ε-Polylysine Derived from Marine Bacteria-A Possible Natural Preservative for Raw Milk Storage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Collection Strategy
2.2. Isolation of Bacteria
2.3. Screening of Bacteria
2.4. Fermentation
2.4.1. Culture Media
2.4.2. Inoculum
2.4.3. Production of ε-PL
2.4.4. ε-Polylysine Assay
2.4.5. Characterization of ε-PL
2.5. Application of ε-PL for Milk Preservation
2.5.1. Preliminary Study to Select the Best Concentration of ε-PL as a Natural Preservative at 4 °C (Refrigeration)
2.5.2. Preservation Studies Using 0.02% ε-PL along with Various Concentrations of Sodium Bicarbonate under Ambient Conditions
2.5.3. Microbiological Analysis
Minimum Inhibitory Concentration Assay
Determination of Casein in Milk at Ambient Condition after Addition of Preservatives
Determination of Lactose in Milk at Ambient Condition after Addition of Preservatives
Estimation of Fat Content in Milk under Ambient Conditions after Addition of Preservatives
Estimation of Acidity in Milk at Ambient Condition after Addition of Preservatives
3. Results and Discussions
3.1. Distribution of ε-PL Producing Bacteria in Sea Water along the West Coast of India
3.2. Isolation and Screening for ε-PL Producing Bacteria
3.3. Characterization of ε-PL
3.4. Application of ε-PL for Milk Preservation
3.4.1. Preservation of Milk at 4 °C
3.4.2. Preservation of Milk at Ambient Temperature
Minimum Inhibitory Concentration Assay
Effect of ε-PL and Sodium Bicarbonate of Casein, Lactose, and Fat Stability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Șanta, A.; Mierlita, D.; Dărăban, S.; Socol, C.T.; Vicas, S.I.; Șuteu, M.; Maerescu, C.M.; Stanciu, A.S.; Pop, I.M. The Effect of Sustainable Feeding Systems, Combining Total Mixed Rations and Pasture, on Milk Fatty Acid Composition and Antioxidant Capacity in Jersey Dairy Cows. Animals 2022, 12, 908. [Google Scholar] [CrossRef]
- Shakeel, K.; Rabail, R.; Iahtisham-Ul-Haq; Sehar, S.; Nawaz, A.; Manzoor, M.F.; Walayat, N.; Socol, C.T.; Maerescu, C.M.; Aadil, R.M. Camel milk protectiveness toward multiple liver disorders: A review. Front. Nutr. 2022, 9, 944842. [Google Scholar] [CrossRef] [PubMed]
- Ameer, S.; Aslam, S.; Saeed, M. Preservation of Milk and Dairy Products by Using Biopreservatives. Middle East J. Appl. Sci. Technol. (MEJAST) 2019, 2, 72–79. [Google Scholar]
- Chaudhary, V.; Kajla, P.; Kumari, P.; Bangar, S.P.; Rusu, A.; Trif, M.; Lorenzo, J.M. Milk protein-based active edible packaging for food applications: An eco-friendly approach. Front. Nutr. 2022, 9, 942524. [Google Scholar] [CrossRef] [PubMed]
- Nurliyani, P.; Aryuanti, F.; Indratiningsih. Change of Mare Milk Quality During Storage at Room Temperature. Pak. J. Nutr. 2015, 14, 642–646. [Google Scholar] [CrossRef]
- Munsch-Alatossava, P.; Alatossava, T. Quality and Safety of Bovine Raw Milk: Present Challenges and Technological Solutions. In Milk Production, Processing and Marketing; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Fei, Y.; Yang, Z.; Niazi, S.; Chen, G.; Nasir, M.A.; Khan, I.M.; Rehman, A.; Aadil, R.M.; Trif, M.; Coşier, V. Proteolysis of β-Lactoglobulin Assisted by High Hydrostatic Pressure Treatment for Development of Polysaccharides-Peptides Based Coatings and Films. Coatings 2022, 12, 1577. [Google Scholar] [CrossRef]
- Gálvez, A.; López, R.L.; Pulido, R.P.; Burgos, M.J.G. Biopreservation of Milk and Dairy Products. In Food Biopreservation; SpringerBriefs in Food, Health, and Nutrition; Springer: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Shi, C.; Maktabdar, M. Lactic Acid Bacteria as Biopreservation Against Spoilage Molds in Dairy Products—A Review. Front. Microbiol. 2022, 12, 819684. [Google Scholar] [CrossRef]
