Optimization of a Bacterial Cultivation Medium via a Design-of-Experiment Approach in a Sartorius Ambr® 15 Fermentation Microbioreactor System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain, Medium, and Inoculum
2.2. Cultivation in the Bioreactor Systems (Ambr® 15F and 2 L)
2.3. Purification of OMVs
2.4. Analytical Methods: OMV and DNA Quantification
2.5. Sartorius MODDE®13 Software
2.6. Statistical Analysis
3. Results
3.1. First DOE Experiment
3.2. Second DOE Experiment
3.3. Fermentation at 2 L Scale
3.4. OMV Characterization
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AM | analysis module |
Ambr® | advanced microscale bioreactor |
CCF | central composite face |
CS | culture station |
DNA | deoxyribonucleic acid |
DOE | design of experiment |
DO | dissolved oxygen |
FP | final product |
HTPD | high-throughput process development |
LPS | lipopolysaccharide |
MODDE | modeling and design |
MWCO | molecular weight cut-off |
OD600nm | optical density at 600nm |
OFAT | one factor at a time |
OMVs | outer membrane vesicles |
PPG | polypropylene glycol |
QbD | quality by design |
RCB | research cell bank |
RNA | ribonucleic acid |
rpm | rotation per minute |
SM | starting material |
STR | stirred tank bioreactor |
Td | doubling time |
TFF | tangential flow filtration |
vvm | vessel volume per minute |
References
- Wales, R.; Lewis, G. Novel Automated Micro-Scale Bioreactor Technology: A Qualitative and Quantitative Mimic for Early Process Development. BioProcess. J. 2010, 9, 22–25. [Google Scholar] [CrossRef]
- Delouvroy, F.; Le Reverend, G.; Fessler, B.; Mathy, G.; Harmsen, M.; Kochanowski, N.; Malphettes, L. Evaluation of the advanced micro-scale bioreactor (ambrTM) as a highthroughput tool for cell culture process development. BMC Proc. 2013, 7, P73. [Google Scholar] [CrossRef]
- Rafiq, Q.A.; Hanga, M.P.; Heathman, T.R.J.; Coopman, K.; Nienow, A.W.; Williams, D.J.; Hewitt, C.J. Process development of human multipotent stromal cell microcarrier culture using an automated high-throughput microbioreactor. Biotechnol. Bioeng. 2017, 114, 2253–2266. [Google Scholar] [CrossRef]
- Vázquez, M.E.; Mesías, A.C.; Acuña, L.; Spangler, J.; Zabala, B.; Parodi, C.; Thakur, M.; Oh, E.; Walper, S.A.; Brandán, C.P. Exploring the performance of Escherichia coli outer membrane vesicles as a tool for vaccine development against Chagas disease. Mem. Inst. Oswaldo Cruz 2023, 118, e220263. [Google Scholar] [CrossRef] [PubMed]
- Kulp, A.; Kuehn, M.J. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 2010, 64, 163–184. [Google Scholar] [CrossRef] [PubMed]
- van der Pol, L.; Stork, M.; van der Ley, P. Outer membrane vesicles as platform vaccine technology. Biotechnol. J. 2015, 10, 1689–1706. [Google Scholar] [CrossRef] [PubMed]
- Balhuizen, M.D.; Veldhuizen, E.J.A.; Haagsman, H.P. Outer membrane vesicle induction and isolation for vaccine development. Front. Microbiol. 2021, 12, 629090. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, D.; Panda, M.; Baral, B.; Varshney, N.R.S.; Bhandari, V.; Parmar, H.S.; Prasad, A.; Jha, H.C. Outer membrane vesicles: An emerging vaccine platform. Vaccines 2022, 10, 1578. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Guo, J.; Bai, Y.; Sun, C.; Wu, Y.; Liu, Z.; Liu, X.; Wang, Y.; Wang, Z.; Zhang, Y.; et al. Bacterial outer membrane vesicles as a candidate tumor vaccine platform. Front. Immunol. 2022, 13, 987419. [Google Scholar] [CrossRef]
- Zhang, G.; Mills, D.A.; Block, D.E. Development of chemically defined media supporting high-cell-density growth of lactococci, enterococci, and streptococci. Appl. Environ. Microbiol. 2009, 75, 1080–1087. [Google Scholar] [CrossRef]
- Rameez, S.; Mostafa, S.S.; Miller, C.; Shukla, A.A. High-throughput miniaturized bioreactors for cell culture process development: Reproducibility, scalability, and control. Biotechnol. Prog. 2014, 30, 718–727. [Google Scholar] [CrossRef] [PubMed]
- Moses, S.; Manahan, M.; Ambrogelly, A.; Ling, W.L.W. Assessment of AMBRTM as a model for high-throughput cell culture process development strategy. Adv. Biosci. Biotechnol. 2012, 3, 918–927. [Google Scholar] [CrossRef]
- Fink, M.; Cserjan-Puschmann, M.; Reinisch, D.; Striedner, G. High-throughput microbioreactor provides a capable tool for early stage bioprocess development. Sci. Rep. 2021, 11, 2056. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, L.; Johansson, E.; Kettaneh-Wold, N.; Wikström, C.; Wold, S. Preface—Design of Experiments—Principles and Applications, 3rd ed.; Umetrics: Umea, Sweden, 2008; pp. 1–6. Available online: www.umetrics.com (accessed on 24 July 2023).
