Bacillus subtilis K-C3 as Potential Starter to Improve Nutritional Components and Quality of Shrimp Paste and Corresponding Changes during Storage at Two Alternative Temperatures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Starter Culture
2.2. Preparation of Shrimp Paste
2.3. Determination of Microbial Population
2.4. Physicochemical Measurements
2.5. Determination of Antioxidant Activities
2.6. Determination of Free Amino Acid Composition
2.7. Determination of Fatty Acid Profiles
2.8. Determination of Biogenic Amines (BAs)
2.9. Statistical Analysis
3. Results and Discussion
3.1. Microbial Population
3.2. Physicochemical Properties
3.2.1. aw and pH
3.2.2. Formal, Ammonia, and Amino Nitrogen Contents
3.2.3. Browning Index (A420)
3.2.4. TBARS Value
3.3. Antioxidative Activities
3.4. Free Amino Acid Composition
3.5. Fatty Acid Profile
3.6. BAs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pongsetkul, J.; Benjakul, S.; Vongkamjan, K.; Sumpavapol, P.; Osako, K. Changes in lipids of shrimp (Acetes vulgaris) during salting and fermentation. Eur. J. Lipid Sci. Technol. 2017, 119, 1700253. [Google Scholar] [CrossRef]
- Visessanguan, W.; Benjakul, S.; Smitinont, T.; Kittikun, C.; Thepkasikul, P.; Panya, A. Changes in microbiological, biochemical and physical-chemical properties of Nham inoculated with different inoculum levels of Lactobacillus curvatus. LWT–Food Sci. Technol. 2006, 39, 814–826. [Google Scholar] [CrossRef]
- Kleekayai, T.; Harnedy, P.A.; Okeeffe, M.B.; Poyarkov, A.A.; CunhaNeves, A.; Suntornsuk, W.; FitzFerald, R.J. Extraction of antioxidant and ACE inhibitory peptides from Thai traditional fermented shrimp pastes. Food Chem. 2015, 176, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Lu, H.; He, Z.; Sang, Y.; Sun, J. Quality characteristics and bacterial community of a Chinese salt-fermented shrimp paste. LWT J. Food Sci. Technol. 2021, 136, 110358. [Google Scholar] [CrossRef]
- Che, H.; Yu, J.; Sun, J.; Lu, K.; Xie, W. Bacterial composition changes and volatile compounds during the fermentation of shrimp paste: Dynamic changes of microbial communities and flavor composition. Food Biosci. 2021, 43, 101169. [Google Scholar] [CrossRef]
- Zaman, M.Z.; Abu-Bakar, F.; Jinap, S.; Bakar, J. Novel starter cultures to inhibit biogenic amines accumulation during fish sauce fermentation. Int. J. Food Microbiol. 2011, 145, 84–91. [Google Scholar] [CrossRef]
- Prihanto, A.A.; Nurdiani, R.; Jatmiko, Y.D.; Firdaus, M.; Kusuma, T.S. Physicochemical and sensory properties of terasi (an Indonesian fermented shrimp paste) produced using Lactobacillus plantarum and Bacillus amyloliquefaciens. Microbiol. Res. 2021, 242, 126619. [Google Scholar] [CrossRef]
- Yu, J.; Lu, K.; Dong, X.; Xie, W. Virgibacillus sp. SK37 and Staphylococcus nepalensis JS11 as potential starters to improve taste of shrimp paste. LWT Food Sci. Technol. 2022, 154, 112657. [Google Scholar] [CrossRef]
- Pongsetkul, J.; Benjakul, S.; Sumpavapol, P.; Vongkamjan, K.; Kazufumi, O. Bacillus subtilis K-C3 isolated from Kapi, salted shrimp paste of Thailand: Its extracellular enzymes and the use as starter culture in Kapi. J. Food Biochem. 2018, 42, e12649. [Google Scholar] [CrossRef]
- Pongsetkul, J.; Benjakul, S.; Sumpavapol, P.; Vongkamjan, K.; Kazufumi, O. Quality of Kapi, salted shrimp paste of Thailand, inoculated with Bacillus spp. K-C3. J. Aquat. Food Prod. Technol. 2018, 27, 830–843. [Google Scholar] [CrossRef]
- Sharif, Z.M.; Othman, M.S.; Jalil, N.J. A stability study on shelf life of spicy shrimp paste (Sambal belacan) in Malaysian SMEs’ (small medium enterprise). AIP Conf. Proc. 2018, 2016, 020083. [Google Scholar]
- Pongsetkul, J.; Benjakul, S.; Boonchuen, P. Changes in volatile compounds and quality characteristics of salted shrimp paste stored in different packaging containers. Fermentation 2022, 8, 69. [Google Scholar] [CrossRef]
- Doeun, D.; Davaatseren, M.; Chung, M.S. Biogenic amines in foods. Food Sci. Biotechnol. 2017, 26, 1463–1474. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Method of Analysis; Association of Official Chemists: Gaithersberg, MA, USA, 2000. [Google Scholar]
- BAM. Aerobic plate count. In Bacteriological Analytical Manual; Bryce, J., Ed.; U.S. Food and Drug Administration; E-Con. Publishing: New York, NY, USA, 2001; pp. 53–67. [Google Scholar]
- Thai Industrial Standard. Local Fish Sauce Standard; Department of Industry: Bangkok, Thailand, 1983.
