Alternative Fermented Soy-Based Beverage: Impact of Inulin on the Growth of Probiotic Strains and Starter Culture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbial Cultures
2.2. Experimental Design
2.3. Inoculum Preparation
2.4. Acidification Kinetics
2.5. Post-Acidification
2.6. Microbial Count
3. Results and Discussion
3.1. Production of Organic Acids by Probiotics Grown in Soy-Based Beverage
3.2. Effect of Inulin on Cell Viability
3.3. Post-Acidification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rocha, B.R.; Maciel, E.A.; de Oliveira, S.R.M.; Terence, Y.S.; Silva, B.A. Influência dos alimentos funcionais na incidência das doenças crônicas não transmissíveis (DCHT). Int. J. Phys. Educ. 2021, 3, 2020021. [Google Scholar]
- Banerjee, P. Functional food: A brief overview. Int. J. Bioresour. Sci. 2019, 6, 57–60. [Google Scholar] [CrossRef]
- Krishnan, V. Phytochemistry and functional food: The needs of healthy life. J. Phyt. Biochem. 2017, 1, 1000103. [Google Scholar]
- Adefegha, S.A. Functional foods and nutraceuticals as dietary intervention in chronic diseases; novel perspectives for health promotion and disease prevention. J. Diet. Suppl. 2017, 15, 977–1009. [Google Scholar] [CrossRef]
- Ministério da Saúde, Brasil; Agência Nacional de Vigilância Sanitária. Portaria N°398, 30 de Abril de 1999. Regulamento Técnico que Estabelece as Diretrizes Básicas para Análise e Comprovação de Propriedades Funcionais e ou de Saúde Alegadas em Rotulagem de Alimentos. Diário Oficial da República Federativa do Brasil. Available online: https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/1999/prt0398_30_04_1999.html (accessed on 18 August 2023).
- Ballini, A.; Charitos, I.A.; Cantore, S.; Topi, S.; Bottalico, L.; Santacroce, L. About functional foods: The probiotics and prebiotics state of art. Antibiotics 2023, 12, 635. [Google Scholar] [CrossRef]
- Mohd Zaini, N.S.; Khudair, A.J.D.; Gengan, G.; Abd Rahim, M.H.; Meor Hussin, A.S.; Idris, H.; Mohsin, A.Z. Enhancing the nutritional profile of vegan diet: A review of fermented plant-based milk as a nutritious supplement. J. Food Compos. Anal. 2023, 123, 105567. [Google Scholar] [CrossRef]
- Maftei, N.-M.; Iancu, A.-V.; Elisei, A.M.; Gurau, T.V.; Ramos-Villarroel, A.Y.; Lisa, E.L. Functional characterization of fermented beverages based on soy milk and sea buckthorn powder. Microorganisms 2023, 11, 1493. [Google Scholar] [CrossRef]
- Tan, S.T.; Tan, S.S.; Tan, C.X. Soy protein, bioactive peptides, and isoflavones: A review of their safety and health benefits. PharmaNutrition 2023, 25, 100352. [Google Scholar] [CrossRef]
- De Paulo Farias, D.; Fernandes De Araújo, F.; Neri-Numa, I.A.; Pastore, G.M. Prebiotics: Trends in food, health and technological applications. Trends Food Sci. Technol. 2019, 93, 23–35. [Google Scholar] [CrossRef]
- Ballan, R.; Battistini, C.; Xavier-Santos, D.; Saad, S.M.I. Interactions of probiotics and prebiotics with the gut microbiota. Prog. Mol. Biol. Transl. Sci. 2020, 171, 265–300. [Google Scholar] [CrossRef] [PubMed]
- D’Angelis, D.F.; Arruda Gonçalves, A.C.; Da Veiga Correia, V.T.; Kobori, C.N.; Sampaio Riveira Ubaldo, J.C. Elaboration, physical-chemical and sensorial characterization of fermented kefir milk flavored with green fruits and added with inulin. Res. Soc. Dev. 2020, 9, 246997179. [Google Scholar] [CrossRef]
