Effects of Aromatic Compounds Degradation on Bacterial Cell Morphology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Media and Culture Conditions
2.3. DNA Isolation, PCR, and Sequence Analyses
2.4. Determination of Phenols Concentration
2.5. Scanning Electron Microscopy (SEM)
3. Results
3.1. Growth and Degradation
3.2. Effects of the Monophenolic Substances on the Cells Morphology
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Obuekwe, C.; Al-Jadi, Z.; Al-Saleh, E. Hydrocarbon degradation in relation to cell-surface hydrophobicity among bacterial hydrocarbon degraders from petroleum-contaminated Kuwait desert environment. Int. Biodeterior. Biodegrad. 2009, 63, 273–279. [Google Scholar] [CrossRef]
- Abbasian, F.; Palanisami, T.; Megharaj, M.; Naidu, R.; Lockington, R.; Ramadass, K. Microbial diversity and hydrocarbon degrading gene capacity of a crude oil field soil as determined by metagenomics analysis. Biotechnol. Prog. 2016, 32, 638–648. [Google Scholar] [CrossRef]
- Kachienga, L.; Jitendra, K.; Momba, M. Metagenomic profiling for assessing microbial diversity and microbial adaptation to degradation of hydrocarbons in two South African petroleum-contaminated water aquifers. Sci. Rep. 2018, 8, 7564. [Google Scholar] [CrossRef] [PubMed]
- Helmenstine, A.-M. Chemical Composition of Petroleum. Thought Co., 2019. Available online: https://www.thoughtco.com/chemical-composition-of-petroleum-607575 (accessed on 12 September 2023).
- Moorthy, B.; Chu, C.; Carlin, D. Polycyclic aromatic hydrocarbons: From Metabolism to Lung Cancer. Toxicol. Sci. 2015, 145, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Gaur, V.; Mathur, A. Determination of LC50 of phenolic compounds (phenol & m-cresol) for a fish, Labeo rohita. Int. J. Med. Lab. Res. 2019, 4, 55–63. [Google Scholar] [CrossRef]
- Nogales, J.; García, J.; Díaz, E. Degradation of aromatic compounds in Pseudomonas: A systems biology view. In Aerobic Utilization of Hydrocarbons, Oils and Lipids. Handbook of Hydrocarbon and Lipid Microbiology; Rojo, F., Ed.; Springer: Berlin/Heidelberg, Germany, 2017; pp. 1–49. [Google Scholar] [CrossRef]
- Martínková, L.; Uhnáková, B.; Pátek, M.; Nešvera, J.; Kren, V. Biodegradation potential of the genus Rhodococcus. Environ. Int. 2009, 35, 162–177. [Google Scholar] [CrossRef]
- Hristov, A.; Christova, N.; Kabaivanova, L.; Nacheva, L.; Stoineva, I.; Petrov, P. Simultaneous biodegradation of phenol and n-hexadecane by cryogel immobilized biosurfactant producing strain Rhodococcus wratislawiensis BN38. Pol. J. Microbiol. 2016, 65, 287–293. [Google Scholar] [CrossRef]
- Gu, Q.; Wu, Q.; Zhang, J.; Guo, W.; Ding, Y.; Wang, J.; Wu, H.; Sun, M.; Hou, L.; Wei, X.; et al. Isolation and transcriptome analysis of phenol-degrading bacterium from carbon–sand filters in a full-scale drinking water treatment plant. Front. Microbiol. 2018, 9, 2162. [Google Scholar] [CrossRef]
- Kim, D.; Choi, K.; Yoo, M.; Zylstra, G.; Kim, E. Biotechnological potential of Rhodococcus biodegradative pathways. J. Microbiol. Biotechnol. 2018, 28, 1037–1051. [Google Scholar] [CrossRef]
- Krivoruchko, A.; Kuyukina, M.; Ivshina, I. Advanced Rhodococcus biocatalysts for environmental biotechnologies. Catalysts 2019, 9, 236. [Google Scholar] [CrossRef]
- Jiang, W.; Gao, H.; Sun, J.; Yang, X.; Jiang, Y.; Zhang, W.; Jiang, M.; Xin, F. Current status, challenges and prospects for lignin valorization by using Rhodococcus sp. Biotechnol. Adv. 2022, 60, 108004. [Google Scholar] [CrossRef] [PubMed]
