Characterization of Fermentations with Controlled Temperature with Three Varieties of Coffee (Coffea arabica L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coffee Samples and Processing
2.2. Experimental Design
2.3. Controlled Fermentation Processes
2.4. Determination of Glucose and Lactic Acid Contents
2.5. Counting of Microbial Groups
2.6. Physical and Sensorial Analysis
2.7. Statistical Analysis
3. Results
3.1. Initial Characteristics of the Coffee Varieties
3.2. Fermentation Time
3.3. Temperature and pH Behavior during Fermentations
3.4. Final Characteristics
3.5. Physical and Sensorial Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bastian, F.; Hutabarat, O.S.; Dirpan, A.; Nainu, F.; Harapan, H.; Bin Emran, T.; Simal-Gandara, J. From Plantation to Cup: Changes in Bioactive Compounds during Coffee Processing. Foods 2021, 10, 2827. [Google Scholar] [CrossRef] [PubMed]
- Girma, B.; Sualeh, A. A Review of Coffee Processing Methods and Their Influence on Aroma. Int. J. Food Eng. Technol. 2022, 6, 7. [Google Scholar] [CrossRef]
- Zhang, S.J.; De Bruyn, F.; Pothakos, V.; Torres, J.; Falconi, C.; Moccand, C.; Weckx, S.; De Vuyst, L. Following Coffee Production from Cherries to Cup: Microbiological and Metabolomic Analysis of Wet Processing of Coffea arabica. Appl. Environ. Microbiol. 2019, 85, e02635-18. [Google Scholar] [CrossRef] [PubMed]
- Barbin, D.F.; de Souza Madureira Felicio, A.L.; Sun, D.-W.; Nixdorf, S.L.; Hirooka, E.Y. Application of infrared spectral techniques on quality and compositional attributes of coffee: An overview. Food Res. Int. 2014, 61, 23–32. [Google Scholar] [CrossRef]
- Elhalis, H.; Cox, J.; Zhao, J. Coffee fermentation: Expedition from traditional to controlled process and perspectives for industrialization. Appl. Food Res. 2023, 3, 100253. [Google Scholar] [CrossRef]
- Joët, T.; Laffargue, A.; Descroix, F.; Doulbeau, S.; Bertrand, B.; de Kochko, A.; Dussert, S. Influence of environmental factors, wet processing and their interactions on the biochemical composition of green Arabica coffee beans. Food Chem. 2010, 118, 693–701. [Google Scholar] [CrossRef]
- Lee, L.W.; Cheong, M.W.; Curran, P.; Yu, B.; Liu, S.Q. Coffee fermentation and flavor—An intricate and delicate relationship. Food Chem. 2015, 185, 182–191. [Google Scholar] [CrossRef]
- Sanz-Uribe, J.R.; Menon, S.N.; Peñuela, A.; Oliveros, C.; Husson, J.; Brando, C.; Rodriguez, A. Postharvest Processing—Revealing the Green Bean. 2017. Available online: https://www.sciencedirect.com/science/article/abs/pii/B9780128035207000037 (accessed on 2 May 2023).
- Haile, M.; Kang, W.H. The Role of Microbes in Coffee Fermentation and Their Impact on Coffee Quality. J. Food Qual. 2019, 2019, 4836709. [Google Scholar] [CrossRef]
- Poltronieri, P.; Rossi, F. Challenges in Specialty Coffee Processing and Quality Assurance. Challenges 2016, 7, 19. [Google Scholar] [CrossRef]
- Peñuela-Martínez, A.E.; Velasquez-Emiliani, A.V.; Angel, C.A. Microbial Diversity Using a Metataxonomic Approach, Associated with Coffee Fermentation Processes in the Department of Quindío, Colombia. Fermentation 2023, 9, 343. [Google Scholar] [CrossRef]
- Peñuela-Martínez, A.E.; Zapata-Zapata, A.D.; Durango-Restrepo, D.L. Performance of Different Fermentation Methods and the Effect on Coffee Quality (Coffea arabica L.). 2018. Available online: http://www.coffeescience.ufla.br/index.php/Coffeescience/article/view/1486 (accessed on 10 May 2023).