- De Souza Oliveira, R.P.; Perego, P.; Converti, A.; De Oliveira, M.N. Growth and acidification performance of probiotics in pure culture and co-culture with Streptococcus thermophilus: The effect of inulin. LWT Food Sci. Technol. 2009, 42, 1015–1021. [Google Scholar] [CrossRef]
- Mbye, M.; Baig, M.A.; AbuQamar, S.F.; El-Tarabily, K.A.; Obaid, R.S.; Osaili, T.M.; Al-Nabulsi, A.A.; Turner, M.S.; Shah, N.P.; Ayyash, M.M. Updates on understanding of probiotic lactic acid bacteria responses to environmental stresses and highlights on proteomic analyses. Compr. Rev. Food. Sci. Food Saf. 2020, 19, 1110–1124. [Google Scholar] [CrossRef]
- Prasanna, P.H.P.; Charalampopoulos, D. Encapsulation of Bifidobacterium Longum in alginate-dairy matrices and survival in simulated gastrointestinal conditions, refrigeration, cow milk and goat milk. Food Biosci. 2018, 21, 72–79. [Google Scholar] [CrossRef]
- Oak, S.J.; Jha, R. The effects of probiotics in lactose intolerance: A systematic review. Crit. Rev. Food Sci. Nutr. 2018, 59, 1675–1683. [Google Scholar] [CrossRef] [PubMed]
- Masoumi, S.J.; Mehrabani, D.; Saberifiroozi, M.; Fattahi, M.R.; Moradi, F.; Najafi, M. The effect of yogurt fortified with Lactobacillus acidophilus and Bifidobacterium sp. probiotic in patients with lactose intolerance. Food Sci. Nutr. 2021, 9, 1704–1711. [Google Scholar] [CrossRef] [PubMed]
- Ewing, W.N. The Living Gut; Nottingham University Press: Nottingham, UK, 2008. [Google Scholar]
- Yan, S.; Yang, B.; Ross, R.P.; Stanton, C.; Zhang, H.; Zhao, J.; Chen, W. Bifidobacterium longum subsp. longum YS108R fermented milk alleviates DSS induced colitis via anti-inflammation, mucosal barrier maintenance and gut microbiota modulation. J. Funct. Foods 2020, 73, 104153. [Google Scholar] [CrossRef]
- Yao, S.; Zhao, Z.; Wang, W.; Liu, X. Bifidobacterium longum: Protection against inflammatory bowel disease. J. Immunol. Res. 2021, 2021, 8030297. [Google Scholar] [CrossRef]
- Salmazo, G.C.; Dal Molin Filho, R.G.; da Silva Robazza, W.; Schmidt, F.C.; Longhi, D.A. Modeling the growth dependence of Streptococcus thermophilus and Lactobacillus bulgaricus as a function of temperature and pH. Braz. J. Microb. 2023, 54, 323–334. [Google Scholar] [CrossRef]
- Moghimi, B.; Ghobadi Dana, M.; Shapouri, R.; Jalili, M. Antibiotic resistance profile of indigenous Streptococcus thermophilus and Lactobacillus bulgaricus strains isolated from traditional yogurt. J. Food Qual. 2023, 2023, 4745784. [Google Scholar] [CrossRef]
- Spinnler, H.E.; Corrieu, G. Automatic method to quantify starter activity based on pH measurement. J. Dairy Res. 1989, 56, 755–764. [Google Scholar] [CrossRef]
- Ebeid, T.; Al-Homidan, I.; Fathi, M.; Al-Jamaan, R.; Mostafa, M.; Abou-Emera, O.; El-Razik, M.A.; Alkhalaf, A. Impact of probiotics and/or organic acids supplementation on growth performance, microbiota, antioxidative status, and immune response of broilers. Ital. J. Anim. Sci. 2021, 20, 2263–2273. [Google Scholar] [CrossRef]