- Islam, S.; Pramanik, M.J.; Biswas, S.; Moniruzzaman, M.; Biswas, J.; Akhtar-E-Ekram, M.; Zaman, S.; Uddin, M.S.; Saleh, M.A.; Hassan, S. Biological Efficacy of Compounds from Stingless Honey and Sting Honey against Two Pathogenic Bacteria: An In Vitro and In Silico Study. Molecules 2022, 27, 6536. [Google Scholar] [CrossRef]
- Vithushana, T.; Jayaweera, B.P.A. Aloe Vera Gel as a Natural Preservative on the Shelf life of Flavored Pasteurized Milk. Int. Res. J. Eng. Technol. 2020, 7, 3502–3504. [Google Scholar]
- Mokoena, M.P.; Omatola, C.A.; Olaniran, A.O. Applications of Lactic Acid Bacteria and Their Bacteriocins against Food Spoilage Microorganisms and Foodborne Pathogens. Molecules 2021, 26, 7055. [Google Scholar] [CrossRef]
- Bangar, S.P.; Sharma, N.; Kumar, M.; Ozogul, F.; Purewal, S.S.; Trif, M. Recent developments in applications of lactic acid bacteria against mycotoxin production and fungal contamination. Food Biosci. 2021, 44, 101444. [Google Scholar] [CrossRef]
- Fidan, H.; Esatbeyoglu, T.; Šimat, V.; Trif, M.; Tabanelli, G.; Sensoy, I.; Ibrahim, S.A.; Özogul, F. Recent Developments of Lactic Acid Bacteria and Their Metabolites on Foodborne Pathogens and Spoilage Bacteria: Facts and Gaps. Food Biosci. 2022, 47, 101741. [Google Scholar] [CrossRef]
- Zapaśnik, A.; Sokołowska, B.; Bryła, M. Role of Lactic Acid Bacteria in Food Preservation and Safety. Foods 2022, 11, 1283. [Google Scholar] [CrossRef]
- Gharsallaoui, A.; Oulahal, N.; Joly, C.; Degraeve, P. Nisin as a Food Preservative: Part 1: Physicochemical Properties, Antimicrobial Activity, and Main Uses. Crit. Rev. Food Sci. Nutr. 2016, 56, 1262–1274. [Google Scholar] [CrossRef]
- Ibarra-Sanchez, L.A.; El-Haddad, N.; Mahmoud, D.; Miller, M.J.; Karam, L. Invited review: Advances in nisin use for preservation of dairy products. J. Dairy Sci. 2020, 103, 2041–2052. [Google Scholar] [CrossRef] [PubMed]
- Bangar, S.P.; Suri, S.; Trif, M.; Ozogul, F. Organic acids production from lactic acid bacteria: A preservation approach. Food Biosci. 2022, 46, 101615. [Google Scholar]
- Oinaala, D.; Lehesvaara, M.; Lyhs, U.; Tikkanen-Kaukanen, C. Antimicrobial activity of organic honeys against food pathogenic bacterium Clostridium perfringens. Org. Agr. 2015, 5, 153–159. [Google Scholar] [CrossRef]
- Hossain, M.L.; Lim, L.Y.; Hammer, K.; Hettiarachchi, D.; Locher, C. A Review of Commonly Used Methodologies for Assessing the Antibacterial Activity of Honey and Honey Products. Antibiotics 2022, 11, 975. [Google Scholar] [CrossRef] [PubMed]
- Krushna, N.S.A.; Kowsalya, A.; Radha, S.; Narayanan, R.B. Honey as a natural preservative of milk. Indian J. Exp. Biol. 2007, 45, 459–464. [Google Scholar]
- Sešķēna, R.; Jankevica, L. Influence of chemical preservatives on the quality and composition indices of raw milk. Acta Univ. Lativiensis 2007, 723, 171–180. [Google Scholar]
- Saha, B.K.; Ali, M.Y.; Chakraborty, M.; Islam, Z.; Hira, A.K. Study on the Preservation of Raw Milk with Hydrogen Peroxide (H2O2) for Rural Dairy Farmers. Pak. J. Nutr. 2003, 2, 36–42. [Google Scholar]
- Vancin, F.R.; Webber, B.; Bondan, C.; Daroit, L.; dos Santos, L.R.; Rodrigues, L.B. Effects of different concentrations of sodium azide and chloramphenicol on the preservation of raw milk samples. Cienc. Rural. 2020, 50, e20190425. [Google Scholar] [CrossRef]
- Shih, I.L.; Shen, M.H.; Van, Y.T. Microbial synthesis of poly (ε-lysine) and its various applications. Bioresour. Technol. 2006, 97, 1148–1159. [Google Scholar] [CrossRef]