- Faithong, N.; Benjakul, S. Changes in antioxidant activities and physicochemical properties of Kapi, a fermented shrimp paste, during fermentation. J. Food Sci. Technol. 2014, 51, 2463–2471. [Google Scholar] [CrossRef] [Green Version]
- Minh-Thuy, L.T.; Okazaki, E.; Osako, K. Isolation and characterization of acid soluble collagen from the scales of marine fishes from Japan and Vietnam. Food Chem. 2014, 149, 264–270. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Saito, H.; Seike, Y.; Ioka, H.; Osako, K. High docosahexaenoic acid levels in both neutral and polar lipids of a highly migratory fish: Thunnus tonggol (Bleeker). Lipids 2005, 40, 941–953. [Google Scholar] [CrossRef]
- Metcalfe, L.D.; Schmitz, A.A.; Pelka, J.R. Rapid preparation of fatty acid esters from lipids for gas chromatographic analysis. Anal. Chem. 1996, 38, 514–519. [Google Scholar] [CrossRef]
- Sang, X.; Li, K.; Zhu, Y.; Ma, X.; Hao, H.; Bi, J.; Zhang, G.; Hou, H. The impact of microbial diversity on biogenic amines formation in grasshopper sub shrimp paste during the fermentation. Front. Microbiol. 2020, 11, 782. [Google Scholar] [CrossRef] [Green Version]
- Phithakpol, B. Fish fermentation technology in Thailand. In Fish Fermentation Technology; Steinkraus, K.H., Reilly, P.J., Eds.; United Nation University Press: Tokyo, Japan, 1993; pp. 155–166. [Google Scholar]
- Lee, D.A.; Collins, E.B. Influence of temperature on growth of Streptococcus cremoris and Streptococcus lactis. J. Dairy Sci. 1976, 59, 405–409. [Google Scholar] [CrossRef]
- Daroonpunt, R.; Uchino, M.; Tsujii, Y.; Kazami, M.; Oka, D.; Tanasupawat, S. Chemical and physical properties of Thai traditional shrimp paste (Kapi). J. Appl. Pharm. Sci. 2016, 6, 58–62. [Google Scholar] [CrossRef]
- Sripokar, P.; Hansen, E.B.; Zhang, Y.; Maneerat, S.; Klomklao, S. Kapi-plaa fermented using beardless barb fish: Physicochemical, microbiological and antioxidant properties as influenced by production processes. Int. J. Food Sci. Technol. 2022, 57, 1161–1172. [Google Scholar] [CrossRef]
- TCPS. Thai Community Product Standard No. TCPS 61/2018: Kapi (Shrimp Paste); Thai Industrial Standards Institute: Bangkok, Thailand, 2018. [Google Scholar]
- Beuchat, L. Influence of water activity on growth, metabolic activities and survival of yeasts and molds. J. Food Prot. 1983, 46, 135–141. [Google Scholar] [CrossRef]
- Corry, J.E.L. Relationships of water activity to fungal growth. In Food and Beverage Mycology; Beuchat, L.R., Ed.; AVI Pub. Co.: Westport, CT, USA, 1978; pp. 45–82. [Google Scholar]
- Fellows, P.J. Dehydration. In Food Processing Technology: Principles and Practice; Woodhead Publishing Series in Food Science; Technology and Nutrition: Boca Raton, FL, USA, 2017; pp. 661–716. [Google Scholar]
- Anggo, A.D.; Marut, W.F.; Swastawati, F.; Rianingsih, L. Changes of amino and fatty acids in anchovy (Stolephorus sp.) fermented fish paste with different fermentation periods. Procedia Environ. Sci. 2015, 23, 58–63. [Google Scholar] [CrossRef] [Green Version]
- Ciou, J.Y.; Hsieh, L.S.; Lee, T.T.; Hsieh, C.W. Enhancement of agricultural processed by-products: Qualities analysis of fermentation method in gradient salt adding treatment of tuna cooking juice with black bean koji added. Foods 2020, 9, 320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binsan, W.; Benjakul, S.; Visessanguan, W.; Roytrakul, S.; Tanaka, M.; Kishimura, H. Antioxidative activity of Mungoong, an extract paste, from the cephalothorax of white shrimp (Litopenaeus vannamei). Food Chem. 2008, 106, 185–193. [Google Scholar] [CrossRef]
- Amarowicz, R. Antioxidant activity of Maillard reaction products. Eur. J. Lipid Sci. Technol. 2009, 111, 109–111. [Google Scholar] [CrossRef]
- Jittrepotch, N.; Rojsuntornkitti, K.; Kongbangkerd, T. Physicochemical and sensory properties of Plaa-som, a Thai fermented fish product prepared by using low sodium chloride substitutes. Int. Food Res. J. 2015, 22, 721–730. [Google Scholar]
- Senapati, S.R.; Kumar, G.P.; Singh, C.B.; Xavier, K.A.M.; Chouksey, M.K.; Nayak, B.B.; Balange, A.K. Melanosis and quality attributes of chill stored farm raised white leg shrimp (Litopenaeus vannamei). J. Appl. Nat. Sci. 2017, 9, 626–631. [Google Scholar] [CrossRef] [Green Version]
- Peralta, E.M.; Hatate, H.; Kawabe, D.; Kuwahara, R.; Wakamatsu, S.; Yuki, T.; Murata, H. Improving antioxidant activity and nutritional components of Philippine salt-fermented shrimp paste through prolonged fermentation. Food Chem. 2008, 111, 72–77. [Google Scholar] [CrossRef]
