed on 1 October 2023).
- Barakat, K.M.; El-Sayed, H.S.; Khairy, H.M.; El-Sheikh, M.A.; Al-Rashed, S.A.; Arif, I.A.; Elshobary, M.E. Effects of Ocean Acidification on the Growth and Biochemical Composition of a Green Alga (Ulva fasciata) and Its Associated Microbiota. Saudi J. Biol. Sci. 2021, 28, 5106–5114. [Google Scholar] [CrossRef] [PubMed]
- El-Khodary, G.M.; El-Sayed, H.S.; Khairy, H.M.; El-Sheikh, M.A.; Qi, X.; Elshobary, M.E. Comparative Study on Growth, Survival and Pigmentation of Solea Aegyptiaca Larvae by Using Four Different Microalgal Species with Emphasize on Water Quality and Nutritional Value. Aquac. Nutr. 2020, 27, 615–629. [Google Scholar] [CrossRef]
- Pal, A.; Kamthania, M.C.; Kumar, A. Bioactive Compounds and Properties of Seaweeds—A Review. Open Access Libr. J. 2014, 1, 1–17. [Google Scholar] [CrossRef]
- Wells, M.L.; Potin, P.; Craigie, J.S.; Raven, J.A.; Merchant, S.S.; Helliwell, K.E.; Smith, A.G.; Camire, M.E.; Brawley, S.H. Algae as Nutritional and Functional Food Sources: Revisiting Our Understanding. J. Appl. Phycol. 2017, 29, 949–982. [Google Scholar] [CrossRef]
- Olsson, J.; Toth, G.B.; Albers, E. Biochemical Composition of Red, Green and Brown Seaweeds on the Swedish West Coast. J. Appl. Phycol. 2020, 32, 3305–3317. [Google Scholar] [CrossRef]
- Mæhre, H.K.; Malde, M.K.; Eilertsen, K.; Elvevoll, E.O. Characterization of Protein, Lipid and Mineral Contents in Common Norwegian Seaweeds and Evaluation of Their Potential as Food and Feed. J. Sci. Food Agric. 2014, 94, 3281–3290. [Google Scholar] [CrossRef]
- Elshobary, M.E.; El-Shenody, R.; Abomohra, A.E. Sequential Biofuel Production from Seaweeds Enhances the Energy Recovery: A Case Study for Biodiesel and Bioethanol Production. Int. J. Energy Res. 2020, 45, 6457–6467. [Google Scholar] [CrossRef]
- Cherry, P.; O’Hara, C.; Magee, P.J.; McSorley, E.M.; Allsopp, P.J. Risks and Benefits of Consuming Edible Seaweeds. Nutr. Rev. 2019, 77, 307–329. [Google Scholar] [CrossRef]
- Kumari, P.; Kumar, M.; Gupta, V.; Reddy, C.R.K.; Jha, B. Tropical Marine Macroalgae as Potential Sources of Nutritionally Important PUFAs. Food Chem. 2010, 120, 749–757. [Google Scholar] [CrossRef]
- Plaza, M.; Cifuentes, A.; Ibáñez, E. In the Search of New Functional Food Ingredients from Algae. Trends Food Sci. Technol. 2008, 19, 31–39. [Google Scholar] [CrossRef]
- Dewsbury, B.M.; Bhat, M.; Fourqurean, J.W. A Review of Seagrass Economic Valuations: Gaps and Progress in Valuation Approaches. Ecosyst. Serv. 2016, 18, 68–77. [Google Scholar] [CrossRef]
- Touchette, B.W. Seagrass-Salinity Interactions: Physiological Mechanisms Used by Submersed Marine Angiosperms for a Life at Sea. J. Exp. Mar. Bio. Ecol. 2007, 350, 194–215. [Google Scholar] [CrossRef]
- Pradheeba, M.; Dilipan, E.; Nobi, E.P.; Thangaradjou, T.; Sivakumar, K. Evaluation of Seagrasses for Their Nutritional Value; NISCAIR-CSIR: New Delhi, India, 2011. [Google Scholar]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.T.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Han, S.; Xing, Z.; Jiang, H.; Li, W.; Huang, W. Biological Adaptive Mechanisms Displayed by a Freshwater Plant to Live in Aquatic and Terrestrial Environments. Environ. Exp. Bot. 2021, 191, 104623. [Google Scholar] [CrossRef]
- Kamenev, G.M. Fatty Acids as Markers of Food Sources in a Shallow-Water Hydrothermal Ecosystem (Kraternaya Bight, Yankich Island, Kurile Islands). Mar. Ecol. Prog. Ser. 1995, 120, 231–241. [Google Scholar]
- Burton, T.; Lyons, H.; Lerat, Y.; Stanley, M.; Rasmussen, M.B. A Review of the Potential of Marine Algae as a Source of Biofuel in Ireland; Sustainable Energy Authority of Ireland (SEAI): Dublin, Ireland, 2009. [Google Scholar]
- Lüning, K. Seaweeds: Their Environment, Biogeography, and Ecophysiology; John Wiley & Sons: Hoboken, NJ, USA, 1990; ISBN 0471624349. [Google Scholar]