- Velmourougane, K. Impact of Natural Fermentation on Physicochemical, Microbiological and Cup Quality Characteristics of Arabica and Robusta Coffee. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2013, 83, 233–239. [Google Scholar] [CrossRef]
- Peñuela-Martínez, A.E.; Moreno-Riascos, S.; Medina-Rivera, R. Influence of Temperature-Controlled Fermentation on the Quality of Mild Coffee (Coffea arabica L.) Cultivated at Different Elevations. Agriculture 2023, 13, 1132. [Google Scholar] [CrossRef]
- Campuzano-Duque, L.F.; Blair, M.W. Strategies for Robusta Coffee (Coffea canephora) Improvement as a New Crop in Colombia. Agriculture 2022, 12, 1576. [Google Scholar] [CrossRef]
- Duque-Orrego, H.; Salazar, H.M.; Rojas-Sepúlveda, L.A.; Gaitán, Á. Análisis Económico de Tecnologías Para la Producción de Café en Colombia. Cenicafé 2021. [Google Scholar] [CrossRef]
- Leroy, T.; Ribeyre, F.; Bertrand, B.; Charmetant, P.; Dufour, M.; Montagnon, C.; Marraccini, P.; Pot, D. Genetics of coffee quality. Braz. J. Plant Physiol. 2006, 18, 229–242. [Google Scholar] [CrossRef]
- Cenicafé. Caracterización Agroclimática. Agroclima Cenicafé. Available online: https://agroclima.cenicafe.org/caracterizacion-agroclimatica (accessed on 16 February 2023).
- Peñuela-Martínez, A.E.; Moreno-Riascos, S.P.; García-Duque, J.F. Operating Conditions of a Bioreactor for Coffee Fermentation. Biotecnología En El Sector Agropecuario Y Agroindustrial. 2023. Available online: https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/2231 (accessed on 12 October 2023).
- Jackels, S.C.; Jackels, C.F. Characterization of the Coffee Mucilage Fermentation Process Using Chemical Indicators: A Field Study in Nicaragua. J. Food Sci. 2006, 70, C321–C325. [Google Scholar] [CrossRef]
- Andreassen, R.C.; Rønning, S.B.; Solberg, N.T.; Grønlien, K.G.; Kristoffersen, K.A.; Høst, V.; Kolset, S.O.; Pedersen, M.E. Production of food-grade microcarriers based on by-products from the food industry to facilitate the expansion of bovine skeletal muscle satellite cells for cultured meat production. Biomaterials 2022, 286, 121602. [Google Scholar] [CrossRef]
- Leonardou, V.K.; Doudoumis, E.; Tsormpatsidis, E.; Vysini, E.; Papanikolopoulos, T.; Papasotiropoulos, V.; Lamari, F.N. Quality Traits, Volatile Organic Compounds, and Expression of Key Flavor Genes in Strawberry Genotypes over Harvest Period. Int. J. Mol. Sci. 2021, 22, 13499. [Google Scholar] [CrossRef]
- ISO 6673; Green Coffee-Determination of Loss in Mass at 105 °C. International Organization for Standardization, ISO: Geneva, Switzerland, 2003. Available online: https://t1.daumcdn.net/cfile/tistory/233BDA33597FFE9C26?download%20 (accessed on 28 June 2022).
- Speciality Coffe Association. El Café Arábica Lavado Guía de Defectos Del Café Verde. Available online: https://bootcoffee.com/wp-content/uploads/2019/09/SCA_The-Arabica-Green-Coffee-Defect-Guide_Spanish_updated.pdf (accessed on 23 September 2021).
- Speciality Coffe Association of America. SCAA Protocols Cupping Specialty Coffee; Specialty Coffee Association of America: 2015. Available online: https://www.scaa.org/PDF/resources/cupping-protocols.pdf (accessed on 23 September 2021).
- Coffee Institute. Sitio Web del Coffee Institute. Available online: https://www.coffeeinstitute.org/ (accessed on 30 January 2023).
- Kruskal, W.H.; Wallis, W.A. Use of Ranks in One-Criterion Variance Analysis. J. Am. Stat. Assoc. 2012, 47, 583–621. [Google Scholar] [CrossRef]
- SAS Institute. SAS Software. Version 9.4. 2016. Available online: https://support.sas.com/software/94/ (accessed on 24 April 2023).