- Mao, X.; Liu, P.; He, S.; Xie, J.; Kan, F.; Yu, C.; Li, Z.; Xue, C.; Lin, H. Antioxidant properties of bio-active substances from shrimp head fermented by Bacillus licheniformis OPL-007. Appl. Biochem. Biotechnol. 2013, 171, 1240–1252. [Google Scholar] [CrossRef] [PubMed]
- Jomova, K.; Valko, M. Advances in metal-induced oxidative stress and human disease. Toxicology 2011, 238, 65–87. [Google Scholar] [CrossRef] [PubMed]
- Dajanta, K.; Janpum, P.; Leksing, W. Antioxidant capacities, total phenolics and flavonoids in black and yellow soybeans fermented by Bacillus subtilis: A comparative study of Thai fermented soybeans (Thua nao). Int. Food Res. J. 2013, 20, 3125–3132. [Google Scholar]
- Shahzad, R.; Shehzad, A.; Bilal, S.; Lee, I.J. Bacillus amyloliquefaciens RWL-1 as a new potential strain for augmenting biochemical and nutritional composition of fermented soybean. Molecules 2020, 25, 2346. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Xia, P.; Zhang, L.; Hu, Y.; Xie, Q.; Xiang, H. A novel fermented soybean, inoculated with selected Bacillus, Lactobacillus and Hansenula strains, showed strong antioxidant and anti-fatigue potential activity. Food Chem. 2020, 333, 127527. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Lu, K.; Sun, J.; Xie, W.; Song, L.; Che, H. The flavor and antioxidant activity change pattern of shrimp head paste during fermentation. J. Ocean Univ. China 2022, 21, 195–203. [Google Scholar] [CrossRef]
- Kim, Y.B.; Choi, Y.S.; Ku, S.K.; Jang, D.J.; Ibrahim, H.H.B.; Moon, K.B. Comparison of quality characteristics between belacan from Brunei Darussalam and Korean shrimp paste. J. Ethn. Foods 2014, 1, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Cai, L.; Wang, Q.; Dong, Z.; Liu, S.; Zhang, C.; Li, J. Biochemical, nutritional, and sensory quality of the low salt fermented shrimp paste. J. Aquat. Food Prod. Technol. 2017, 26, 706–718. [Google Scholar] [CrossRef]
- Adeyeye, E.I. Amino acid composition of three species of Nigerian fish: Clarias anguillaris, Oreochromis niloticus and Cynoglossus senegalensis. Food Chem. 2009, 113, 43–46. [Google Scholar] [CrossRef]
- Carrasco-Castilla, J.; Hernández-Álvarez, A.J.; Jiménez-Martínez, C.; Jacinto-Hernández, C.; Alaiz, M.; Girón-Calle, J.; Vioque, J.; Dávila-Ortiz, G. Antioxidant and metal chelating activities of peptide fractions from phaseolin and bean protein. hydrolysates. Food Chem. 2012, 135, 1789–1795. [Google Scholar] [CrossRef]
- Peng, X.; Kong, B.; Xia, X.; Liu, Q. Reducing and radical-scavenging activities of whey protein hydrolysates prepared with Alcalase. Int. Dairy J. 2010, 20, 360–365. [Google Scholar] [CrossRef]
- Montano, N.; Gavino, G.; Gavino, V.C. Polyunsaturated fatty acid contents of some traditional fish and shrimp paste condiments of the Philippines. Food Chem. 2001, 75, 155–158. [Google Scholar] [CrossRef]
- Siriwardhana, N.; Kalupahana, N.S.; Moustaid-Moussa, N. Health benefits of n-3 polyunsaturated fatty acids: Eicosapentaenoic acid and docosahexaenoic acid. Adv. Food Nutr. Res. 2012, 65, 211–222. [Google Scholar]
- Pilapil, A.R.; Neyrinck, E.; Deloof, D.; Bekaert, K.; Robbens, J.; Raes, K. Chemical quality assessment of traditional salt-fermented shrimp paste from Northern Mindanao, Philippines. J. Sci. Food Agric. 2015, 96, 933–938. [Google Scholar] [CrossRef] [PubMed]
- Galvez, F.; Dominguez, R.; Maggiolino, R.A.; Pateiro, K.; Carballo, M.; Lorenzo, J.M. Meat quality of commercial chickens reared in different production systems: Industrial, range and organic. Ann. Anim. Sci. 2020, 20, 263–285. [Google Scholar] [CrossRef] [Green Version]
- Cai, L.; Liu, S.; Sun, L.; Wang, Y.; Ji, H.; Li, J. Application of tea polyphenols in combination with 6-gingerol on shrimp paste of during storage: Biogenic amines formation and quality determination. Front. Microbiol. 2015, 6, 981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.; Bi, J.; Li, X.; Zhang, G.; Hao, H.; Hou, H. Contribution of microorganisms to biogenic amine accumulation during fish sauce fermentation and screening of novel starters. Foods 2021, 10, 2572. [Google Scholar] [CrossRef]
- Shalaby, A.R. Significance of biogenic amines to food safety and human health. Food Res. Int. 1996, 29, 675–690. [Google Scholar] [CrossRef]
- FDA (Food and Drug Administration). Scombrotoxin (Histamine) Formation, Fish and Fishery Products Hazards and Controls Guidance, 4th ed.; Department of Health and Human Services, Public Health Service, Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Seafood: Washington, DC, USA, 2011; pp. 113–152.