- Coban, H.B. Organic acids as antimicrobial food agents: Applications and microbial productions. Bioprocess Biosyst. Eng. 2019, 43, 569–591. [Google Scholar] [CrossRef] [PubMed]
- Dibner, J.J.; Buttin, P. Use of organic acids as a model to study the impact of gut microflora on nutrition and metabolism. J. Appl. Poult. Res. 2002, 11, 453–463. [Google Scholar] [CrossRef]
- Kumari, M.; Kokkiligadda, A.; Dasriya, V.; Naithani, H. Functional relevance and health benefits of soymilk fermented by lactic acid bacteria. J. Appl. Microb. 2022, 133, 104–119. [Google Scholar] [CrossRef]
- Turkmen, N.; Akal, C.; Özer, B. Probiotic dairy-based beverages: A review. J. Funct. Foods 2019, 53, 62–75. [Google Scholar] [CrossRef]
- Donkor, O.N.; Shah, N.P. Production of β-glucosidase and hydrolysis of isoflavone phytoestrogens by Lactobacillus acidophilus, Bifidobacterium lactis, and Lactobacillus casei in soymilk. J. Food Sci. 2008, 73, M15–M20. [Google Scholar] [CrossRef]
- Kesika, P.; Sivamaruthi, B.S.; Chaiyasut, C. A review on the functional properties of fermented soymilk. Food Sci. Technol. 2021, 42, 10721. [Google Scholar] [CrossRef]
- Wan, X.; Guo, H.; Liang, Y.; Zhou, C.; Liu, Z.; Li, K.; Niu, F.; Zhai, X.; Wang, L. The physiological functions and pharmaceutical applications of inulin: A review. Carbohydr. Polym. 2020, 246, 116589. [Google Scholar] [CrossRef]
- Le Bastard, Q.; Chapelet, G.; Javaudin, F.; Lepelletier, D.; Batard, E.; Montassier, E. The effects of inulin on gut microbial composition: A systematic review of evidence from human studies. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 403–413. [Google Scholar] [CrossRef]
- Vandamme, E.J.; Derycke, D.G. Microbial inulinases: Fermentation process, properties, and applications. Adv. Appl. Microb. 1983, 29, 139–176. [Google Scholar] [CrossRef]
- Kaur, N.; Gupta, A.K. Applications of inulin and oligofructose in health and nutrition. J. Biosci. 2002, 27, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Uerlings, J.; Schroyen, M.; Willems, E.; Tanghe, S.; Bruggeman, G.; Bindelle, J.; Everaert, N. Differential effects of inulin or its fermentation metabolites on gut barrier and immune function of porcine intestinal epithelial cells. J. Funct. Foods 2020, 67, 103855. [Google Scholar] [CrossRef]
- Zong, L.; Lu, M.; Wang, W.; Wa, Y.; Qu, H.; Chen, D.; Liu, Y.; Qian, Y.; Ji, Q.; Gu, R. The quality and flavor changes of different soymilk and milk mixtures fermented products during storage. Fermentation 2022, 8, 668. [Google Scholar] [CrossRef]
- Maftei, N.M.; Iancu, A.V.; Goroftei Bogdan, R.E.; Gurau, T.V.; Ramos-Villarroel, A.; Pelin, A.M. A novel symbiotic beverage based on sea buckthorn, soymilk and inulin: Production, characterization, probiotic viability, and sensory acceptance. Microorganisms 2023, 11, 736. [Google Scholar] [CrossRef]
- Chen, W.; Li, J.; Ma, Y.; Shi, R.; Yu, H.; Gantumur, M.A.; Bilawal, A.; Jiang, Z. Binding interaction and stability of alpha-lactalbumin and retinol: Effects of pre- or post-acidification. Food Hydrocoll. 2023, 135, 108140. [Google Scholar] [CrossRef]
- Deshwal, G.K.; Tiwari, S.; Kumar, A.; Raman, R.K.; Kadyan, S. Review on factors affecting and control of post-acidification in yoghurt and related products. Trends Food Sci. Technol. 2021, 109, 499–512. [Google Scholar] [CrossRef]