- Velez-Suberbie, M.L.; Betts, J.P.J.; Walker, K.L.; Robinson, C.; Zoro, B.; Keshavarz-Moore, E. High throughput automated microbial bioreactor system used for clone selection and rapid scale-down process optimization. Biotechnol. Prog. 2018, 34, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Chutkan, H.; Macdonald, I.; Manning, A.; Kuehn, M.J. Quantitative and qualitative preparations of bacterial outer membrane vesicles. Methods Mol. Biol. 2013, 966, 259–272. [Google Scholar] [CrossRef] [PubMed]
- Klimentová, J.; Stulík, J. Methods of isolation and purification of outer membrane vesicles from gram-negative bacteria. Microbiol. Res. 2015, 170, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gerritzen, M.J.H.; Salverda, M.L.M.; Martens, D.E.; Wijffels, R.H.; Stork, M. Spontaneously released Neisseria meningitidis outer membrane vesicles as vaccine platform: Production and purification. Vaccine 2019, 37, 6978–6986. [Google Scholar] [CrossRef] [PubMed]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Bauman, S.J.; Kuehn, M.J. Purification of outer membrane vesicles from Pseudomonas aeruginosa and their activation of an IL-8 response. Microbes Infect. 2006, 8, 2400–2408. [Google Scholar] [CrossRef]
- Grande, R.; Di Marcantonio, M.C.; Robuffo, I.; Pompilio, A.; Celia, C.; Di Marzio, L.; Paolino, D.; Codagnone, M.; Muraro, R.; Stoodley, P.; et al. Helicobacter pylori ATCC 43629/NCTC 11639 Outer Membrane Vesicles (OMVs) from Biofilm and Planktonic Phase Associated with Extracellular DNA (eDNA). Front. Microbiol. 2015, 6, 1369. [Google Scholar] [CrossRef]
- Akashi, H.; Gojobori, T. Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc. Natl. Acad. Sci. USA 2002, 99, 3695–3700. [Google Scholar] [CrossRef]
- Sparviero, S.; Dicke, M.D.; Rosch, T.M.; Castillo, T.; Salgado-Lugo, H.; Galindo, E.; Peña, C.; Büchs, J. Yeast extracts from different manufacturers and supplementation of amino acids and micro elements reveal a remarkable impact on alginate production by A. vinelandii ATCC9046. Microb. Cell Fact. 2023, 22, 99. [Google Scholar] [CrossRef]
- Müller, J.; Beckers, M.; Mußmann, N.; Bongaerts, J.; Büchs, J. Elucidation of auxotrophic deficiencies of Bacillus pumilus DSM 18097 to develop a defined minimal medium. Microb. Cell Fact. 2018, 17, 106. [Google Scholar] [CrossRef] [PubMed]
- Becton-Dickinson. BD Bionutrients Technical Manual Advanced Bioprocessing, 3rd ed.; BD: Sparks, MD, USA, 2006; Volume 52, pp. 28–29. [Google Scholar]
- Yeoman, K.; Fahnert, B.; Lea-Smith, D.; Clarke, T. Microbial Biotechnology, 1st ed.; Oxford Biology Primers, Oxford University: Oxford, UK, 2021; p. 272. [Google Scholar]
- Belsley, D.A.; Kuh, E.; Welsch, R.E. The Condition Number. In Regression Diagnostics: Identifying Influential Data and Sources of Collinearity, 1st ed.; John Wiley & Sons: New York, NY, USA, 1980; pp. 100–104. [Google Scholar]