- Lahaye, M.; Robic, A. Structure and Functional Properties of Ulvan, a Polysaccharide from Green Seaweeds. Biomacromolecules 2007, 8, 1765–1774. [Google Scholar] [CrossRef]
- Stiger-Pouvreau, V.; Bourgougnon, N.; Deslandes, E. Carbohydrates from Seaweeds. In Seaweed in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2016; pp. 223–274. [Google Scholar]
- Karsten, U.; Barrow, K.D.; King, R.J. Floridoside, L-Isofloridoside, and D-Isofloridoside in the Red Alga Porphyra Columbina (Seasonal and Osmotic Effects). Plant Physiol. 1993, 103, 485–491. [Google Scholar] [CrossRef]
- Stengel, D.B.; Connan, S.; Popper, Z.A. Algal Chemodiversity and Bioactivity: Sources of Natural Variability and Implications for Commercial Application. Biotechnol. Adv. 2011, 29, 483–501. [Google Scholar] [CrossRef]
- Yu, S.; Blennow, A.; Bojko, M.; Madsen, F.; Olsen, C.E.; Engelsen, S.B. Physico-chemical Characterization of Floridean Starch of Red Algae. Starch-Stärke 2002, 54, 66–74. [Google Scholar] [CrossRef]
- Karsten, U.; West, J.A.; Zuccarello, G.C.; Nixdorf, O.; Barrow, K.D.; King, R.J. Low Molecular Weight Carbohydrate Patterns in the Bangiophyceae (Rhodophyta). J. Phycol. 1999, 35, 967–976. [Google Scholar] [CrossRef]
- Karsten, U.; Michalik, D.; Michalik, M.; West, J.A. A New Unusual Low Molecular Weight Carbohydrate in the Red Algal Genus Hypoglossum (Delesseriaceae, Ceramiales) and Its Possible Function as an Osmolyte. Planta 2005, 222, 319–326. [Google Scholar] [CrossRef]
- Lobban, C.S.; Wynne, M.J. The Biology of Seaweeds; University of California Press: Oakland, CA, USA, 1981; Volume 17, ISBN 0520045858. [Google Scholar]
- Adams, J.M.M.; Toop, T.A.; Donnison, I.S.; Gallagher, J.A. Seasonal Variation in Laminaria digitata and Its Impact on Biochemical Conversion Routes to Biofuels. Bioresour. Technol. 2011, 102, 9976–9984. [Google Scholar] [CrossRef]
- Song, M.; Duc Pham, H.; Seon, J.; Chul Woo, H. Marine Brown Algae: A Conundrum Answer for Sustainable Biofuels Production. Renew. Sustain. Energy Rev. 2015, 50, 782–792. [Google Scholar] [CrossRef]
- Davis, T.A.; Volesky, B.; Mucci, A. A Review of the Biochemistry of Heavy Metal Biosorption by Brown Algae. Water Res. 2003, 37, 4311–4330. [Google Scholar] [CrossRef]
- Graiff, A.; Ruth, W.; Kragl, U.; Karsten, U. Chemical Characterization and Quantification of the Brown Algal Storage Compound Laminarin—A New Methodological Approach. J. Appl. Phycol. 2016, 28, 533–543. [Google Scholar] [CrossRef]
- Nøkling-Eide, K.; Langeng, A.-M.; Åslund, A.; Aachmann, F.L.; Sletta, H.; Arlov, Ø. An Assessment of Physical and Chemical Conditions in Alginate Extraction from Two Cultivated Brown Algal Species in Norway: Alaria esculenta and Saccharina latissima. Algal Res. 2023, 69, 102951. [Google Scholar] [CrossRef]
- Huang, X.; Huang, L.; Li, Y.; Xu, Z.; Fong, C.W.; Huang, D.; Han, Q.; Huang, H.; Tan, Y.; Liu, S. Main Seagrass Beds and Threats to Their Habitats in the Coastal Sea of South China. Chin. Sci. Bull. 2006, 51, 136–142. [Google Scholar] [CrossRef]
- Larkum, A.W.D.; Orth, R.J.; Duarte, C.M. Seagrasses: Biology, Ecology and Conservation. Phycologia 2006, 45, 5. [Google Scholar]
- Hasegawa, N.; Hori, M.; Mukai, H. Seasonal Shifts in Seagrass Bed Primary Producers in a Cold-Temperate Estuary: Dynamics of Eelgrass Zostera marina and Associated Epiphytic Algae. Aquat. Bot. 2007, 86, 337–345. [Google Scholar] [CrossRef]
- Touchette, B.W.; Burkholder, J.M. Overview of the Physiological Ecology of Carbon Metabolism in Seagrasses. J. Exp. Mar. Biol. Ecol. 2000, 250, 169–205. [Google Scholar] [CrossRef] [PubMed]
- Marbà, N.; Krause-Jensen, D.; Alcoverro, T.; Birk, S.; Pedersen, A.; Neto, J.M.; Orfanidis, S.; Garmendia, J.M.; Muxika, I.; Borja, A.; et al. Diversity of European Seagrass Indicators: Patterns within and across Regions. Hydrobiologia 2013, 704, 265–278. [Google Scholar] [CrossRef]