- EC. Council Directive 91/493/EEC of 22 July, Laying down the health conditions for the production and the placing on the market of fishery products. Off. J. Eur. Comm. 1991, L268, 15–32. [Google Scholar]
- Mah, J.H.; Han, H.K.; Oh, Y.J.; Kim, M.J. Biogenic amines in Jeotkals, Korean salted and fermented fish products. Food Chem. 2002, 79, 239–243. [Google Scholar] [CrossRef]
- Gardini, F.; Martuscelli, M.; Crudele, M.A.; Paparella, A.; Suzzi, G. Use of Staphylococcus xylosus as a starter culture in dried sausages: Effect on the biogenic amine content. Meat Sci. 2002, 61, 275–283. [Google Scholar] [CrossRef] [PubMed]
- Bunkova, L.; Bunka, F.; Mantlova, G.; Cablova, A.; Sedlacek, I.; Svec, P.; Pachlova, V.; Kracmar, S. The effect of ripening and storage conditions on the distribution of tyramine, putrescine and cadaverine in Edam-cheese. Food Microbiol. 2010, 27, 880–888. [Google Scholar] [CrossRef] [PubMed]
Parameters | Storage Time | Inoc-L | Con-L | Inoc-R | Con-R |
---|---|---|---|---|---|
aw | 0 | 0.70 ± 0.02 d | 0.68 ± 0.02 d | 0.70 ± 0.02 b | 0.68 ± 0.02 c |
6 | 0.74 ± 0.02 ABc | 0.72 ± 0.01 Bc | 0.76 ± 0.03 Aa | 0.74 ± 0.01 ABb | |
12 | 0.77 ± 0.01 b | 0.76 ± 0.02 b | 0.78 ± 0.01 a | 0.77 ± 0.01 a | |
18 | 0.83 ± 0.01 Aa | 0.82 ± 0.01 ABa | 0.80 ± 0.01 Ba | 0.79 ± 0.02 Ba | |
pH | 0 | 7.11 ± 0.02 Ac | 7.04 ± 0.04 Bc | 7.11 ± 0.02 Ac | 7.04 ± 0.04 Bc |
6 | 7.33 ± 0.04 ABb | 7.20 ± 0.04 Cb | 7.39 ± 0.05 Ab | 7.29 ± 0.03 Bb | |
12 | 7.37 ± 0.02 Bb | 7.28 ± 0.03 Cb | 7.46 ± 0.02 Aa | 7.40 ± 0.06 Ba | |
18 | 7.48 ± 0.04 a | 7.44 ± 0.02 a | 7.42 ± 0.06 a | 7.40 ± 0.04 a | |
Browning index | 0 | 0.45 ± 0.03 Ac | 0.38 ± 0.02 Bd | 0.45 ± 0.03 Ad | 0.38 ± 0.02 Bd |
6 | 0.48 ± 0.02 ABc | 0.45 ± 0.02 Bc | 0.52 ± 0.03 Ac | 0.50 ± 0.02 Ac | |
12 | 0.59 ± 0.04 ABb | 0.53 ± 0.03 Bb | 0.64 ± 0.04 Ab | 0.58 ± 0.05 ABb | |
18 | 0.74 ± 0.03 ABa | 0.68 ± 0.05 Ba | 0.81 ± 0.05 Aa | 0.70 ± 0.03 Ba | |
TBARS | 0 | 0.78 ± 0.03 d | 0.76 ± 0.03 d | 0.78 ± 0.03 d | 0.76 ± 0.03 d |
6 | 0.84 ± 0.04 Bc | 0.84 ± 0.02 Bc | 0.91 ± 0.02 Ac | 0.90 ± 0.03 Ac | |
12 | 1.12 ± 0.04 Cb | 1.01 ± 0.05 Db | 1.29 ± 0.02 Ab | 1.23 ± 0.02 Bb | |
18 | 1.82 ± 0.06 Ca | 1.79 ± 0.04 Ca | 2.15 ± 0.04 Aa | 2.01 ± 0.05 Ba |
Amino Acids | Day 0 | Month 12th | ||||||
---|---|---|---|---|---|---|---|---|
Inoc-L | Con-L | Inoc-R | Con-R | Inoc-L | Con-L | Inoc-R | Con-R | |
EAAs * | ||||||||