- Arenskötter, M.; Bröker, D.; Steinbüchel, A. Biology of the metabolically diverse genus Gordonia. Appl. Environ. Microbiol. 2004, 70, 3195–3204. [Google Scholar] [CrossRef] [PubMed]
- Drzyzga, O. The strengths and weaknesses of Gordonia: A review of an emerging genus with increasing biotechnological potential. Crit. Rev. Microbiol. 2012, 38, 300–316. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wu, J.; Liu, Y.; Wu, X. Biological process of alkane degradation by Gordonia sihwaniensis. ACS Omega 2022, 7, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Chanthamalee, J.; Luepromchai, E. Isolation and application of Gordonia sp. JC11 for removal of boat lubricants. J. Gen. Appl. Microbiol. 2012, 58, 19–31. [Google Scholar] [CrossRef]
- Qi, Y.-B.; Wang, C.-Y.; Lv, C.-Y.; Lun, Z.-M.; Zheng, C.-G. Removal capacities of polycyclic aromatic hydrocarbons (PAHs) by a newly isolated strain from oilfield produced water. Int. J. Environ. Res. Public Health 2017, 14, 215. [Google Scholar] [CrossRef]
- Brzeszcz, J.; Kaszycki, P. Aerobic bacteria degrading both n-alkanes and aromatic hydrocarbons: An undervalued strategy for metabolic diversity and flexibility. Biodegradation 2018, 29, 359–407. [Google Scholar] [CrossRef]
- Chatterjee, A.; DeLorenzo, D.; Carr, R.; Moon, T. Bioconversion of renewable feedstocks by Rhodococcus opacus. Curr. Opin. Biotechnol. 2020, 64, 10–16. [Google Scholar] [CrossRef]
- Chien, C.; Hill, S.; Levin, A. Cell size control in bacteria. Curr Biol 2012, 22, R340–R349. [Google Scholar] [CrossRef]
- Pletnev, P.; Osterman, I.; Sergiev, P.; Bogdanov, A.; Dontsova, O. Survival guide: Escherichia coli in the stationary phase. Acta Naturae 2015, 7, 22–33. [Google Scholar] [CrossRef]
- Shen, J.-P.; Chou, C.-F. Morphological plasticity of bacteria—Open questions. Biomicrofluidics 2016, 10, 031501. [Google Scholar] [CrossRef] [PubMed]
- Spankulova, G.; Sadanov, C.; Aitkeldiyeva, S.; Auezova, O. Izolation and selection of microorganisms-destructors of oil and petroleum products. Bull. Natl. Acad. Sci. Repub. Kazakhstan 2016, 3, 56–60. [Google Scholar]
- Spankulova, G.; Gerginova, M.; Peneva, N.; Alexieva, Z. Molecular identification of petroleum-degrading bacteria and characterization of their biodegradation potential related phenol. Comptes Rendus L’Acad. Bulg. Sci. 2018, 71, 1473–1478. [Google Scholar] [CrossRef]
- Singleton, V.; Orthofer, R.; Lamuela-Raventós, R. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Atanasova, N.; Paunova-Krasteva, T.; Kambourova, M.; Boyadzhieva, I. A Thermostable Lipase Isolated from Brevibacillus thermoruber Strain 7 Degrades Ɛ-Polycaprolactone. BioTech 2023, 12, 23. [Google Scholar] [CrossRef]
- Zeyaullah, M.D.; Abdelkafe, A.; Zabya, W.; Ali, A. Biodegradation of catechols by micro-organisms—A short review. Afr. J. Biotechnol. 2009, 8, 2916–2922. [Google Scholar]
- Panigrahy, N.; Priyadarshini, A.; Sahoo, M.; Verma, A.; Daverey, A.; Sahoo, N. A comprehensive review on eco-toxicity and biodegradation of phenolics: Recent progress and future outlook. Environ. Technol. Innov. 2022, 27, 102423. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Cresols. U.S. Department of Health and Human Services, Public Health Service, Altanta, 2008. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=946&tid=196 (accessed on 27 September 2023).