- Popper, Z.A.; Michel, G.; Hervé, C.; Domozych, D.S.; Willats, W.G.T.; Tuohy, M.G.; Kloareg, B.; Stengel, D.B. Evolution and Diversity of Plant Cell Walls: From Algae to Flowering Plants. Annu. Rev. Plant Biol. 2011, 62, 567–590. [Google Scholar] [CrossRef] [PubMed]
- El-Hefnawy, M.E.; Alhayyani, S.; El-Sherbiny, M.M.; Abomohra, A.; Al-Harbi, M. Endogenous Bioethanol Production by Solid-State Prefermentation for Enhanced Crude Bio-Oil Recovery through Integrated Hydrothermal Liquefaction of Seaweeds. J. Clean. Prod. 2022, 355, 131811. [Google Scholar] [CrossRef]
- Osman, M.E.H.; Abo-Shady, A.M.; Elshobary, M.E.; Abd El-Ghafar, M.O.; Abomohra, A. Screening of Seaweeds for Sustainable Biofuel Recovery through Sequential Biodiesel and Bioethanol Production. Environ. Sci. Pollut. Res. 2020, 27, 32481–32493. [Google Scholar] [CrossRef]
- Chirapart, A.; Praiboon, J.; Puangsombat, P.; Pattanapon, C.; Nunraksa, N. Chemical Composition and Ethanol Production Potential of Thai Seaweed Species. J. Appl. Phycol. 2014, 26, 979–986. [Google Scholar] [CrossRef]
- Kim, H.M.H.; Wi, S.G.S.; Jung, S.; Song, Y.; Bae, H.-J.H. Efficient Approach for Bioethanol Production from Red Seaweed Gelidium amansii. Bioresour. Technol. 2015, 175, 128–134. [Google Scholar] [CrossRef]
- Adams, J.M.M.; Schmidt, A.; Gallagher, J.A. The Impact of Sample Preparation of the Macroalgae Laminaria digitata on the Production of the Biofuels Bioethanol and Biomethane. J. Appl. Phycol. 2015, 27, 985–991. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Sperber, V.E.; Faruk, O. Natural and Wood Fibre Reinforcement in Polymers; iSmithers Rapra Publishing: Shawbury, UK, 2002; Volume 13, ISBN 1859573592. [Google Scholar]
- Offei, F.; Mensah, M.; Thygesen, A.; Kemausuor, F. Seaweed Bioethanol Production: A Process Selection Review on Hydrolysis and Fermentation. Fermentation 2018, 4, 99. [Google Scholar] [CrossRef]
- Ge, L.; Wang, P.; Mou, H. Study on Saccharification Techniques of Seaweed Wastes for the Transformation of Ethanol. Renew. Energy 2011, 36, 84–89. [Google Scholar] [CrossRef]
- Enquist-Newman, M.; Faust, A.M.E.; Bravo, D.D.; Santos, C.N.S.; Raisner, R.M.; Hanel, A.; Sarvabhowman, P.; Le, C.; Regitsky, D.D.; Cooper, S.R. Efficient Ethanol Production from Brown Macroalgae Sugars by a Synthetic Yeast Platform. Nature 2014, 505, 239–243. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Kim, H.; Kim, S.K. Bioethanol Production from Brown Seaweed, Undaria pinnatifida, Using NaCl Acclimated Yeast. Bioprocess Biosyst. Eng. 2013, 36, 713–719. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.L.; Teh, K.Y.; Lam, S.S.; Kaben, A.M.; Cha, T.S. Optimization of Cell Disruption Methods for Efficient Recovery of Bioactive Metabolites via NMR of Three Freshwater Microalgae (Chlorophyta). Bioresour. Technol. 2015, 190, 536–542. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, D.; Kim, T.; Shin, M.-K.; Kim, Y.J.; Yoon, J.-J.; Chang, I.S. Use of Red Algae, Ceylon Moss (Gelidium amansii), Hydrolyzate for Clostridial Fermentation. Biomass Bioenergy 2013, 56, 38–42. [Google Scholar] [CrossRef]
- Schultz-Jensen, N.; Thygesen, A.; Leipold, F.; Thomsen, S.T.; Roslander, C.; Lilholt, H.; Bjerre, A.B. Pretreatment of the Macroalgae Chaetomorpha Linum for the Production of Bioethanol—Comparison of Five Pretreatment Technologies. Bioresour. Technol. 2013, 140, 36–42. [Google Scholar] [CrossRef]
- Percival, E.; McDowell, R.H. Chemistry and Enzymology of Marine Algal Polysaccharides; Academic Press: Cambridge, MA, USA, 1967. [Google Scholar]
- Sarkar, N.; Ghosh, S.K.; Bannerjee, S.; Aikat, K. Bioethanol Production from Agricultural Wastes: An Overview. Renew. Energy 2012, 37, 19–27. [Google Scholar] [CrossRef]
- Torun, M. Radiation Pretreatment of Biomass. Appl. Ioniz. Radiat. Mater. Process. 2017, 2, 447–460. [Google Scholar]
- El-Mesery, H.S.; Mao, H.; Abomohra, A. Applications of Non-Destructive Technologies for Agricultural and Food Products Quality Inspection. Sensors 2019, 19, 846. [Google Scholar] [CrossRef]