- Meng, Y.; Lou, L.; Shao, Z.; Chen, J.; Li, Y.; Zhang, T. Antibacterial Activity and Mechanism of Action of Whey Protein-ε-Polylysine Complexes against Staphylococcus aureus and Bacillus subtilis. Foods 2022, 11, 2311. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Xue, Q.; Chen, J.; Li, Y.; Shao, Z. Structure, stability, rheology and texture properties of ε-polylysine-whey protein complexes. J. Dairy Sci. 2022, 105, 3746–3757. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Mao, Y.; Zhang, L.; Wang, M.; Meng, J.; Liu, X.; Bai, Y.; Guo, Y. Recent advances in microbial ε-poly-L-lysine fermentation and its diverse applications. Biotechnol Biofuels 2022, 15, 65. [Google Scholar] [CrossRef]
- Gu, Y.; Yang, C.; Wang, X.; Geng, W.; Sun, Y.; Feng, J.; Wang, Y.; Quan, Y.; Che, Y.; Zhang, C.; et al. Genome Sequence of the ε-Poly-l-Lysine-Producing Strain Streptomyces albulus NK660, Isolated from Soil in Gutian, Fujian Province, China. Genome Announc. 2014, 2, e00532-14. [Google Scholar] [CrossRef]
- Ushimaru, K.; Hamano, Y.; Katano, H. Antimicrobial activity of ε-Poly-l-lysine after forming a water-insoluble complex with an anionic surfactant. Biomacromolecules 2017, 18, 1387–1392. [Google Scholar] [CrossRef]
- Shu, C.; Cui, K.; Li, Q.; Cao, J.; Jiang, W. Epsilon-poly-l-lysine (ε-PL) exhibits multifaceted antifungal mechanisms of action that control postharvest Alternaria rot. Int. J. Food Microbiol. 2021, 348, 109224. [Google Scholar] [CrossRef] [PubMed]
- Hyldgaard, M.; Mygind, T.; Vad, B.S.; Stenvang, M.; Otzen, D.E.; Meyer, R.L. The antimicrobial mechanism of action of epsilon-poly-l-lysine. Appl. Environ. Microbiol. 2014, 80, 7758–7770. [Google Scholar] [CrossRef] [PubMed]
- Nath, A.; Eren, B.A.; Zinia Zaukuu, J.-L.; Koris, A.; Pásztorné-Huszár, K.; Szerdahelyi, E.; Kovacs, Z. Detecting the Bitterness of Milk-Protein-Derived Peptides Using an Electronic Tongue. Chemosensors 2022, 10, 215. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, C.; Zhang, J.; Rao, Z.; Xu, X.; Mao, Z.; Chen, X. Epsilon-poly-L-lysine: Recent Advances in Biomanufacturing and Applications. Front. Bioeng. Biotechnol. 2021, 9, 748976. [Google Scholar] [CrossRef]
- Wang, C.; Ren, X.; Yu, C.; Wang, J.; Wang, L.; Zhuge, X.; Liu, X. Physiological and transcriptional responses of Streptomyces albulus to acid stress in the biosynthesis of ε-poly-L-lysine. Front. Microbiol. 2020, 11, 1379. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Liu, H.; Zhao, W.; Wang, S.; Wang, S.; Cai, J.; Yang, C. AdpA, a developmental regulator, promotes ε-poly-l-lysine biosynthesis in Streptomyces albulus. Microb. Cell Fact. 2022, 21, 60. [Google Scholar] [CrossRef]
- Silva, C.C.G.; Silva, S.P.M.; Ribeiro, S.C. Application of Bacteriocins and Protective Cultures in Dairy Food Preservation. Front. Microbiol. 2018, 9, 594. [Google Scholar] [CrossRef]
- Punia Bangar, S.; Chaudhary, V.; Thakur, N.; Kajla, P.; Kumar, M.; Trif, M. Natural Antimicrobials as Additives for Edible Food Packaging Applications: A Review. Foods 2021, 10, 2282. [Google Scholar] [CrossRef]
- Chen, S.; Huang, S.; Li, Y.; Zhou, C. Recent advances in epsilon-poly-L-lysine and L-lysine-based dendrimer synthesis, modification, and biomedical applications. Front. Chem. 2021, 9, 1–14. [Google Scholar] [CrossRef]
- Chaudhary, V.; Punia Bangar, S.; Thakur, N.; Trif, M. Recent Advancements in Smart Biogenic Packaging: Reshaping the Future of the Food Packaging Industry. Polymers 2022, 14, 829. [Google Scholar] [CrossRef]
