Ensiling Cyanide Residue and In Vitro Rumen Fermentation of Cassava Root Silage Treated with Cyanide-Utilizing Bacteria and Cellulase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design, Ensiling Materials, and Silage Preparation
2.2. Total Cyanide Measurement and Ensiling Trial
2.3. In Vitro Rumen Test
2.4. Statistical Analysis
3. Results
3.1. Cassava Root Materials
3.2. Changes of Total Cyanides and pH Values in Cassava Root Silage during Ensiling
3.3. Ensiling Loss, Chemical Composition, and Total Cyanides Content of Silage
3.4. Silage Fermentation
3.5. Microbial Population
3.6. In Vitro Rumen Fermentation
4. Discussion
4.1. Cassava Root Materials
4.2. Effect of Additive on Total Cyanides Removal Efficiency in Silage
4.3. Effect on Ensiling Loss and Chemical Composition in Silage
4.4. Effect on Silage Quality and Microbial Population of Silage
4.5. Effect on In Vitro Rumen Fermentation of Dietary Silage
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Howeler, R.H. Cassava cultivation and soil productivity. In Achieving Sustainable Cultivation of Cassava; Hershey, C., Ed.; Burleigh Dodds Science: Cambridge, UK, 2017; Volume 1, pp. 1–16. [Google Scholar]
- Morgan, N.K.; Choct, M. Cassava: Nutrient composition and nutritive value in poultry diets. Anim. Nutr. 2016, 2, 253–261. [Google Scholar] [CrossRef]
- Cherdthong, A.; Khonkhaeng, B.; Seankamsorn, A.; Supapong, C.; Wanapat, M.; Gunun, N.; Gunun, P.; Chanjula, P.; Polyorach, S. Effects of feeding fresh cassava root with high-sulfur feed block on feed utilization, rumen fermentation, and blood metabolites in Thai native cattle. Trop. Anim. Health Prod. 2018, 50, 1365–1371. [Google Scholar] [CrossRef] [PubMed]
- McSweeney, C.S.; Odenyo, A.; Krause, D.O. Rumen microbial responses to antinutritive factors in fodder trees and shrub legumes. J. Appl. Anim. Res. 2002, 21, 181–205. [Google Scholar] [CrossRef]
- Prachumchai, R.; Cherdthong, A.; Wanapat, M.; So, S.; Polyorach, S. Fresh cassava root replacing cassava chip could enhance milk production of lactating dairy cows fed diets based on high sulfur-containing pellet. Sci. Rep. 2022, 12, 3809. [Google Scholar] [CrossRef] [PubMed]
- Ngwa, T.A.; Nsahlai, I.V.; Iji, P.A. Ensilage as a means of reducing the concentration of cyanogenic glycosides in the pods of Acacia Sieberiana and the effect of additives on silage quality. J. Sci. Food Agric. 2004, 84, 521–529. [Google Scholar] [CrossRef]
- Gensa, U. Review on cyanide poisoning in ruminants. J. Biol. Agric. Healthc. 2019, 9, 6. [Google Scholar]
- Padmaja, G.; Geroge, M.; Balagopalan, C. Ensiling as an Innovative Biotechnological Approach for Conservation of High Cyanide Cassava Tubers for Feed Use. In Proceedings of the Second International Scientific Meeting of Cassava Biotechnology Network, Bogor, Indonesia, 22–26 August 1994; pp. 784–794. [Google Scholar]
- Pholsen, S.; Khota, W.; Pang, H.; Higgs, D.; Cai, Y. Characterization and application of lactic acid bacteria for tropical silage preparation. Anim. Sci. J. 2016, 87, 1202–1211. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Wang, X.K.; Lin, Y.L.; Zheng, Y.L.; Ni, K.K.; Yang, F.Y. Effects of microbial inoculants on fermentation quality and aerobic stability of paper mulberry silages prepared with molasses or cellulase. Fermentation 2022, 8, 167. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, R.; Wang, C.; Dong, W.; Zhang, Z.; Zhao, L.; Zhang, X. Effects of cellulase and Lactobacillus Plantarum on fermentation quality, chemical composition, and microbial community of mixed silage of whole-plant corn and peanut vines. Appl. Biochem. Biotechnol. 2022, 194, 2465–2480. [Google Scholar] [CrossRef]