- Hu, Z.; Wen, Z. Enhancing Enzymatic Digestibility of Switchgrass by Microwave-Assisted Alkali Pretreatment. Biochem. Eng. J. 2008, 38, 369–378. [Google Scholar] [CrossRef]
- Yoon, M.; Choi, J.; Lee, J.-W.; Park, D.-H. Improvement of Saccharification Process for Bioethanol Production from Undaria sp. by Gamma Irradiation. Radiat. Phys. Chem. 2012, 81, 999–1002. [Google Scholar] [CrossRef]
- Yuan, Y.; Macquarrie, D.J. Microwave Assisted Acid Hydrolysis of Brown Seaweed Ascophyllum Nodosum for Bioethanol Production and Characterization of Alga Residue. ACS Sustain. Chem. Eng. 2015, 3, 1359–1365. [Google Scholar] [CrossRef]
- Kassim, M.A.; Meng, T.K.; Kamaludin, R.; Hussain, A.H.; Bukhari, N.A. Bioprocessing of Sustainable Renewable Biomass for Bioethanol Production. In Value-Chain of Biofuels—Fundamentals, Technology, and Standardization; Elsevier: Amsterdam, The Netherlands, 2022; pp. 195–234. [Google Scholar] [CrossRef]
- Alam, S.N.; Khalid, Z.; Guldhe, A.; Singh, B.; Korstad, J. Harvesting and Pretreatment Techniques of Aquatic Macrophytes and Macroalgae for Production of Biofuels. Environ. Sustain. 2021, 4, 299–316. [Google Scholar] [CrossRef]
- Sahay, S. Impact of Pretreatment Technologies for Biomass to Biofuel Production. In Substrate Analysis for Effective Biofuels Production; Springer: Berlin, Germany, 2020; pp. 173–216. [Google Scholar] [CrossRef]
- Parab, P.; Khandeparker, R.; Amberkar, U.; Khodse, V. Enzymatic Saccharification of Seaweeds into Fermentable Sugars by Xylanase from Marine Bacillus Sp. Strain BT21. 3 Biotech 2017, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Soliman, R.M.; Younis, S.A.; El-Gendy, N.S.; Mostafa, S.S.M.; El-Temtamy, S.A.; Hashim, A.I. Batch Bioethanol Production via the Biological and Chemical Saccharification of Some Egyptian Marine Macroalgae. J. Appl. Microbiol. 2018, 125, 422–440. [Google Scholar] [CrossRef]
- Fasahati, P.; Woo, H.C.; Liu, J.J. Industrial-Scale Bioethanol Production from Brown Algae: Effects of Pretreatment Processes on Plant Economics. Appl. Energy 2015, 139, 175–187. [Google Scholar] [CrossRef]
- van der Wal, H.; Sperber, B.L.H.M.; Houweling-Tan, B.; Bakker, R.R.C.; Brandenburg, W.; López-Contreras, A.M. Production of Acetone, Butanol, and Ethanol from Biomass of the Green Seaweed Ulva lactuca. Bioresour. Technol. 2013, 128, 431–437. [Google Scholar] [CrossRef]
- Tan, I.S.; Lee, K.T. Solid Acid Catalysts Pretreatment and Enzymatic Hydrolysis of Macroalgae Cellulosic Residue for the Production of Bioethanol. Carbohydr. Polym. 2015, 124, 311–321. [Google Scholar] [CrossRef]
- Tan, I.S.; Lee, K.T. Enzymatic Hydrolysis and Fermentation of Seaweed Solid Wastes for Bioethanol Production: An Optimization Study. Energy 2014, 78, 53–62. [Google Scholar] [CrossRef]
- Tan, Y.; Fang, M.; Jin, L.; Zhang, C.; Li, H.-P.; Xing, X.-H. Culture Characteristics of the Atmospheric and Room Temperature Plasma-Mutated Spirulina Platensis Mutants in CO2 Aeration Culture System for Biomass Production. J. Biosci. Bioeng. 2015, 120, 438–443. [Google Scholar] [CrossRef]
- Hamedi, J.; Mohammadipanah, F.; Panahi, H.K.S. Biotechnological Exploitation of Actinobacterial Members. In Halophiles: Biodiversity and Sustainable Exploitation; Springer: Berlin, Germany, 2015; pp. 57–143. [Google Scholar]
- Dehhaghi, M.; Kazemi Shariat Panahi, H.; Guillemin, G.J. Microorganisms’ Footprint in Neurodegenerative Diseases. Front. Cell. Neurosci. 2018, 12, 466. [Google Scholar] [CrossRef]
- Wainwright, M.; Sherbrock-Cox, V. Factors Influencing Alginate Degradation by the Marine Fungi: Dendryphiella salina and D. arenaria. Bot. Mar. 1981, 24, 489–492. [Google Scholar] [CrossRef]
- El-Shishtawy, R.M.; Mohamed, S.A.; Asiri, A.M.; Gomaa, A.M.; Ibrahim, I.H.; Al-Talhi, H.A. Saccharification and Hydrolytic Enzyme Production of Alkali Pre-Treated Wheat Bran by Trichoderma Virens under Solid State Fermentation. BMC Biotechnol. 2015, 15, 37. [Google Scholar] [CrossRef] [PubMed]