- Cresol/Cresylic Acid. U.S. Environmental Protection Agency. National Center for Environmental Assessment, Office of Research and Development: Washington, DC, USA, 1999. Available online: https://www.epa.gov/sites/default/files/2016-09/documents/cresol-cresylic-acid.pdf (accessed on 27 September 2023).
- WHO. Cresols Health and Safety Guide 100, Geneva Switzerland. 1996. Available online: http://apps.who.int/iris/bitstream/handle/10665/38142/9241511001_eng.pdf?sequence=1 (accessed on 27 September 2023).
- Singh, T.; Bhatiya, A.; Mishra, P.; Srivastava, N. An effective approach for the degradation of phenolic waste: Phenols and cresols. In Abatement of Environmental Pollutants; Singh, P., Kumar, A., Borthakur, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 203–243. [Google Scholar] [CrossRef]
- Singh, T.; Srivastava, N.; Bhatiya, A.; Mishra, K. Analytical study of effective biodegradation of p-cresol using Serratia marcescens ABHI001: Application in bioremediation. 3 Biotech 2017, 7, 384. [Google Scholar] [CrossRef]
- Singh, K.; Kumara, S.; Kumara, S.; Kumar, A. Biodegradation kinetic studies for the removal of p-cresol from wastewater using Gliomastix indicus MTCC 3869. Biochem. Eng. J. 2008, 40, 293–303. [Google Scholar] [CrossRef]
- Bera, S.; Kauser, H.; Mohanty, K. Optimization of p-cresol biodegradation using novel bacterial strains isolated from petroleum hydrocarbon fallout. J. Water Process Eng. 2019, 31, 100842. [Google Scholar] [CrossRef]
- Shainy, N.; Usha, R. Aerobic batch degradation of cresol by newly isolated Pseudomonas monteilii CR13. J. Pure Appl. Microbiol. 2022, 12, 309–315. [Google Scholar] [CrossRef]
- Bai, J.; Wen, P.; Li, M.; Jiang, Y. Kinetic modeling of growth and biodegradation of phenol and m-cresol using Alcaligenes faecalis. Process Biochem. 2007, 42, 510–517. [Google Scholar] [CrossRef]
- Ma, X.; Duan, D.; Wang, X.; Cao, J.; Qiu, J.; Xie, B. Degradation of Rhodococcus erythropolis SY095 modified with functional magnetic Fe3O4 nanoparticles. Royal Soc. Open Sci. 2021, 8, 211172. [Google Scholar] [CrossRef] [PubMed]
- Goswamia, M.; Shivaramanb, N.; Singh, R.P. Microbial metabolism of 2-chlorophenol, phenol and p-cresol by Rhodococcus erythropolis M1 in coculture with Pseudomonas fluorescens P1. Microbiol. Res. 2005, 160, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Irvine, V.A.; Kulakov, L.A.; Larkin, M.J. The diversity of extradiol dioxygenase (edo) genes in cresol degrading Rhodococci from a creosote-contaminated site that express a wide range of degradative abilities. Antonie Van Leeuwenhoek 2000, 78, 341–352. [Google Scholar] [CrossRef]
- Fialová, A.; Čejková, A.; Masák, J.; Jirků, V. Comparison of yeast (Candida maltosa) and bacterial (Rhodococcus erythropolis) phenol hydroxylase activity and its properties in the phenolic compounds biodegradation. Commun. Agric. Appl. Biol. Sci. 2003, 68, 155–158. [Google Scholar]
- Solyanikova, I.; Emelyanova, E.; Shumkova, E.; Egorova, D.; Korsakova, E.; Plotnikova, E.; Golovleva, L. Peculiarities of the degradation of benzoate and its chloro- and hydroxy-substituted analogs by actinobacteria. Int. Biodeterior. Biodegrad. 2015, 100, 155–164. [Google Scholar] [CrossRef]