His | 0.80 ± 0.19 a | 0.62 ± 0.22 | 0.80 ± 0.19 a | 0.62 ± 0.22 | 0.42 ± 0.09 Ab | 0.50 ± 0.11 A | 0.29 ± 0.06 Bb | 0.36 ± 0.12 AB |
Ile | 3.44 ± 0.55 A | 2.01 ± 0.35 Bb | 3.44 ± 0.55 A | 2.01 ± 0.35 Bb | 3.02 ± 0.48 | 2.87 ± 0.20 a | 3.15 ± 0.12 | 3.11 ± 0.22 a |
Leu | 3.43 ± 0.40 | 3.95 ± 0.47 | 3.43 ± 0.40 | 3.95 ± 0.47 | 3.03 ± 0.52 B | 3.91 ± 0.32 A | 3.22 ± 0.25 B | 3.68 ± 0.34 AB |
Lys | 6.61 ± 0.99 Aa | 4.61 ± 0.25 Ba | 6.61 ± 0.99 Aa | 4.61 ± 0.25 Ba | 3.03 ± 0.32 Ab | 2.16 ± 0.15 Bb | 2.15 ± 0.10 Bb | 2.03 ± 0.08 Bb |
Met | 1.26 ± 0.32 | 1.08 ± 0.21 | 1.26 ± 0.32 | 1.08 ± 0.21 | 1.44 ± 0.28 | 1.26 ± 0.09 | 1.38 ± 0.10 | 1.16 ± 0.19 |
Phe | 1.70 ± 0.22 | 1.77 ± 0.41 | 1.70 ± 0.22 b | 1.77 ± 0.41 | 2.02 ± 0.26 B | 1.92 ± 0.14 B | 2.55 ± 0.19 Aa | 2.01 ± 0.10 B |
Thr | 0.05 ± 0.00 b | 0.00 | 0.05 ± 0.00 b | 0.00 | 0.12 ± 0.02 a | 0.00 | 0.35 ± 0.04 a | 0.00 |
Trp | 1.64 ± 0.23 | 1.59 ± 0.33 | 1.64 ± 0.23 | 1.59 ± 0.33 a | 1.99 ± 0.14 A | 1.78 ± 0.21 A | 2.15 ± 0.30 A | 1.00 ± 0.03 Bb |
Val | 3.44 ± 0.98 | 3.01 ± 0.25 a | 3.44 ± 0.98 | 3.01 ± 0.25 a | 3.03 ± 0.20 A | 2.21 ± 0.27 Bb | 2.88 ± 0.22 A | 1.93 ± 0.14 Bb |
Total EAAs | 22.37 ± 1.48 Aa | 18.64 ± 1.02 Ba | 22.37 ± 1.48 Aa | 18.64 ± 1.02 Ba | 18.10 ± 0.93 ABb | 16.61 ± 0.79 BCb | 18.12 ± 0.70 Ab | 15.28 ± 0.78 Cb |
NEAAs ** | ||||||||
Ala | 5.42 ± 0.36 B | 6.42 ± 0.38 A | 5.42 ± 0.36 B | 6.42 ± 0.38 A | 6.00 ± 0.43 A | 6.40 ± 0.32 A | 5.30 ± 0.20 B | 6.12 ± 0.35 A |
Arg | 3.02 ± 0.55 B | 4.44 ± 0.39 A | 3.02 ± 0.55 B | 4.44 ± 0.39 A | 3.11 ± 0.41 B | 4.72 ± 0.21 A | 3.29 ± 0.22 B | 4.46 ± 0.31 A |
Asp/Asn | 10.12 ± 0.93 | 9.05 ± 0.42 a | 10.12 ± 0.93 a | 9.05 ± 0.42 a | 9.15 ± 0.66 A | 7.56 ± 0.54 Bb | 8.88 ± 0.45 Ab | 7.12 ± 0.32 Bb |
Cys | 0.26 ± 0.09 a | 0.40 ± 0.18 a | 0.26 ± 0.09 a | 0.40 ± 0.18 a | 0.10 ± 0.02 Bb | 0.21 ± 0.04 Ab | 0.03 ± 0.00 Cb | 0.09 ± 0.01 Bb |
Gly | 5.95 ± 0.76 | 5.02 ± 0.44 b | 5.95 ± 0.76 | 5.02 ± 0.44 | 6.55 ± 0.49 | 5.93 ± 0.33 a | 6.15 ± 0.61 | 5.89 ± 0.44 |
Glu/Gln | 18.06 ± 1.01 A | 14.14 ± 1.02 Bb | 18.06 ± 1.01 Ab | 14.14 ± 1.02 Bb | 19.23 ± 0.92 A | 16.11 ± 0.95 Ba | 20.15 ± 1.02 Aa | 17.03 ± 0.78 Ba |
Pro | 3.02 ± 0.56 b | 3.99 ± 0.27 b | 3.02 ± 0.56 | 3.99 ± 0.27 | 4.44 ± 0.26 Aa | 4.42 ± 0.16 Aa | 3.56 ± 0.29 B | 3.97 ± 0.30 B |
Ser | 0.40 ± 0.05 Bb | 0.56 ± 0.09 Ab | 0.40 ± 0.05 Bb | 0.56 ± 0.09 Ab | 1.01 ± 0.22 ABa | 1.12 ± 0.10 Aa | 0.89 ± 0.12 Ba | 1.15 ± 0.06 Aa |