- Agbor, V.B.; Cicek, N.; Sparling, R.; Berlin, A.; Levin, D.B. Biomass Pretreatment: Fundamentals toward Application. Biotechnol. Adv. 2011, 29, 675–685. [Google Scholar] [CrossRef] [PubMed]
- Bohutskyi, P.; Bouwer, E. Biogas Production from Algae and Cyanobacteria through Anaerobic Digestion: A Review, Analysis, and Research Needs. In Advanced Biofuels and Bioproducts; Springer: New York, NY, USA, 2013; pp. 873–975. [Google Scholar]
- Gomaa, M.; Hifney, A.F.; Fawzy, M.A.; Issa, A.A.; Abdel-Gawad, K.M. Biodegradation of Palisada perforata (Rhodophyceae) and Sargassum sp.(Phaeophyceae) Biomass by Crude Enzyme Preparations from Algicolous Fungi. J. Appl. Phycol. 2015, 27, 2395–2404. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, S.; Wang, Q.; He, Z.; Abomohra, A.; Cao, B. Influence of Torrefaction Pretreatment on the Pyrolysis Characteristics of Seaweed Biomass. Cellulose 2019, 26, 8475–8487. [Google Scholar] [CrossRef]
- Peng, J.; Abomohra, A.; Elsayed, M.; Zhang, X.; Fan, Q.; Ai, P. Compositional Changes of Rice Straw Fibers after Pretreatment with Diluted Acetic Acid: Towards Enhanced Biomethane Production. J. Clean. Prod. 2019, 230, 775–782. [Google Scholar] [CrossRef]
- Patil, J.H.; AntonyRaj, M.; Gavimath, C.C. Study on Effect of Pretreatment Methods on Biomethanation of Water Hyacinth. Int. J. Adv. Biotechnol. Res. 2011, 2, 143–147. [Google Scholar]
- Nikolaison, L.; Dahl, J.; Bech, K.S.; Bruhn, A.; Rasmussen, M.B.; Bjerre, A.B.; Nielsen, H.B.; Ambus, P.; Rost, K.A.; Kadar, Z. Energy Production Fom Macroalgae. In Proceedings of the 20th European Biomass Conference, Milan, Italy, 18–22 June 2012; pp. 18–22. [Google Scholar]
- Meinita, M.D.N.; Hong, Y.-K.; Jeong, G.-T. Detoxification of Acidic Catalyzed Hydrolysate of Kappaphycus alvarezii (Cottonii). Bioprocess Biosyst. Eng. 2012, 35, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Karray, R.; Hamza, M.; Sayadi, S. Evaluation of Ultrasonic, Acid, Thermo-Alkaline and Enzymatic Pre-Treatment on Anaerobic Digestion of Ulva Rigida for Biogas Production. Bioresour. Technol. 2015, 187, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Atalla, R.H.; Vanderhart, D.L. Native Cellulose: A Composite of Two Distinct Crystalline Forms. Science 1984, 223, 283–285. [Google Scholar] [CrossRef]
- Daroch, M.; Geng, S.; Wang, G. Recent Advances in Liquid Biofuel Production from Algal Feedstocks. Appl. Energy 2013, 102, 1371–1381. [Google Scholar] [CrossRef]
- Choi, D.; Sim, H.S.; Piao, Y.L.; Ying, W.; Cho, H. Sugar Production from Raw Seaweed Using the Enzyme Method. J. Ind. Eng. Chem. 2009, 15, 12–15. [Google Scholar] [CrossRef]
- Yanagisawa, M.; Nakamura, K.; Ariga, O.; Nakasaki, K. Production of High Concentrations of Bioethanol from Seaweeds That Contain Easily Hydrolyzable Polysaccharides. Process Biochem. 2011, 46, 2111–2116. [Google Scholar] [CrossRef]
- Jang, J.-S.; Cho, Y.; Jeong, G.-T.; Kim, S.-K. Optimization of Saccharification and Ethanol Production by Simultaneous Saccharification and Fermentation (SSF) from Seaweed, Saccharina japonica. Bioprocess Biosyst. Eng. 2012, 35, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhang, F.; Wu, Y.R. Emerging Technologies for Conversion of Sustainable Algal Biomass into Value-Added Products: A State-of-the-Art Review. Sci. Total Environ. 2021, 784, 147024. [Google Scholar] [CrossRef]
- Hessami, M.J.; Cheng, S.F.; Ambati, R.R.; Yin, Y.H.; Phang, S.M. Bioethanol Production from Agarophyte Red Seaweed, Gelidium Elegans, Using a Novel Sample Preparation Method for Analysing Bioethanol Content by Gas Chromatography. 3 Biotech 2019, 9, 1–8. [Google Scholar] [CrossRef]
- Ra, C.H.; Jeong, G.-T.; Kim, S.-K. Hyper-Thermal Acid Hydrolysis and Adsorption Treatment of Red Seaweed, Gelidium amansii for Butyric Acid Production with PH Control. Bioprocess Biosyst. Eng. 2017, 40, 403–411. [Google Scholar] [CrossRef]