- Bitto, N.J.; Chapman, R.; Pidot, S.; Costin, A.; Lo, C.; Choi, J.; D’Cruze, T.; Reynolds, E.C.; Dashper, S.G.; Turnbull, L.; et al. Bacterial membrane vesicles transport their DNA cargo into host cells. Sci. Rep. 2017, 7, 7072. [Google Scholar] [CrossRef]
- Shi, R.; Dong, Z.; Ma, C.; Wu, R.; Lv, R.; Liu, S.; Ren, Y.; Liu, Z.; van der Mei, H.C.; Busscher, H.J.; et al. High-Yield, Magnetic Harvesting of Extracellular Outer-Membrane Vesicles from Escherichia coli. Small 2022, 18, 2204350. [Google Scholar] [CrossRef] [PubMed]
- Czitrom, V. One-Factor-at-a-Time versus Designed Experiments. Am. Stat. 1999, 53, 126–131. [Google Scholar] [CrossRef]
Group 1 1 | Group 2 1 | Group 3 1 | Group 4 1 |
---|---|---|---|
Arginine (0.77) | Serine (0.55) | Aspartate (1.32) | Lysine (1.44) |
Glutamine (0.06) | Glycine (0.72) | Asparagine (0.24) | Alanine (1.38) |
Histidine (0.32) | Valine (1.38) | Threonine (0.47) | Tryptophan (0.1) |
Proline (1.18) | Leucine (1.44) | Methionine (0.3) | Phenylalanine (1.08) |
Glutamate (3.6) | Cysteine (0.05) | Isoleucine (1.16) | Tyrosine (0.2) |
Name | Abbreviation | Units | Type | Settings |
---|---|---|---|---|
Trace elements | Trace | mg/kg | Quantitative | 1 to 20 |
Vitamins | Vitam | mg/kg | Quantitative | 1 to 10 |
Iron citrate | Iron | mg/kg | Quantitative | 1 to 10 |
Mix 2 | Mix 2 | g/kg | Formulation | 0 to 1 |
Mix 3 | Mix 3 | g/kg | Formulation | 0 to 1 |
Mix 4 | Mix 4 | g/kg | Formulation | 0 to 1 |
Mix 1 | Mix 1 | g/kg | Formulation | 0 to 1 |
Name | Abbreviation | Units | Condition | Objective | Min | Target |
---|---|---|---|---|---|---|
OD | OD | - | Required | Maximize | 4 | 10 |
Duplication time | Td | h | Required | Minimize | - | 1 |
Name | Abbreviation | Units | Type | Settings |
---|---|---|---|---|
Arginine | Arg | g/L | Quantitative | 0.4 to 2.3 |
Glutamate | Glu | g/L | Quantitative | 1.8 to 10.7 |
Histidine | His | g/L | Quantitative | 0.16 to 1 |
Proline | Pro | g/L | Quantitative | 0.6 to 3.5 |
Glutamine | Gln | g/L | Quantitative | 0.03 to 0.2 |
Exp No. | Exp Name | Run Order | Incl/Excl | Arg | Glu | His | Pro | Gln | OD | Td |
---|---|---|---|---|---|---|---|---|---|---|
1 | N1 | 21 | Incl | 0.4 | 1.8 | 0.16 | 0.6 | 0.2 | 4 | 2.13 |
2 | N2 | 23 | Incl | 2.3 | 1.8 | 0.16 | 0.6 | 0.03 | 3.2 | 2.36 |
3 | N3 | 24 | Incl | 0.4 | 10.7 | 0.16 | 0.6 | 0.03 | 3.1 | 1.91 |
4 | N4 | 7 | Incl | 2.3 | 10.7 | 0.16 | 0.6 | 0.2 | 3.1 | 2.58 |
5 | N5 | 20 | Incl | 0.4 | 1.8 | 1 | 0.6 | 0.03 | 2.5 | 1.80 |
6 | N6 | 13 | Incl | 2.3 | 1.8 | 1 | 0.6 | 0.2 | 2.3 | 2.60 |
7 | N7 | 12 | Incl | 0.4 | 10.7 | 1 | 0.6 | 0.2 | 3 | 1.91 |
8 | N8 | 14 | Incl | 2.3 | 10.7 | 1 | 0.6 | 0.03 | 3.2 | 3.04 |