Tau | 0.16 ± 0.02 A | 0.12 ± 0.01 B | 0.16 ± 0.02 A | 0.12 ± 0.01 B | 0.22 ± 0.06 A | 0.12 ± 0.02 B | 0.16 ± 0.05 A | 0.10 ± 0.01 B |
Tyr | 2.03 ± 0.09 a | 2.05 ± 0.21 | 2.03 ± 0.09 | 2.05 ± 0.21 a | 1.88 ± 0.15 b | 1.79 ± 0.10 | 1.93 ± 0.09 | 1.79 ± 0.19 b |
Total NEAAs | 48.44 ± 1.23 b | 46.19 ± 0.95 b | 48.44 ± 1.23 | 46.19 ± 0.95 | 51.69 ± 1.01 a | 48.38 ± 0.77 a | 50.34 ± 1.22 | 47.72 ± 0.64 |
Total AAs | 70.81 ± 2.95 A | 64.83 ± 2.35 B | 70.81 ± 2.95 A | 64.83 ± 2.35 B | 69.79 ± 2.03 A | 64.99 ± 2.99 AB | 68.46 ± 2.90 A | 63.00 ± 1.79 B |
Total umami/ sweetness AAs *** | 43.02 ± 1.50 A | 39.18 ± 2.02 B | 43.02 ± 1.50 A | 39.18 ± 2.02 B | 46.50 ± 1.74 A | 41.54 ± 2.06 B | 45.28 ± 2.00 A | 41.28 ± 1.56 B |
Leu/Ile ratio | 1.00 ± 0.22 B | 1.97 ± 0.39 A | 1.00 ± 0.22 B | 1.97 ± 0.39 Aa | 1.00 ± 0.32 | 1.36 ± 0.44 | 1.02 ± 0.28 | 1.18 ± 0.25 b |
P-PER **** | 0.88 ± 0.10 B | 1.11 ± 0.13 A | 0.88 ± 0.10 B | 1.11 ± 0.13 A | 0.71 ± 0.17 B | 1.12 ± 0.22 A | 0.79 ± 0.12 B | 1.01 ± 0.10 A |
Fatty Acids | Day 0 | Month 12th | ||||||
---|---|---|---|---|---|---|---|---|
Inoc-L | Con-L | Inoc-R | Con-R | Inoc-L | Con-L | Inoc-R | Con-R | |
SFA * | ||||||||
8:0 | 0.15 ± 0.02 Ba | 0.33 ± 0.12 A | 0.15 ± 0.02 B | 0.33 ± 0.12 Aa | 0.02 ± 0.00 Bb | 0.25 ± 0.09 A | 0.00 | 0.12 ± 0.04 Ab |
10:0 | 0.06 ± 0.05 | 0.17 ± 0.09 | 0.06 ± 0.05 | 0.17 ± 0.09 | 0.00 | 0.00 | 0.00 | 0.00 |
12:0 | 1.47 ± 0.12 B | 2.05 ± 0.24 A | 1.47 ± 0.12 B | 2.05 ± 0.24 A | 1.33 ± 0.21 | 1.65 ± 0.22 | 1.25 ± 0.32 | 1.61 ± 0.22 |
14:0 | 2.00 ± 0.20 | 1.96 ± 0.20 | 2.00 ± 0.20 | 1.96 ± 0.20 | 2.05 ± 0.11 A | 2.03 ± 0.12 A | 1.78 ± 0.07 B | 1.74 ± 0.18 B |
16:0 | 21.15 ± 1.43 | 20.62 ± 0.56 | 21.15 ± 1.43 | 20.62 ± 0.56 | 21.19 ± 0.50 | 21.01 ± 0.32 | 20.92 ± 0.44 | 20.60 ± 0.43 |
18:0 | 12.22 ± 1.02 | 12.16 ± 0.70 | 12.22 ± 1.02 | 12.16 ± 0.70 | 11.93 ± 0.45 | 12.05 ± 0.50 | 11.54 ± 0.30 | 11.62 ± 0.34 |
20:0 | 0.23 ± 0.09 | 0.31 ± 0.12 | 0.23 ± 0.09 | 0.31 ± 0.12 | 0.17 ± 0.03 | 0.20 ± 0.05 | 0.11 ± 0.04 | 0.16 ± 0.07 |
22:0 | 0.08 ± 0.01 | 0.12 ± 0.03 | 0.08 ± 0.01 | 0.12 ± 0.03 | 0.12 ± 0.04 | 0.13 ± 0.03 | 0.09 ± 0.02 | 0.11 ± 0.04 |
Total SFA | 37.36 ± 1.30 | 37.72 ± 0.96 | 37.36 ± 1.30 | 37.72 ± 0.96 | 36.81 ± 0.78 | 37.32 ± 0.63 | 35.69 ± 0.88 | 35.96 ± 0.70 |
MUFA | ||||||||
16:1 (n-7) | 7.65 ± 0.67 | 8.03 ± 0.40 | 7.65 ± 0.67 | 8.03 ± 0.40 | 7.42 ± 0.40 | 7.67 ± 0.36 | 7.30 ± 0.34 | 7.54 ± 0.20 |