- Xu, X.-Q.; Su, B.-M.; Xie, J.-S.; Li, R.-K.; Yang, J.; Lin, J.; Ye, X.-Y. Preparation of Bioactive Neoagaroligosaccharides through Hydrolysis of Gracilaria Lemaneiformis Agar: A Comparative Study. Food Chem. 2018, 240, 330–337. [Google Scholar] [CrossRef]
- Bruhn, A.; Dahl, J.; Nielsen, H.B.; Nikolaisen, L.; Rasmussen, M.B.; Markager, S.; Olesen, B.; Arias, C.; Jensen, P.D. Bioenergy Potential of Ulva lactuca: Biomass Yield, Methane Production and Combustion. Bioresour. Technol. 2011, 102, 2595–2604. [Google Scholar] [CrossRef]
- Potts, T.; Du, J.; Paul, M.; May, P.; Beitle, R.; Hestekin, J. The Production of Butanol from Jamaica Bay Macro Algae. Environ. Prog. Sustain. Energy 2012, 31, 29–36. [Google Scholar] [CrossRef]
- Bikker, P.; van Krimpen, M.M.; van Wikselaar, P.; Houweling-Tan, B.; Scaccia, N.; van Hal, J.W.; Huijgen, W.J.J.; Cone, J.W.; López-Contreras, A.M. Biorefinery of the Green Seaweed Ulva lactuca to Produce Animal Feed, Chemicals and Biofuels. J. Appl. Phycol. 2016, 28, 3511–3525. [Google Scholar] [CrossRef] [PubMed]
- Anh, H.T.L.; Kawata, Y.; Tam, L.T.; Thom, L.T.; Ha, N.C.; Hien, H.T.M.; Thu, N.T.H.; Huy, P.Q.; Hong, D.D. Production of Pyruvate from Ulva Reticulata Using the Alkaliphilic, Halophilic Bacterium Halomonas sp. BL6. J. Appl. Phycol. 2020, 32, 2283–2293. [Google Scholar] [CrossRef]
- Saleh, S.; Salk, M.; Pamukçu, O. Estimating Curie Point Depth and Heat Flow Map for Northern Red Sea Rift of Egypt and Its Surroundings, from Aeromagnetic Data. Pure Appl. Geophys. 2013, 170, 863–885. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Sunwoo, I.Y.; Ra, C.H.; Jeong, G.-T.; Kim, S.-K. Acetone, Butanol, and Ethanol Production from the Green Seaweed Enteromorpha intestinalis via the Separate Hydrolysis and Fermentation. Bioprocess Biosyst. Eng. 2019, 42, 415–424. [Google Scholar] [CrossRef]
- Huesemann, M.H.; Kuo, L.-J.; Urquhart, L.; Gill, G.A.; Roesijadi, G. Acetone-Butanol Fermentation of Marine Macroalgae. Bioresour. Technol. 2012, 108, 305–309. [Google Scholar] [CrossRef]
- Radha, M.; Murugesan, A.G. Enhanced Dark Fermentative Biohydrogen Production from Marine Macroalgae Padina tetrastromatica by Different Pretreatment Processes. Biofuel Res. J. 2017, 4, 551–558. [Google Scholar] [CrossRef]
- Ventura, J.-R.S.; Jahng, D. Improvement of Butanol Fermentation by Supplementation of Butyric Acid Produced from a Brown Alga. Biotechnol. Bioprocess Eng. 2013, 18, 1142–1150. [Google Scholar] [CrossRef]
- Hou, X.; From, N.; Angelidaki, I.; Huijgen, W.J.J.; Bjerre, A.-B. Butanol Fermentation of the Brown Seaweed Laminaria digitata by Clostridium Beijerinckii DSM-6422. Bioresour. Technol. 2017, 238, 16–21. [Google Scholar] [CrossRef]
- Obata, O.; Akunna, J.; Bockhorn, H.; Walker, G. Ethanol Production from Brown Seaweed Using Non-Conventional Yeasts. Bioethanol 2016, 2, 134–145. [Google Scholar] [CrossRef]
- Sunwoo, I.Y.; Hau, N.T.; Ra, C.H.; Jeong, G.-T.; Kim, S.-K. Acetone–Butanol–Ethanol Production from Waste Seaweed Collected from Gwangalli Beach, Busan, Korea, Based on PH-Controlled and Sequential Fermentation Using Two Strains. Appl. Biochem. Biotechnol. 2018, 185, 1075–1087. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Gupta, R.; Kumar, G.; Sahoo, D.; Kuhad, R.C. Bioethanol Production from Gracilaria verrucosa, a Red Alga, in a Biorefinery Approach. Bioresour. Technol. 2013, 135, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Fokum, E.; Zabed, H.M.; Ravikumar, Y.; Elshobary, M.E.; Chandankere, R.; Zhang, Y.; Yun, J.; Qi, X. Co-Fermentation of Glycerol and Sugars by Clostridium beijerinckii: Enhancing the Biosynthesis of 1,3-Propanediol. Food Biosci. 2021, 41, 101028. [Google Scholar] [CrossRef]
- Ahring, B.K.; Jensen, K.; Nielsen, P.; Bjerre, A.B.; Schmidt, A.S. Pretreatment of Wheat Straw and Conversion of Xylose and Xylan to Ethanol by Thermophilic Anaerobic Bacteria. Bioresour. Technol. 1996, 58, 107–113. [Google Scholar] [CrossRef]