Co-Culture | Inulin Concentration (g/100 mL) | |
---|---|---|
B. longum + StLb | 0 | 3 |
L. acidophilus + StLb | 0 | 3 |
Co-Culture | Inulin Concentration (%) | Initial pH | tpH5.5 | tpH5.0 | tpH4.7 | Vmax a | tmax b | pHVmax c |
---|---|---|---|---|---|---|---|---|
(h) | (h) | (h) | (upH.min−1 ’ 103) | (h) | ||||
St/Lb/La | 0 | 6.64 | 4.25 | 5.25 | 6.33 | 8.52 | 4.58 | 5.33 |
St/Lb/La | 3 | 6.63 | 4.00 | 4.92 | 5.92 | 9.32 | 4.58 | 5.19 |
St/Lb/Bl | 0 | 6.64 | 4.58 | 5.67 | 6.67 | 9.68 | 4.17 | 5.71 |
St/Lb/Bl | 3 | 6.63 | 4.54 | 5.67 | 6.92 | 10.69 | 4.50 | 5.52 |
Run | d0 | d1 | d14 | d28 |
---|---|---|---|---|
Without inulin | ||||
La | 6.75 ± 0.03 | 8.86 ± 0.03 | 7.51 ± 0.09 | 6.45 ± 0.03 |
St | 6.08 ± 0.01 | 9.01 ± 0.02 | 8.08 ± 0.03 | 7.43 ± 0.07 |
Lb | 6.85 ± 0.05 | 8.76 ± 0.03 | 7.32 ± 0.03 | 6.35 ± 0.01 |
With 3% inulin | ||||
La | 7.78 ± 0.07 | 9.15 ± 0.01 | 7.13 ± 0.07 | 6.63 ± 0.04 |
St | 7.17 ± 0.00 | 9.91 ± 0.01 | 7.97 ± 0.01 | 7.60 ± 0.06 |
Lb | 7.70 ± 0.03 | 9.75 ± 0.01 | 7.38 ± 0.03 | 6.54 ± 0.07 |
Test | d0 | d1 | d14 | d28 |
---|---|---|---|---|
Without inulin | ||||
Bl | 5.46 ± 0.06 | 8.82 ± 0.00 | 4.96 ± 0.01 | 3.54 ± 0.09 |
St | 6.00 ± 0.01 | 8.70 ± 0.06 | 8.25 ± 0.01 | 7.83 ± 0.02 |
Lb | 5.17 ± 0.08 | 9.56 ± 0.00 | 8.12 ± 0.01 | 7.99 ± 0.01 |
With 3% inulin | ||||
Bl | 5.73 ± 0.05 | 8.71 ± 0.00 | 5.25 ± 0.07 | 5.14 ± 0.03 |
St | 6.04 ± 0.02 | 9.16 ± 0.02 | 8.17 ± 0.01 | 8.37 ± 0.16 |
Lb | 5.32 ± 0.00 | 9.53 ± 0.14 | 8.25 ± 0.00 | 7.89 ± 0.08 |
Co-Culture | Inulin Concentration (%) | d1 | d14 | d28 |
---|---|---|---|---|
St/Lb/La | 0 | 4.78 ± 0.02 | 4.62 ± 0.01 | 4.58 ± 0.01 |
St/Lb/La | 3 | 4.73 ± 0.02 | 4.60 ± 0.01 | 4.59 ± 0.01 |
St/Lb/Bl | 0 | 4.75 ± 0.02 | 4.58 ± 0.01 | 4.48 ± 0.01 |
St/Lb/Bl | 3 | 4.73 ± 0.02 | 4.68 ± 0.01 | 4.65 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, W.A.; Piazentin, A.C.M.; da Silva, T.M.S.; Mendonça, C.M.N.; Figueroa Villalobos, E.; Converti, A.; Oliveira, R.P.S. Alternative Fermented Soy-Based Beverage: Impact of Inulin on the Growth of Probiotic Strains and Starter Culture. Fermentation 2023, 9, 961. https://doi.org/10.3390/fermentation9110961
Pereira WA, Piazentin ACM, da Silva TMS, Mendonça CMN, Figueroa Villalobos E, Converti A, Oliveira RPS. Alternative Fermented Soy-Based Beverage: Impact of Inulin on the Growth of Probiotic Strains and Starter Culture. Fermentation. 2023; 9(11):961. https://doi.org/10.3390/fermentation9110961
Chicago/Turabian StylePereira, Wellison Amorim, Anna C. M. Piazentin, Thamires M. S. da Silva, Carlos M. N. Mendonça, Elias Figueroa Villalobos, Attilio Converti, and Ricardo Pinheiro S. Oliveira. 2023. "Alternative Fermented Soy-Based Beverage: Impact of Inulin on the Growth of Probiotic Strains and Starter Culture" Fermentation 9, no. 11: 961. https://doi.org/10.3390/fermentation9110961
APA StylePereira, W. A., Piazentin, A. C. M., da Silva, T. M. S., Mendonça, C. M. N., Figueroa Villalobos, E., Converti, A., & Oliveira, R. P. S. (2023). Alternative Fermented Soy-Based Beverage: Impact of Inulin on the Growth of Probiotic Strains and Starter Culture. Fermentation, 9(11), 961. https://doi.org/10.3390/fermentation9110961