18:1 (n-7) | 2.51 ± 0.34 | 2.38 ± 0.27 | 2.51 ± 0.34 | 2.38 ± 0.27 | 2.50 ± 0.21 | 2.41 ± 0.50 | 2.32 ± 0.33 | 2.35 ± 0.22 |
18:1 (n-9) | 10.39 ± 0.41 | 9.98 ± 0.50 | 10.39 ± 0.41 | 9.98 ± 0.50 | 10.02 ± 0.47 | 10.01 ± 0.50 | 10.03 ± 0.22 | 9.94 ± 0.35 |
20:1 (n-9) | 0.92 ± 0.21 | 0.96 ± 0.15 | 0.92 ± 0.21 a | 0.96 ± 0.15 | 0.67 ± 0.09 A | 0.78 ± 0.17 A | 0.51 ± 0.05 Bb | 0.83 ± 0.12 A |
22:1 (n-9) | 0.00 | 0.00 | 0.00 | 0.00 | 0.19 ± 0.03 B | 0.09 ± 0.01 C | 0.31 ± 0.09 A | 0.26 ± 0.03 A |
24:1 (n-9) | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 ± 0.00 B | 0.00 | 0.11 ± 0.03 A | 0.05 ± 0.02 B |
Total MUFA | 21.47 ± 0.88 | 21.35 ± 0.56 | 21.47 ± 0.88 | 21.35 ± 0.56 | 20.83 ± 0.50 | 20.96 ± 0.72 | 20.58 ± 0.49 | 20.97 ± 0.61 |
PUFA (n-6 series) | ||||||||
18:2 (n-6) | 3.98 ± 0.28 | 3.55 ± 0.30 | 3.98 ± 0.28 | 3.55 ± 0.30 | 4.05 ± 0.22 | 4.01 ± 0.20 | 4.12 ± 0.22 | 3.98 ± 0.23 |
18:3 (n-6) | 2.67 ± 0.19 A | 2.13 ± 0.14 B | 2.67 ± 0.19 A | 2.13 ± 0.14 B | 2.33 ± 0.20 | 2.08 ± 0.21 | 2.42 ± 0.25 | 2.05 ± 0.26 |
20:2 (n-6) | 1.01 ± 0.09 B | 2.33 ± 0.11 A | 1.01 ± 0.09 Bb | 2.33 ± 0.11 A | 1.22 ± 0.09 B | 2.30 ± 0.16 A | 1.54 ± 0.14 Ba | 2.40 ± 0.10 A |
20:4 (n-6) (AA) ** | 9.02 ± 0.32 | 9.10 ± 0.40 | 9.02 ± 0.32 b | 9.10 ± 0.40 | 9.22 ± 0.32 AB | 9.13 ± 0.22 B | 9.79 ± 0.30 Aa | 9.46 ± 0.20 AB |
22:4 (n-6) | 0.43 ± 0.04 | 0.49 ± 0.08 | 0.43 ± 0.14 | 0.49 ± 0.08 | 0.32 ± 0.12 | 0.45 ± 0.11 | 0.30 ± 0.06 | 0.39 ± 0.09 |
PUFA (n-3 series) | ||||||||
18:3 (n-3) | 2.22 ± 0.44 | 2.30 ± 0.23 | 2.22 ± 0.44 | 2.30 ± 0.23 | 2.16 ± 0.29 | 2.25 ± 0.15 | 2.12 ± 0.07 | 2.32 ± 0.09 |
20:4 (n-3) | 0.08 ± 0.01 | 0.00 | 0.08 ± 0.01 b | 0.00 | 0.05 ± 0.01 B | 0.00 | 0.22 ± 0.02 Aa | 0.00 |
20:5 (n-3) (EPA) | 12.61 ± 0.71 | 12.20 ± 0.55 | 12.61 ± 0.71 | 12.20 ± 0.55 | 12.99 ± 0.30 AB | 12.50 ± 0.41 B | 13.38 ± 0.32 A | 13.14 ± 0.30 A |
22:5 (n-3) | 0.21 ± 0.02 b | 0.00 | 0.21 ± 0.02 b | 0.00 | 0.43 ± 0.09 a | 0.00 | 0.57 ± 0.13 a | 0.00 |
22:6 (n-3) (DHA) | 7.19 ± 0.40 | 7.28 ± 0.32 | 7.19 ± 0.40 | 7.28 ± 0.32 | 7.12 ± 0.44 | 7.27 ± 0.23 | 7.26 ± 0.18 | 7.35 ± 0.24 |
Total PUFA | 39.42 ± 1.03 | 39.38 ± 0.67 | 39.42 ± 1.03 b | 39.38 ± 0.67 b | 39.89 ± 0.60 B | 39.99 ± 0.66 B | 41.72 ± 0.53 Aa | 41.09 ± 0.61 Aa |
Total FAs | 98.25 ± 1.33 | 98.45 ± 1.05 | 98.25 ± 1.33 | 98.45 ± 1.05 | 97.53 ± 0.99 | 98.27 ± 1.35 | 97.99 ± 1.20 | 98.02 ± 1.06 |
BAs | Day 0 | Month 12th | ||||||
---|---|---|---|---|---|---|---|---|
Inoc-L | Con-L | Inoc-R | Con-R | Inoc-L | Con-L | Inoc-R | Con-R | |