- Gupta, A.; Verma, J.P. Sustainable Bio-Ethanol Production from Agro-Residues: A Review. Renew. Sustain. Energy Rev. 2015, 41, 550–567. [Google Scholar] [CrossRef]
- Lynd, L.R.; Van Zyl, W.H.; McBride, J.E.; Laser, M. Consolidated Bioprocessing of Cellulosic Biomass: An Update. Curr. Opin. Biotechnol. 2005, 16, 577–583. [Google Scholar] [CrossRef]
- Lynd, L.R.; Weimer, P.J.; Van Zyl, W.H.; Pretorius, I.S. Microbial Cellulose Utilization: Fundamentals and Biotechnology. Microbiol. Mol. Biol. Rev. 2002, 66, 506–577. [Google Scholar] [CrossRef]
- Das Neves, M.A.; Kimura, T.; Shimizu, N.; Nakajima, M. State of the Art and Future Trends of Bioethanol Production. Dyn. Biochem. Process Biotechnol. Mol. Biol. 2007, 1, 1–14. [Google Scholar]
- Hargreaves, P.I.; Barcelos, C.A.; da Costa, A.C.A.; Pereira, N., Jr. Production of Ethanol 3G from Kappaphycus alvarezii: Evaluation of Different Process Strategies. Bioresour. Technol. 2013, 134, 257–263. [Google Scholar] [CrossRef]
- Baeyens, J.; Kang, Q.; Appels, L.; Dewil, R.; Lv, Y.; Tan, T. Challenges and Opportunities in Improving the Production of Bio-Ethanol. Prog. Energy Combust. Sci. 2015, 47, 60–88. [Google Scholar] [CrossRef]
- Alvarado-Morales, M.; Boldrin, A.; Karakashev, D.B.; Holdt, S.L.; Angelidaki, I.; Astrup, T. Life Cycle Assessment of Biofuel Production from Brown Seaweed in Nordic Conditions. Bioresour. Technol. 2013, 129, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Aitken, D.; Bulboa, C.; Godoy-Faundez, A.; Turrion-Gomez, J.L.; Antizar-Ladislao, B. Life Cycle Assessment of Macroalgae Cultivation and Processing for Biofuel Production. J. Clean. Prod. 2014, 75, 45–56. [Google Scholar] [CrossRef]
- Faisal, S.; Zaky, A.; Wang, Q.; Huang, J.; Abomohra, A. Integrated Marine Biogas: A Promising Approach towards Sustainability. Fermentation 2022, 8, 520. [Google Scholar] [CrossRef]
- Nguyen, T.; Sperou, N.; Su, P.; Zhang, W. Marine Biorefinery: An Environmentally Sustainable Solution to Turn Marine Biomass and Processing Wastes into Value-Added Products and Profits. Biochemist 2022, 44, 22–27. [Google Scholar] [CrossRef]
- Abomohra, A.; Faisal, S.; Ebaid, R.; Huang, J.; Wang, Q.; Elsayed, M. Recent Advances in Anaerobic Digestion of Lipid-Rich Waste: Challenges and Potential of Seaweeds to Mitigate the Inhibitory Effect. Chem. Eng. J. 2022, 449, 137829. [Google Scholar] [CrossRef]
- Shin, S.-R.; Lee, M.-K.; Im, S.; Kim, D.-H. Effect of Seaweed Addition on Enhanced Anaerobic Digestion of Food Waste and Sewage Sludge. Environ. Eng. Res. 2019, 24, 449–455. [Google Scholar] [CrossRef]
- Jung, H.; Kim, J.; Lee, C. Continuous Anaerobic Co-Digestion of Ulva Biomass and Cheese Whey at Varying Substrate Mixing Ratios: Different Responses in Two Reactors with Different Operating Regimes. Bioresour. Technol. 2016, 221, 366–374. [Google Scholar] [CrossRef]
- Abomohra, A.; Sheikh, H.M.A.; El-Naggar, A.H.; Wang, Q. Microwave Vacuum Co-Pyrolysis of Waste Plastic and Seaweeds for Enhanced Crude Bio-Oil Recovery: Experimental and Feasibility Study towards Industrialization. Renew. Sustain. Energy Rev. 2021, 149, 111335. [Google Scholar] [CrossRef]
- Yuan, C.; Wang, S.; Cao, B.; Hu, Y.; Abomohra, A.; Wang, Q.; Qian, L.; Liu, L.; Liu, X.; He, Z.; et al. Optimization of Hydrothermal Co-Liquefaction of Seaweeds with Lignocellulosic Biomass: Merging 2 Nd and 3 Rd Generation Feedstocks for Enhanced Bio-Oil Production. Energy 2019, 173, 413–422. [Google Scholar] [CrossRef]
- Sharma, S.; Nair, A.; Sarma, S.J. Biorefinery Concept of Simultaneous Saccharification and Co-Fermentation: Challenges and Improvements. Chem. Eng. Process.-Process Intensif. 2021, 169, 108634. [Google Scholar] [CrossRef]
- Ha, S.J.; Galazka, J.M.; Kim, S.R.; Choi, J.H.; Yang, X.; Seo, J.H.; Glass, N.L.; Cate, J.H.D.; Jin, Y.S. Engineered Saccharomyces cerevisiae Capable of Simultaneous Cellobiose and Xylose Fermentation. Proc. Natl. Acad. Sci. USA 2011, 108, 504–509. [Google Scholar] [CrossRef] [PubMed]