- Sarwono, K.A.; Rohmatussolihat, R.; Watman, M.; Ratnakomala, S.; Astuti, W.D.; Fidriyanto, R.; Ridwan, R.; Widyastuti, Y. Characteristics of fresh rice straw silage quality prepared with addition of lactic acid bacteria and crude cellulase. AIMS Agric. Food 2022, 7, 481–499. [Google Scholar] [CrossRef]
- Cai, Y.; Benno, Y.; Ogawa, M.; Kumai, S. Effect of applying lactic acid bacteria isolated from forage crops on fermentation characteristics and aerobic deterioration of silage. J. Dairy Sci. 1999, 82, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Cai, Y.; Takahashi, T.; Yoshida, N.; Tohno, M.; Uegaki, R.; Nonaka, K.; Terada, F. Effect of lactic acid bacteria inoculant and beet pulp addition on fermentation characteristics and in vitro ruminal digestion of vegetable residue silage. J. Dairy Sci. 2011, 94, 3902–3912. [Google Scholar] [CrossRef] [PubMed]
- Kaewpila, C.; Gunun, P.; Kesorn, P.; Subepang, S.; Thip-uten, S.; Cai, Y.; Pholsen, S.; Cherdthong, A.; Khota, W. Improving ensiling characteristics by adding lactic acid bacteria modifies in vitro digestibility and methane production of forage-sorghum mixture silage. Sci. Rep. 2021, 11, 1968. [Google Scholar] [CrossRef] [PubMed]
- Kaewpila, C.; Thip-Uten, S.; Cherdthong, A.; Khota, W. Impact of cellulase and lactic acid bacteria inoculant to modify ensiling characteristics and in vitro digestibility of sweet corn stover and cassava pulp silage. Agriculture 2021, 11, 66. [Google Scholar] [CrossRef]
- Khota, W.; Pholsen, S.; Higgs, D.; Cai, Y. Comparative analysis of silage fermentation and in vitro digestibility of tropical grass prepared with Acremonium and Tricoderma species producing cellulases. Asian-Australas. J. Anim. Sci. 2018, 31, 1913–1922. [Google Scholar] [CrossRef] [PubMed]
- WTSR. Nutrient Requirement of Beef Cattle in Indochinese Peninsula; Klungnanavitthaya Press: Khon Kaen, Thailand, 2010. [Google Scholar]
- Iwuoha, G.; Ubeng, G.; Onwuachu, U. Detoxification effect of fermentation on cyanide content of cassava tuber. J. Appl. Sci. Environ. Manag. 2013, 17, 567–570. [Google Scholar]
- Gomez, G.; Valdivieso, M. The effects of ensiling cassava whole-root chips on cyanide elimination. Nutr. Rep. Int. 1988, 37, 1161–1166. [Google Scholar]
- Kyawt, Y.Y.; Lukkananukool, A. Comparison of feed conditioning techniques to reduce cyanide contained in two varieties of cassava tuber. Int. J. Agric. For. Life Sci. 2019, 3, 307–310. [Google Scholar]
- Khota, W.; Pholsen, S.; Higgs, D.; Cai, Y. Natural lactic acid bacteria population of tropical grasses and their fermentation factor analysis of silage prepared with cellulase and inoculant. J. Dairy Sci. 2016, 99, 9768–9781. [Google Scholar] [CrossRef]
- Lambert, L.; Ramasamy, J.; Paukstells, V. Stable reagents for the colorimetric determination of cyanide by modified Koenig reactions. Anal. Chem. 1975, 47, 916–918. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Darwin; Charles, W.; Cord-Ruwisch, R. Concurrent lactic and volatile fatty acid analysis of microbial fermentation samples by gas chromatography with heat pre-treatment. J. Chromatogr. Sci. 2018, 56, 1–5. [Google Scholar] [CrossRef]