9 | N9 | 9 | Incl | 0.4 | 1.8 | 0.16 | 3.5 | 0.03 | 3.6 | 2.95 |
10 | N10 | 8 | Incl | 2.3 | 1.8 | 0.16 | 3.5 | 0.2 | 3.6 | 2.05 |
11 | N11 | 10 | Incl | 0.4 | 10.7 | 0.16 | 3.5 | 0.2 | 4 | 2.20 |
12 | N12 | 3 | Incl | 2.3 | 10.7 | 0.16 | 3.5 | 0.03 | 2.3 | 2.11 |
13 | N13 | 5 | Incl | 0.4 | 1.8 | 1 | 3.5 | 0.2 | 3.1 | 2.11 |
14 | N14 | 15 | Incl | 2.3 | 1.8 | 1 | 3.5 | 0.03 | 2.8 | 1.80 |
15 | N15 | 1 | Incl | 0.4 | 10.7 | 1 | 3.5 | 0.03 | 4.2 | 1.84 |
16 | N16 | 26 | Incl | 2.3 | 10.7 | 1 | 3.5 | 0.2 | 3 | 1.92 |
17 | N17 | 28 | Incl | 0.4 | 6.25 | 0.58 | 2.05 | 0.115 | 5.5 | 1.80 |
18 | N18 | 18 | Excl | 2.3 | 6.25 | 0.58 | 2.05 | 0.115 | - | - |
19 | N19 | 6 | Incl | 1.35 | 1.8 | 0.58 | 2.05 | 0.115 | 3.3 | 2.60 |
20 | N20 | 25 | Excl | 1.35 | 10.7 | 0.58 | 2.05 | 0.115 | - | - |
21 | N21 | 27 | Incl | 1.35 | 6.25 | 0.16 | 2.05 | 0.115 | 2.1 | 2.69 |
22 | N22 | 16 | Excl | 1.35 | 6.25 | 1 | 2.05 | 0.115 | - | - |
23 | N23 | 29 | Incl | 1.35 | 6.25 | 0.58 | 0.6 | 0.115 | 4.1 | 1.91 |
24 | N24 | 11 | Excl | 1.35 | 6.25 | 0.58 | 3.5 | 0.115 | - | - |
25 | N25 | 4 | Incl | 1.35 | 6.25 | 0.58 | 2.05 | 0.03 | 2.7 | 2.84 |
26 | N26 | 22 | Excl | 1.35 | 6.25 | 0.58 | 2.05 | 0.2 | - | - |
27 | N27 | 2 | Incl | 1.35 | 6.25 | 0.58 | 2.05 | 0.115 | 2.6 | 2.67 |
28 | N28 | 19 | Incl | 1.35 | 6.25 | 0.58 | 2.05 | 0.115 | 2.4 | 2.24 |
29 | N29 | 17 | Incl | 1.35 | 6.25 | 0.58 | 2.05 | 0.115 | 3.7 | 1.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baccante, A.; Petruccelli, P.; Saudino, G.; Ragnoni, E.; Johansson, E.; Di Cioccio, V.; Mazarakis, K. Optimization of a Bacterial Cultivation Medium via a Design-of-Experiment Approach in a Sartorius Ambr® 15 Fermentation Microbioreactor System. Fermentation 2023, 9, 1002. https://doi.org/10.3390/fermentation9121002
Baccante A, Petruccelli P, Saudino G, Ragnoni E, Johansson E, Di Cioccio V, Mazarakis K. Optimization of a Bacterial Cultivation Medium via a Design-of-Experiment Approach in a Sartorius Ambr® 15 Fermentation Microbioreactor System. Fermentation. 2023; 9(12):1002. https://doi.org/10.3390/fermentation9121002
Chicago/Turabian StyleBaccante, Antonio, Pasquale Petruccelli, Giovanni Saudino, Elena Ragnoni, Erik Johansson, Vito Di Cioccio, and Kleanthis Mazarakis. 2023. "Optimization of a Bacterial Cultivation Medium via a Design-of-Experiment Approach in a Sartorius Ambr® 15 Fermentation Microbioreactor System" Fermentation 9, no. 12: 1002. https://doi.org/10.3390/fermentation9121002
APA StyleBaccante, A., Petruccelli, P., Saudino, G., Ragnoni, E., Johansson, E., Di Cioccio, V., & Mazarakis, K. (2023). Optimization of a Bacterial Cultivation Medium via a Design-of-Experiment Approach in a Sartorius Ambr® 15 Fermentation Microbioreactor System. Fermentation, 9(12), 1002. https://doi.org/10.3390/fermentation9121002