- Ojeda, K.; Sánchez, E.; El-Halwagi, M.; Kafarov, V. Exergy Analysis and Process Integration of Bioethanol Production from Acid Pre-Treated Biomass: Comparison of SHF, SSF and SSCF Pathways. Chem. Eng. J. 2011, 176–177, 195–201. [Google Scholar] [CrossRef]
- Olofsson, K.; Rudolf, A.; Lidén, G. Designing Simultaneous Saccharification and Fermentation for Improved Xylose Conversion by a Recombinant Strain of Saccharomyces cerevisiae. J. Biotechnol. 2008, 134, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Sunwoo, I.Y.; Kwon, J.E.; Nguyen, T.H.; Ra, C.H.; Jeong, G.-T.; Kim, S.-K. Bioethanol Production Using Waste Seaweed Obtained from Gwangalli Beach, Busan, Korea by Co-Culture of Yeasts with Adaptive Evolution. Appl. Biochem. Biotechnol. 2017, 183, 966–979. [Google Scholar] [CrossRef]
- Althuri, A.; Gujjala, L.K.S.; Banerjee, R. Partially Consolidated Bioprocessing of Mixed Lignocellulosic Feedstocks for Ethanol Production. Bioresour. Technol. 2017, 245, 530–539. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, M.J.; Smith, S.V. C:N:P Ratios of Benthic Marine Plants1. Limnol. Oceanogr. 1983, 28, 568–574. [Google Scholar] [CrossRef]
- Patel, S.K.S.; Kumar, P.; Mehariya, S.; Purohit, H.J.; Lee, J.-K.; Kalia, V.C. Enhancement in Hydrogen Production by Co-Cultures of Bacillus and Enterobacter. Int. J. Hydrogen Energy 2014, 39, 14663–14668. [Google Scholar] [CrossRef]
- El-Sheekh, M.; Elshobary, M.; Abdullah, E.; Abdel-Basset, R.; Metwally, M. Application of a Novel Biological-Nanoparticle Pretreatment to Oscillatoria acuminata Biomass and Coculture Dark Fermentation for Improving Hydrogen Production. Microb. Cell Fact. 2023, 22, 34. [Google Scholar] [CrossRef]
- Laurinavichene, T.; Laurinavichius, K.; Shastik, E.; Tsygankov, A. Long-Term H2 Photoproduction from Starch by Co-Culture of Clostridium butyricum and Rhodobacter sphaeroides in a Repeated Batch Process. Biotechnol. Lett. 2018, 40, 309–314. [Google Scholar] [CrossRef]
- Sharma, A.K.; Swain, M.R.; Singh, A.; Mathur, A.S.; Gupta, R.P.; Tuli, D.; Puri, S.K.; Ramakumar, S.S.V. US20190276857A1—Method for Second Generation Ethanol Production from Lignocellulosic Biomass—Google Patents. U.S. Patent US20190276857A1, 12 September 2021. [Google Scholar]
- Hörhammer, H.; Dou, C.; Gustafson, R.; Suko, A.; Bura, R. Removal of Non-Structural Components from Poplar Whole-Tree Chips to Enhance Hydrolysis and Fermentation Performance. Biotechnol. Biofuels 2018, 11, 222. [Google Scholar] [CrossRef]
- Johnston, K.G.; Abomohra, A.; French, C.E.; Zaky, A.S. Recent Advances in Seaweed Biorefineries and Assessment of Their Potential for Carbon Capture and Storage. Sustainability 2023, 15, 13193. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osman, M.E.H.; Abo-Shady, A.M.; Elshobary, M.E.; Abd El-Ghafar, M.O.; Hanelt, D.; Abomohra, A. Exploring the Prospects of Fermenting/Co-Fermenting Marine Biomass for Enhanced Bioethanol Production. Fermentation 2023, 9, 934. https://doi.org/10.3390/fermentation9110934
Osman MEH, Abo-Shady AM, Elshobary ME, Abd El-Ghafar MO, Hanelt D, Abomohra A. Exploring the Prospects of Fermenting/Co-Fermenting Marine Biomass for Enhanced Bioethanol Production. Fermentation. 2023; 9(11):934. https://doi.org/10.3390/fermentation9110934
Chicago/Turabian StyleOsman, Mohamed E. H., Atef M. Abo-Shady, Mostafa E. Elshobary, Mahasen O. Abd El-Ghafar, Dieter Hanelt, and Abdelfatah Abomohra. 2023. "Exploring the Prospects of Fermenting/Co-Fermenting Marine Biomass for Enhanced Bioethanol Production" Fermentation 9, no. 11: 934. https://doi.org/10.3390/fermentation9110934
APA StyleOsman, M. E. H., Abo-Shady, A. M., Elshobary, M. E., Abd El-Ghafar, M. O., Hanelt, D., & Abomohra, A. (2023). Exploring the Prospects of Fermenting/Co-Fermenting Marine Biomass for Enhanced Bioethanol Production. Fermentation, 9(11), 934. https://doi.org/10.3390/fermentation9110934