- Fawcett, J.K.; Scott, J.E. A rapid and precise method for the determination of urea. J. Clin. Pathol. 1960, 13, 156–159. [Google Scholar] [CrossRef] [PubMed]
- Kozaki, M.; Uchimura, T.; Okada, S. Experimental Manual for Lactic Acid Bacteria; Asakurasyoten: Tokyo, Japan, 1992. [Google Scholar]
- Makkar, H.P.; Blümmel, M.; Becker, K. Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and tannins, and their implication in gas production and true digestibility in in vitro techniques. Br. J. Nutr. 1995, 73, 897–913. [Google Scholar] [CrossRef] [PubMed]
- Muizelaar, W.; Bani, P.; Larsen, M.; Tapio, I.; Van Gastelen, S. Rumen fluid sampling via oral stomach tubing method. In Methods in Cattle Physiology and Behaviour Research—Recommendations from the SmartCow Consortium; Mesgaran, S.D., Baumont, R., Munksgaard, L., Humphries, D., Kennedy, E., Dijkstra, J., Dewhurst, R., Ferguson, H., Terré, M., Kuhla, B., Eds.; PUBLISSO: Cologne, Germany, 2020; p. 6. [Google Scholar]
- Kaewpila, C.; Khota, W.; Gunun, P.; Kesorn, P.; Kimprasit, T.; Sarnklong, C.; Cherdthong, A. Characterization of green manure sunn hemp crop silage prepared with additives: Aerobic instability, nitrogen value, and in vitro rumen methane production. Fermentation 2022, 8, 104. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics: A Biometrical Approach, 2nd ed.; McGraw-Hill Book Co. Inc.: New York, NY, USA, 1980. [Google Scholar]
- Cai, Y.; Benno, Y.; Ogawa, M.; Ohmomo, S.; Kumai, S.; Nakase, T. Influence of Lactobacillus spp. from an inoculant and of Weissella and Leuconostoc spp. from forage crops on silage fermentation. Appl. Environ. Microbiol. 1998, 64, 2982–2987. [Google Scholar] [CrossRef] [PubMed]
- Khota, W.; Pholsen, S.; Higgs, D.; Cai, Y. Fermentation Quality of Tropical Grasses Silage treated with Lactic Acid Bacteria and Cellulase. In Proceedings of the 17th Asian-Australasian Association of Animal Production Societies Animal Science Congress, Fukuoka, Japan, 22–25 August 2016; 2016; p. 334. [Google Scholar]
- Keaokliang, O.; Kawashima, T.; Angthong, W.; Suzuki, T.; Narmseelee, R. Chemical composition and nutritive values of cassava pulp for cattle. Anim. Sci. J. 2018, 89, 1120–1128. [Google Scholar] [CrossRef]
- Sardans, J.; Rivas-Ubach, A.; Peñuelas, J. Factors affecting nutrient concentration and stoichiometry of forest trees in Catalonia (NE Spain). For. Ecol. Manag. 2011, 262, 2024–2034. [Google Scholar] [CrossRef]
- Pitirini, J.S.; Dos Santos, R.I.R.; Lima, F.M.D.S.; Nascimento, I.S.B.D.; Barradas, J.D.O.; Faturi, C.; Do Rêgo, A.C.; Da Silva, T.C. Fermentation profile and chemical composition of cassava root silage. Acta Amaz. 2021, 51, 191–198. [Google Scholar] [CrossRef]
- Chumpawadee, S.; Chantiratikul, A.; Chantiratikul, P. Chemical compositions and nutritional evaluation of energy feeds for ruminant using in vitro gas production technique. Pak. J. Nutr. 2007, 6, 607–612. [Google Scholar] [CrossRef]
- Burns, A.E.; Bradbury, J.H.; Cavagnaro, T.R.; Gleadow, R.M. Total cyanide content of cassava food products in Australia. J. Food Compos. Anal. 2012, 25, 79–82. [Google Scholar] [CrossRef]
- Udedibie, A.B.; Anyaegbu, B.; Onyechekwa, G.; Egbuokporo, O.C. Effect of feeding levels of fermented and unfermented cassava tuber meals on performance of broilers. Nig. J. Anim. Prod. 2004, 31, 211–219. [Google Scholar] [CrossRef]