- Chaerun, S.; Tazaki, K.; Asada, R.; Kogure, K. Bioremediation of coastal areas 5 years after the Nakhodka oil spill in the Sea of Japan: Isolation and haracterization of hydrocarbon-degrading bacteria. Environ. Int. 2004, 30, 911–922. [Google Scholar] [CrossRef]
- Carvalho, C.; Costa, S.; Fernandes, P.; Couto, I.; Viveiros, M. Membrane transport systems and the biodegradation potential and pathogenicity of genus Rhodococcus. Front. Physiol. 2014, 5, 133. [Google Scholar] [CrossRef]
- Yoneda, A.; Henson, W.; Goldner, N.; Park, K.; Forsberg, K.; Kim, S.; Pesesky, M.; Foston, M.; Dantas, G.; Moon, T. Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630. Nucleic Acids Res. 2016, 44, 2240–2254. [Google Scholar] [CrossRef]
- Henson, W.; Hsu, F.; Dantas, G.; Moon, T.; Foston, M. Lipid metabolism of phenol-tolerant Rhodococcus opacus strains for lignin bioconversion. Biotechnol. Biofuels 2018, 11, 339. [Google Scholar] [CrossRef] [PubMed]
- Farnia, P.; Farnia, P.; Ghanavi, J.; Zhavnerko, G.K.; Poleschuyk, N.N.; Velayati, A.A. A review on the shape changes in pathogenic bacteria with emphasis on Mycobacterium tuberculosis. Biomed. Biotechnol. Res. J. 2018, 2, 242–246. [Google Scholar] [CrossRef]
- Shahryari, S.; Zahiri, H.; Haghbeen, K.; Adrian, L.; Kambiz, N. High phenol degradation capacity of a newly characterized Acinetobacter sp. SA01: Bacterial cell viability and membrane impairment in respect to the phenol toxicity. Ecotoxicol. Environ. Saf. 2018, 164, 455–466. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Diao, M.-H.; Yuan, S.H.; Wang, Y.-K.; Xu, H.; Wang, X.-H. Effects of phenol on physicochemical properties and treatment performances of partial nitrifying granules in sequencing batch reactors. Biotechnol. Rep. 2017, 13, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Fusconi, R.; Godinho, M.; Hernández, I.; Bossolan, N. Gordonia polyisoprenivorans from groundwater contaminated with landfill leachate in a subtropical area: Characterization of the isolate and exopolysaccharide production. Braz. J. Microbiol. 2006, 37, 168–174. [Google Scholar] [CrossRef]
- Sowani, H.; Kulkarni, M.; Zinjarde, S. Harnessing the catabolic versatility of Gordonia species for detoxifying pollutants. Biotechnol. Adv. 2019, 37, 382–402. [Google Scholar] [CrossRef]
- Kummer, C.; Schumann, P.; Stackebrandt, E. Gordonia alkanivorans sp. nov., isolated from tar-contaminated soil. Int. J. Sys. Bacteriol. 1999, 49, 1513–1522. [Google Scholar] [CrossRef]
- Fusconi, R.; Godinho, M.; Bossolan, N. Starvation survival of Gordonia polyisoprenivorans CCT 7137, isolated from contaminated groundwater in Brazil. World J. Microbiol. Biotechnol. 2007, 23, 1385–1391. [Google Scholar] [CrossRef]
- Rampacci, E.; Marenzoni, M.L.; Giovagnoli, S.; Passamonti, F.; Coletti, M.; Pietrella, D. Phenotypic Characterization of Rhodococcus equi Biofilm Grown In Vitro and Inhibiting and Dissolving Activity of Azithromycin/Rifampicin Treatment. Pathogens 2019, 8, 284. [Google Scholar] [CrossRef]