Try * | 22.35 ± 2.02 b | 20.02 ± 1.95 b | 22.35 ± 2.02 b | 20.02 ± 1.95 b | 88.09 ± 1.26 Ba | 90.11 ± 3.03 Ba | 99.98 ± 5.05 Aa | 101.02 ± 4.04 Aa |
Phe | 0.00 | 0.00 | 0.00 | 0.00 | 20.11 ± 1.12 A | 23.22 ± 2.40 A | 15.41 ± 2.11 B | 15.65 ± 1.55 B |
Put | 0.00 | 0.00 | 0.00 | 0.00 | 60.35 ± 2.87 D | 70.52 ± 2.15 C | 80.38 ± 1.05 B | 90.12 ± 2.56 A |
Cad | 2.41 ± 0.29 b | 2.03 ± 0.16 b | 2.41 ± 0.29 b | 2.03 ± 0.16 b | 50.02 ± 3.01 Ba | 54.41 ± 2.66 Ba | 62.22 ± 3.14 Aa | 60.01 ± 4.18 Aa |
Him | 18.33 ± 0.69 Ab | 16.62 ± 0.80 Bb | 18.33 ± 0.69 Ab | 16.62 ± 0.80 Bb | 70.03 ± 3.22 a | 70.49 ± 3.14 a | 72.02 ± 3.25 a | 75.55 ± 3.92 a |
Tyr | 1.41 ± 0.30 b | 0.00 | 1.41 ± 0.30 b | 0.00 | 20.55 ± 2.19 Aa | 10.47 ± 1.01 B | 17.03 ± 1.40 Aa | 10.15 ± 1.05 B |
Spm | 3.95 ± 0.67 | 0.00 | 3.95 ± 0.67 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Spd | 0.00 | 0.00 | 0.00 | 0.00 | 3.09 ± 0.77 A | 1.05 ± 0.30 B | 4.41 ± 0.68 A | 0.00 |
Total BAs | 48.45 ± 3.08 Ab | 38.67 ± 2.40 Bb | 48.45 ± 3.08 Aba | 38.67 ± 2.40 Bb | 312.24 ± 5.79 Ba | 320.27 ± 6.02 B | 351.45 ± 6.14 Aa | 352.50 ± 6.38 Aa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pongsetkul, J.; Benjakul, S.; Boonchuen, P. Bacillus subtilis K-C3 as Potential Starter to Improve Nutritional Components and Quality of Shrimp Paste and Corresponding Changes during Storage at Two Alternative Temperatures. Fermentation 2023, 9, 107. https://doi.org/10.3390/fermentation9020107
Pongsetkul J, Benjakul S, Boonchuen P. Bacillus subtilis K-C3 as Potential Starter to Improve Nutritional Components and Quality of Shrimp Paste and Corresponding Changes during Storage at Two Alternative Temperatures. Fermentation. 2023; 9(2):107. https://doi.org/10.3390/fermentation9020107
Chicago/Turabian StylePongsetkul, Jaksuma, Soottawat Benjakul, and Pakpoom Boonchuen. 2023. "Bacillus subtilis K-C3 as Potential Starter to Improve Nutritional Components and Quality of Shrimp Paste and Corresponding Changes during Storage at Two Alternative Temperatures" Fermentation 9, no. 2: 107. https://doi.org/10.3390/fermentation9020107
APA StylePongsetkul, J., Benjakul, S., & Boonchuen, P. (2023). Bacillus subtilis K-C3 as Potential Starter to Improve Nutritional Components and Quality of Shrimp Paste and Corresponding Changes during Storage at Two Alternative Temperatures. Fermentation, 9(2), 107. https://doi.org/10.3390/fermentation9020107