- Man, N.V.; Wiktorsson, H. Effect of molasses on nutritional quality of cassava and gliricidia tops silage. Asian-Australas. J. Anim. Sci. 2002, 15, 1294–1299. [Google Scholar] [CrossRef]
- Sharma, M.; Akhter, Y.; Chatterjee, S. A review on remediation of cyanide containing industrial wastes using biological systems with special reference to enzymatic degradation. World J. Microbiol. Biotechnol. 2019, 35, 70. [Google Scholar] [CrossRef]
- Cai, Y. Identification and characterization of Enterococcus species isolated from forage crops and their influence on silage fermentation. J. Dairy Sci. 1999, 82, 2466–2471. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.X.; Zou, Y.; Wang, M.; Salem, A.Z.M.; Odongo, N.E.; Zhou, C.S.; Han, X.F.; Tan, Z.L.; Zhang, M.; Fu, Y.F.; et al. Effects of exogenous cellulase source on in vitro fermentation characteristics and methane production of crop straws and grasses. Anim. Nutr. Feed Technol. 2013, 13, 489–505. [Google Scholar]
- Li, Z.; Bai, H.; Zheng, L.; Jiang, H.; Cui, H.; Cao, Y.; Yao, J. Bioactive polysaccharides and oligosaccharides as possible feed additives to manipulate rumen fermentation in Rusitec fermenters. Int. J. Biol. Macromol. 2018, 109, 1088–1094. [Google Scholar] [CrossRef] [PubMed]
- Kaewpila, C.; Sommart, K. Development of methane conversion factor models for zebu beef cattle fed low-quality crop residues and by-products in tropical regions. Ecol. Evol. 2016, 6, 7422–7432. [Google Scholar] [CrossRef]
- Kaewpila, C.; Sommart, K.; Mitsumori, M. Dietary fat sources affect feed intake, digestibility, rumen microbial populations, energy partition and methane emissions in different beef cattle genotypes. Animal 2018, 12, 2529–2538. [Google Scholar] [CrossRef]
Item | Fresh Cassava Root | |
---|---|---|
Microbial counts (cfu/g FM) | LAB | 3.3 × 105 |
Coliform bacteria | 5.0 × 106 | |
Aerobic bacteria | 3.7 × 107 | |
Yeast | 1.8 × 108 | |
Molds | 2.1 × 106 | |
pH value | 5.12 | |
Chemical composition, % DM | DM (%) | 38.07 |
OM | 98.27 | |
CP | 2.10 | |
EE | 0.50 | |
NDF | 10.84 | |
ADF | 3.60 | |
ADL | 0.88 | |
Total cyanides, mg/kg DM | 1304 | |
In vitro parameters | IVDMD, % | 81.69 |
Gas production (L/kg DM) | 193.98 | |
Methane production (L/kg DM) | 16.62 | |
Methane production (L/kg IVDMD) | 22.25 |
Item | Ensiling Loss | OM | CP | EE | NDF | ADF | ADL | Total Cyanides |
---|---|---|---|---|---|---|---|---|
Control | 1.57 | 98.21 c | 2.08 bc | 0.55 b | 6.98 a | 3.54 a | 1.04 | 790.06 a |
AC | 1.77 | 98.58 a | 1.91 c | 0.62 ab | 4.09 b | 2.59 b | 1.05 | 657.69 b |
BF7 | 1.69 | 98.33 bc | 2.18 ab | 0.64 ab | 7.31 a | 3.50 a | 1.07 | 695.69 b |
BC10 | 1.68 | 98.35 bc | 2.01 bc | 0.87 a | 7.63 a | 3.54 a | 1.14 | 668.33 b |
BF7 + BC10 | 1.80 | 98.22 c | 2.31 a | 0.56 b | 6.93 a | 3.49 a | 1.07 | 677.18 b |
AC + BF7 | 1.83 | 98.53 a | 2.03 bc | 0.34 b | 5.11 b | 2.93 ab | 1.22 | 637.74 b |
AC + BC10 | 1.91 | 98.58 a | 1.90 c | 0.34 b | 4.27 b | 2.54 b | 1.10 | 664.79 b |
AC + BF7 + BC10 | 2.06 | 98.38 b | 2.04 bc | 0.36 b | 4.35 b | 2.54 b | 0.91 | 669.99 b |
SEM | 0.112 | 0.005 | 0.065 | 0.092 | 0.493 | 0.260 | 0.146 | 17.706 |
P | 0.127 | <0.001 | 0.003 | 0.005 | <0.001 | 0.011 | 0.912 | <0.001 |
Item | DM | pH | Lactic Acid | Acetic Acid | Propionic Acid | Butyric Acid | NH3-N |
---|---|---|---|---|---|---|---|
% | g/kg DM | ||||||
Control | 38.04 | 3.95 a | 1.88 | 5.72 b | 1.41 e | 8.86 a | 0.90 |