- Giraldo-Jaramillo, M.; Garcia, A.G.; Parra, J.R. Biology, Thermal Requirements, and Estimation of the Number of Generations of Hypothenemus hampei (Ferrari, 1867) (Coleoptera: Curculionidae) in the State of São Paulo, Brazil. J. Econ. Èntomol. 2018, 111, 2192–2200. [Google Scholar] [CrossRef]
- Kulapichitr, F.; Borompichaichartkul, C.; Suppavorasatit, I.; Cadwallader, K.R. Impact of drying process on chemical composition and key aroma components of Arabica coffee. Food Chem. 2019, 291, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, C.E.; Ángel-Giraldo, L. Resistencia genética a la Enfermedad de la Cereza del Café en variedades cultivadas en Colombia. Rev. Cenicafé 2020, 71, 68–90. [Google Scholar] [CrossRef]
- Silva Ribeiro, L.; Reis Evangelista, S.; da Cruz Pedrozo Miguel, M.G.; Van Mullem, J.; Ferreira Silva, C.; Freitas Schwan, R. Microbiological and chemical-sensory characteristics of three coffee varieties processed by wet fermentation. Ann. Microbiol. 2018, 68, 705–716. [Google Scholar] [CrossRef]
- De Oliveira Fassio, L.; Malta, M.; Carvalho, G.; Liska, G.; De Lima, P.; Pimenta, C. Sensory Description of Cultivars (Coffea Arabica L.) Resistant to Rust and Its Correlation with Caffeine, Trigonelline, and Chlorogenic Acid Compounds. Beverages 2016, 2, 1. [Google Scholar] [CrossRef]
- De Oliveira Junqueira, A.C.; De Melo Pereira, G.V.; Coral Medina, J.D.; Alvear, M.C.R.; Rosero, R.; De Carvalho Neto, D.P.; Enríquez, H.G.; Soccol, C.R. First description of bacterial and fungal communities in Colombian coffee beans fermentation analysed using Illumina-based amplicon sequencing. Sci. Rep. 2019, 9, 8794. [Google Scholar] [CrossRef]
- Zhang, S.J.; De Bruyn, F.; Pothakos, V.; Contreras, G.F.; Cai, Z.; Moccand, C.; Weckx, S.; De Vuyst, L. Influence of Various Processing Parameters on the Microbial Community Dynamics, Metabolomic Profiles, and Cup Quality during Wet Coffee Processing. Front. Microbiol. 2019, 10, 2621. [Google Scholar] [CrossRef] [PubMed]
- Correa, E.C.; Jiménez-Ariza, T.; Díaz-Barcos, V.; Barreiro, P.; Diezma, B.; Oteros, R.; Echeverri, C.; Arranz, F.J.; Ruiz-Altisent, M. Advanced Characterisation of a Coffee Fermenting Tank by Multi-distributed Wireless Sensors: Spatial Interpolation and Phase Space Graphs. Food Bioprocess Technol. 2014, 7, 3166–3174. [Google Scholar] [CrossRef]
- Castro, N.M.C.; Fajardo, J.E.G. Caracterización de los procesos tradicionales de fermentación de café en el departamento de nariño. BSAA 2016, 14, 75. [Google Scholar] [CrossRef]
- Pereira, T.S.; Batista, N.N.; Pimenta, L.P.S.; Martinez, S.J.; Ribeiro, L.S.; Naves, J.A.O.; Schwan, R.F. Self-induced anaerobiosis coffee fermentation: Impact on microbial communities, chemical composition and sensory quality of coffee. Food Microbiol. 2022, 103, 103962. [Google Scholar] [CrossRef]
- Liang, C.; Liu, L.-X.; Liu, J.; Aihaiti, A.; Tang, X.-J.; Liu, Y.-G. New Insights on Low-Temperature Fermentation for Food. Fermentation 2023, 9, 477. [Google Scholar] [CrossRef]
- Elhalis, H.; Cox, J.; Zhao, J. Ecological diversity, evolution and metabolism of microbial communities in the wet fermentation of Australian coffee beans. Int. J. Food Microbiol. 2020, 321, 108544. [Google Scholar] [CrossRef] [PubMed]
- Reis Evangelista, S.; da Cruz Pedroso Miguel, M.G.; Ferreira Silva, C.; Marques Pinheiro, A.C.; Freitas Schwan, R. Microbiological diversity associated with the spontaneous wet method of coffee fermentation. Int. J. Food Microbiol. 2015, 210, 102–112. [Google Scholar] [CrossRef] [PubMed]
- Cruz O’Byrne, R.; Piraneque Gambasica, N.; Aguirre Forero, S. Physicochemical, microbiological, and sensory analysis of fermented coffee from Sierra Nevada of Santa Marta, Colombia. Coffee Sci. 2020, 15, e151797. [Google Scholar] [CrossRef]
- Duque-Dussán, E.; Sanz-Uribe, J.R.; Dussán-Lubert, C.; Banout, J. Thermophysical properties of parchment coffee: New Colombian varieties. J. Food Process. Eng. 2023, 46, e14300. [Google Scholar] [CrossRef]
- Ramirez-Martinez, A. Internal Structure and Water Transport in Endosperm and Parchment of Coffee Bean.012. Available online: https://theses.hal.science/tel-00731154/document (accessed on 3 September 2023).