- Lange, R.; Hengge-Aronis, R. Growth phase-regulated expression of bolA and morphology of stationary-phase Escherichia coli cells are controlled by the novel sigma factor sigma S. J. Bacteriol. 1991, 173, 4474–4481. [Google Scholar] [CrossRef]
- Wen, J.; Anantheswaran, C.; Knabel, J. Changes in barotolerance, thermotolerance, and cellular morphology throughout the life cycle of Listeria monocytogenes. Appl. Environ. Microbiol. 2009, 75, 1581–1588. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Jin, Y.; Cheng, J.; Park, J.; Kim, J.; Hozzein, N.; Wadaan, A.; Shu, S.; Ding, X.; Li, J. Gordonia jinhuaensis sp. nov., a novel actinobacterium, isolated from a VBNC (viable but non-culturable) state in pharmaceutical wastewater. Antonie Van Leeuwenhoek 2014, 106, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, H.; Yumoto, I.; Kudo, T.; Shida, O. Rhodococcus tukisamuensis sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 2003, 53, 1333–1337. [Google Scholar] [CrossRef] [PubMed]
- Tsitko, I. Characterization of Actinobacteria Degrading and Tolerating Organic Pollutants. Ph.D. Thesis, University of Helsinki, Helsinki, Finland, 2007. [Google Scholar]
- Hasan, S.; Jabeen, S. Degradation kinetics and pathway of phenol by Pseudomonas and Bacillus species. Biotechnol. Biotechnol. Equip. 2015, 29, 45–53. [Google Scholar] [CrossRef]
- Geng, A.; Lim, C.; Soh, A.; Zhao, B.; Leck, T. Physiological and proteomic analysis of EPS production and biofilm formation for a phenol degrading bacterium. In Environmental Biotechnology ESEB; Verstaete, W., Ed.; Taylor & Francis Group: London, UK, 2004; pp. 195–198. [Google Scholar]
Strains | Catechol | o-Cresol | m-Cresol | p-Cresol |
---|---|---|---|---|
Gordonia sp. 12/5 | 48 h | 72 h | 36 h | 12 h |
Rhodococcus sp. 1G/1 | 12 h | no degradation | no degradation | 48 h |
Rhodococcus erythropolis 14/1 | 24 h | 72 h | no degradation | no degradation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerginova, M.; Spankulova, G.; Paunova-Krasteva, T.; Peneva, N.; Stoitsova, S.; Alexieva, Z. Effects of Aromatic Compounds Degradation on Bacterial Cell Morphology. Fermentation 2023, 9, 957. https://doi.org/10.3390/fermentation9110957
Gerginova M, Spankulova G, Paunova-Krasteva T, Peneva N, Stoitsova S, Alexieva Z. Effects of Aromatic Compounds Degradation on Bacterial Cell Morphology. Fermentation. 2023; 9(11):957. https://doi.org/10.3390/fermentation9110957
Chicago/Turabian StyleGerginova, Maria, Gulzhan Spankulova, Tsvetelina Paunova-Krasteva, Nadejda Peneva, Stoyanka Stoitsova, and Zlatka Alexieva. 2023. "Effects of Aromatic Compounds Degradation on Bacterial Cell Morphology" Fermentation 9, no. 11: 957. https://doi.org/10.3390/fermentation9110957
APA StyleGerginova, M., Spankulova, G., Paunova-Krasteva, T., Peneva, N., Stoitsova, S., & Alexieva, Z. (2023). Effects of Aromatic Compounds Degradation on Bacterial Cell Morphology. Fermentation, 9(11), 957. https://doi.org/10.3390/fermentation9110957