AC | 38.00 | 3.92 ab | 2.81 | 11.46 a | 3.90 a | 4.03 b | 0.92 |
BF7 | 37.34 | 3.95 a | 2.65 | 10.96 a | 3.60 a | 4.88 b | 0.90 |
BC10 | 38.77 | 3.91 ab | 2.22 | 11.25 a | 3.30 ab | 4.41 b | 0.92 |
BF7 + BC10 | 38.06 | 3.91 ab | 2.41 | 10.59 a | 3.22 ab | 3.49 b | 0.92 |
AC + BF7 | 39.48 | 3.91 ab | 2.48 | 11.35 a | 2.58 bc | 2.21 bc | 0.89 |
AC + BC10 | 39.63 | 3.88 bc | 2.27 | 11.57 a | 1.60 de | 4.75 b | 0.90 |
AC + BF7 + BC10 | 38.53 | 3.85 c | 2.61 | 11.58 a | 2.23 cd | 0.41 c | 0.92 |
SEM | 0.823 | 0.013 | 0.205 | 0.258 | 0.120 | 0.448 | 0.009 |
P | 0.514 | 0.001 | 0.088 | <0.001 | <0.001 | 0.001 | 0.180 |
Item | LAB | Coliform Bacteria | Aerobic Bacteria | Yeast | Mold |
---|---|---|---|---|---|
Log10 cfu/g FM | |||||
Control | 5.70 | ND | 5.62 a | ND | ND |
AC | 6.42 | ND | 5.27 ab | ND | ND |
BF7 | 6.63 | ND | 5.36 a | ND | ND |
BC10 | 6.55 | ND | 5.24 ab | ND | ND |
BF7 + BC10 | 6.47 | ND | 4.32 c | ND | ND |
AC + BF7 | 6.47 | ND | 5.51 a | ND | ND |
AC + BC10 | 5.96 | ND | 5.56 a | ND | ND |
AC + BF7 + BC10 | 6.93 | ND | 4.47 bc | ND | ND |
SEM | 0.320 | - | 0.279 | - | - |
P | 0.228 | - | 0.016 | - | - |
Item | IVDMD | Gas Production | Methane Production | ||
(g/kg) | (L/kg DM) | (L/kg IVDMD) | (L/kg DM) | (L/kg IVDMD) | |
Control | 667.3 | 184.70 | 276.73 | 21.00 abc | 31.49 abc |
AC | 664.2 | 186.40 | 280.87 | 20.11 bc | 30.28 bc |
BF7 | 676.8 | 190.91 | 282.05 | 21.78 ab | 32.20 ab |
BC10 | 674.1 | 185.10 | 274.59 | 20.19 bc | 29.96 bc |
BF7 + BC10 | 675.6 | 197.72 | 292.59 | 22.47 a | 33.25 a |
AC + BF7 | 680.0 | 183.56 | 270.16 | 20.20 bc | 29.70 bc |
AC + BC10 | 673.9 | 190.48 | 282.66 | 19.67 c | 29.21 c |
AC + BF7 + BC10 | 685.5 | 193.23 | 281.89 | 21.69 ab | 31.63 abc |
SEM | 7.880 | 3.334 | 4.555 | 0.581 | 0.872 |
P | 0.654 | 0.073 | 0.078 | 0.022 | 0.040 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khota, W.; Kaewpila, C.; Suwannasing, R.; Srikacha, N.; Maensathit, J.; Ampaporn, K.; Patarapreecha, P.; Thip-uten, S.; Sawnongbue, P.; Subepang, S.; et al. Ensiling Cyanide Residue and In Vitro Rumen Fermentation of Cassava Root Silage Treated with Cyanide-Utilizing Bacteria and Cellulase. Fermentation 2023, 9, 151. https://doi.org/10.3390/fermentation9020151
Khota W, Kaewpila C, Suwannasing R, Srikacha N, Maensathit J, Ampaporn K, Patarapreecha P, Thip-uten S, Sawnongbue P, Subepang S, et al. Ensiling Cyanide Residue and In Vitro Rumen Fermentation of Cassava Root Silage Treated with Cyanide-Utilizing Bacteria and Cellulase. Fermentation. 2023; 9(2):151. https://doi.org/10.3390/fermentation9020151
Chicago/Turabian StyleKhota, Waroon, Chatchai Kaewpila, Rattikan Suwannasing, Nikom Srikacha, Julasinee Maensathit, Kessara Ampaporn, Pairote Patarapreecha, Suwit Thip-uten, Pakpoom Sawnongbue, Sayan Subepang, and et al. 2023. "Ensiling Cyanide Residue and In Vitro Rumen Fermentation of Cassava Root Silage Treated with Cyanide-Utilizing Bacteria and Cellulase" Fermentation 9, no. 2: 151. https://doi.org/10.3390/fermentation9020151
APA StyleKhota, W., Kaewpila, C., Suwannasing, R., Srikacha, N., Maensathit, J., Ampaporn, K., Patarapreecha, P., Thip-uten, S., Sawnongbue, P., Subepang, S., Khanbu, K., & Cherdthong, A. (2023). Ensiling Cyanide Residue and In Vitro Rumen Fermentation of Cassava Root Silage Treated with Cyanide-Utilizing Bacteria and Cellulase. Fermentation, 9(2), 151. https://doi.org/10.3390/fermentation9020151