Variety | Ripeness (%) | Mucilage Content (%) | pH | Mass Temperature (°C) | Glucose Concentration (g/L) |
---|---|---|---|---|---|
Castillo | 88.3 ± 1.6 a | 27.4 ± 0.9 a | 5.61 ± 0.11 a | 23.8 ± 0.9 a | 21.3 ± 3.3 a |
Cenicafé1 | 89.5 ± 3.0 a | 26.0 ± 0.8 a | 5.67 ± 0.09 a | 23.2 ± 1.4 a | 21.3 ± 2.8 a |
Tabi | 87.7 ± 3.0 a | 26.1 ± 0.7 a | 5.53 ± 0.12 a | 23.8 ± 0.7 a | 23.8 ± 1.5 a |
Variety | Temperature Control | Spontaneous Fermentation | |
---|---|---|---|
15 °C | 30 °C | ||
Castillo | 42.1 ± 1.5 aA | 20.0 ± 1.2 aB | 17.7 ± 0.7 aB |
Cenicafé1 | 41.7 ± 2.2 aA | 18.8 ± 0.9 abB | 17.3 ± 0.5 aB |
Tabi | 41.3 ± 3.0 aA | 17.5 ± 0.6 bB | 16.8 ± 0.5 aB |
Variety | Temp. (°C) | Mesophile | Yeast | LAB | AAB |
---|---|---|---|---|---|
Castillo | 15 | 7.33 ± 0.52 | 7.27 ± 0.16 | 7.04 ± 0.81 | 6.30 ± 2.91 |
30 | 7.99 ± 0.40 | 7.11 ± 0.82 | 7.59 ± 0.50 | 6.11 ± 1.27 | |
SF | 7.48 ± 1.23 | 7.56 ± 0.15 | 7.48 ± 0.43 | 6.91 ± 1.35 | |
Cenicafé1 | 15 | 8.28 ± 0.24 | 7.99 ± 0.13 | 7.37 ± 0.32 | 6.72 ± 0.19 |
30 | 7.72 ± 0.41 | 6.83 ± 0.14 | 7.48 ± 0.48 | 7.40 ± 0.50 | |
SF | 8.46 ± 0.60 | 7.11 ± 0.23 | 8.23 ± 0.60 | 6.53 ± 0.96 | |
Tabi | 15 | 8.18 ± 0.05 | 7.67 ± 0.07 | 7.94 ± 0.30 | 6.75 ± 0.62 |
30 | 8.44 ± 0.01 | 7.05 ± 0.67 | 8.19 ± 0.16 | 6.66 ± 0.76 | |
SF | 8.21 ± 0.06 | 7.60 ± 0.03 | 8.21 ± 0.16 | 6.50 ± 1.74 |
Variety | Temp. °C | Moisture % wb | Defect-Free Green Beans (%) | Brocade Grains (%) | Sour Grains (%) | Mesh 17 and 18 (%) | Mesh 15 and 16 (%) |
---|---|---|---|---|---|---|---|
Castillo | 15 | 11.3 ± 0.1 | 93.0 ± 1.1 | 2.9 ± 0.9 | 0.47 ± 0.3 | 69.7 ± 4.2 | 27.6 ± 3.9 |
30 | 11.5 ± 0.2 | 93.7 ± 1.3 | 2.2 ± 0.7 | 0.69 ± 0.4 | 65.7 ± 5.9 | 30.7 ± 5.6 | |
SF | 11.3 ± 0.2 | 91.8 ± 1.3 | 2.8 ± 1.0 | 0.89 ± 0.4 | 65.1 ± 5.1 | 32.6 ± 4.7 | |
Cenicafé1 | 15 | 11.7 ± 0.2 | 93.8 ± 1.0 | 0.9 ± 0.3 | 0.72 ± 0.4 | 80.7 ± 0.9 | 17.3 ± 0.9 |
30 | 11.5 ± 0.2 | 92.2 ± 1.0 | 0.9 ± 0.7 | 0.45 ± 0.4 | 81.4 ± 1.6 | 17.2 ± 1.3 | |
SF | 11.3 ± 0.2 | 91.1 ± 1.1 | 1.9 ± 0.8 | 0.78 ± 0.4 | 79.6 ± 1.1 | 18.6 ± 1.0 | |
Tabi | 15 | 11.3 ± 0.2 | 91.7 ± 1.2 | 3.4 ± 0.8 | 0.92 ± 0.5 | 81.6 ± 1.5 | 15.8 ± 1.5 |
30 | 11.1 ± 0.3 | 90.8 ± 2.3 | 3.9 ± 1.7 | 0.14 ± 0.3 | 83.7 ± 2.2 | 14.8 ± 2.0 | |
SF | 11.0 ± 0.3 | 90.1 ± 1.8 | 3.9 ± 1.5 | 0.76 ± 0.4 | 82.2 ± 1.9 | 16.0 ± 1.8 |
Variety | Temp. °C | Average | Standard Deviation | Median | Minimum | Maximum | Interquartile Range | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SF | Treat. | SF | Treat. | SF | Treat. | SF | Treat. | SF | Treat. | SF | Treat. | ||
Castillo | 15 | 82.5 | 83.1 | 1.3 | 1.4 | 82.3 | 83.0 | 80.8 | 81.3 | 84.3 | 85.3 | 1.4 | 0.1 |
30 | 79.7 | 82.7 | 6.4 | 0.8 | 82.5 | 82.3 | 68.3 | 81.9 | 83.0 | 84.0 | 0.8 | 0.8 | |
Cenicafé1 | 15 | 83.4 | 83.5 | 0.7 | 1.1 | 83.0 | 83.5 | 83.0 | 82.0 | 84.6 | 84.8 | 0.3 | 1.5 |
30 | 83.8 | 83.6 | 0.8 | 0.9 | 84.0 | 83.8 | 82.8 | 82.5 | 84.6 | 84.6 | 1.0 | 1.1 | |
Tabi | 15 | 82.3 | 82.7 | 1.1 | 0.5 | 82.8 | 82.5 | 81.0 | 82.3 | 83.5 | 83.5 | 1.8 | 0.3 |
30 | 83.7 | 83.8 | 1.1 | 1.4 | 84.0 | 84.5 | 82.3 | 81.8 | 84.8 | 85.0 | 1.5 | 1.6 |
Variety | Temperature | Caramel | “Panela” | Honey | Vanilla | Chocolate | Walnuts | Citrus Fruits | Red Berries | Other Fruits | Floral | Spices | Other |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Castillo | 15 °C | 3 | 2 | 1 | 3 | 4 | 1 | 1 | |||||
30 °C | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | |||
SF | 4 | 3 | 2 | 3 | 1 | 4 | 1 | 2 | 5 | ||||
Cenicafé1 | 15 °C | 1 | 1 | 2 | 2 | 3 | 1 | 3 | |||||
30 °C | 1 | 1 | 2 | 1 | 3 | 3 | 4 | 2 | |||||
SF | 2 | 4 | 4 | 1 | 2 | 1 | 3 | 5 | 4 | 2 | 1 | ||
Tabi | 15 °C | 1 | 1 | 1 | 1 | 1 | |||||||
30 °C | 3 | 1 | 1 | 1 | 3 | 1 | 2 | 1 | 2 | ||||
SF | 2 | 2 | 1 | 1 | 1 | 2 | 6 | 3 | 3 | 1 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peñuela-Martínez, A.E.; García-Duque, J.F.; Sanz-Uribe, J.R. Characterization of Fermentations with Controlled Temperature with Three Varieties of Coffee (Coffea arabica L.). Fermentation 2023, 9, 976. https://doi.org/10.3390/fermentation9110976
Peñuela-Martínez AE, García-Duque JF, Sanz-Uribe JR. Characterization of Fermentations with Controlled Temperature with Three Varieties of Coffee (Coffea arabica L.). Fermentation. 2023; 9(11):976. https://doi.org/10.3390/fermentation9110976
Chicago/Turabian StylePeñuela-Martínez, Aida Esther, Jhoan Felipe García-Duque, and Juan Rodrigo Sanz-Uribe. 2023. "Characterization of Fermentations with Controlled Temperature with Three Varieties of Coffee (Coffea arabica L.)" Fermentation 9, no. 11: 976. https://doi.org/10.3390/fermentation9110976
APA StylePeñuela-Martínez, A. E., García-Duque, J. F., & Sanz-Uribe, J. R. (2023). Characterization of Fermentations with Controlled Temperature with Three Varieties of Coffee (Coffea arabica L.). Fermentation, 9(11), 976. https://doi.org/10.3390/fermentation9110976