- Katano, H.; Yoneoka, T.; Kito, N.; Maruyama, C.; Hamano, Y. Separation and purification of ε-poly-l-lysine from the culture broth based on precipitation with the tetraphenylborate anion. Anal. Sci. 2012, 28, 1153–1157. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Dubey, S.; Singh, P.; Shrivastava, A.; Mishra, S. Biodegradable Polymeric Substances Produced by a Marine Bacterium from a Surplus Stream of the Biodiesel Industry. Bioengineering 2016, 3, 34. [Google Scholar] [CrossRef] [PubMed]
- N ishikawa, M.; Ogawa, K. Distribution of microbes producing antimicrobial ε-poly-L-lysine polymers in soil microflora determined by a novel method. Appl. Environ. Microbiol. 2002, 68, 3575–3581. [Google Scholar] [CrossRef]
- . Bhattacharya, S.; Singh, P.; Maity, N.C.; Mishra, S. Distribution of Antimicrobial ε-polylysine Producing Marine Microbe in Sea Water along West Coast of India. Biomater. Med. Appl. 2018, 2, 1. [Google Scholar] [CrossRef]
- Shen, W.C.; Yang, D.; Ryser, H.G. Colorimetric determination of microgram quantities of polylysine by trypan blue precipitation. Anal. Biochem. 1984, 142, 521–524. [Google Scholar] [CrossRef]
- Coroian, A.; Coroion, C.O.; Vodnar, D.C.; Trif, M. Study on the main microbiological traits in Romanian buffalo milk. Bioflux 2010, 2, 92–98. [Google Scholar]
- Garau, V.; Manis, C.; Scano, P.; Caboni, P. Compositional Characteristics of Mediterranean Buffalo Milk and Whey. Dairy 2021, 2, 469–488. [Google Scholar] [CrossRef]
- Desouky, M.M.; Salama, H.H.; El-Sayed, S.M. The effects of camel milk powder on the stability and quality properties of processed cheese sauce. Acta Sci. Pol. Technol. Aliment. 2019, 18, 349–359. [Google Scholar] [CrossRef]
- Guidelines for the Preservation of Raw Milk by the Use of Lactoperoxidase System. In Milk and Milk Products, 2nd ed.; World Health Organization, Food and Agriculture Organization of United Nations: Geneva, Switzerland, 2011; Available online: www.fao.org/input/download/standards/29/CXG_013e.pdf (accessed on 7 November 2022).
- Arqués, J.L.; Rodríguez, E.; Nuñez, M.; Medina, M. Antimicrobial activity of nisin, reuterin, and the lactoperoxidase system on Listeria monocytogenes and Staphylococcus aureus in cuajada, a semisolid dairy product manufactured in Spain. J. Dairy Sci. 2008, 91, 70–75. [Google Scholar] [CrossRef]
- Rusu, A.; Randriambelonoro, M.; Perrin, C.; Valk, C.; Álvarez, B.; Schwarze, A.-K. Aspects influencing food intake and approaches towards personalising nutrition in the elderly. J. Popul. Ageing 2020, 13, 239–256. [Google Scholar] [CrossRef] [Green Version]
Sample Code | Concentration |
---|---|
Positive Control | Raw milk with 0.02% ε-PL |
Negative control | Raw milk without any preservatives |
Preservative A | Raw milk + 0.02% ε-PL + 0.1% sodium bicarbonate |
Preservative B | Raw milk + 0.02% ε-PL + 0.2% sodium bicarbonate |
ε-PL (%) | Initial day | Day 2 | Day 4 | Day 6 | Day 8 | Day 10 | Day 12 | Day 14 | Day 16 | Day 18 |
---|---|---|---|---|---|---|---|---|---|---|
Control | 6.60 | 6.60 | 6.60 | 6.54 | 6.42 | 6.41 | 6.40 | 6.36 | 6.30 | 6.337 |
0.005 | 6.60 | 6.60 | 6.60 | 6.56 | 6.50 | 6.47 | 6.42 | 6.40 | 6.38 | 6.32 |
0.02 | 6.60 | 6.60 | 6.60 | 6.62 | 6.60 | 6.50 | 6.52 | 6.50 | 6.50 | 6.44 |
0.08 | 6.60 | 6.60 | 6.60 | 6.58 | 6.56 | 6.46 | 6.44 | 6.40 | 6.32 | 6.23 |
0.32 | 6.60 | 6.60 | 6.60 | 6.50 | 6.51 | 6.38 | 6.30 | 6.28 | 6.18 | 6.04 |
ε-PL Concentration (% w/v) | Initial Day | 24 h | 48 h |
---|---|---|---|
Positive control (without ε-PL) | 6.6 | 5.4 | 4.9 |
Negative Control (with 0.02% w/v ε-PL) | 6.6 | 5.4 | 4.3 |
0.02% w/v ε-polylysine + 0.1% w/v NaHCO3 | 6.8 | 5.9 | 4.3 |
0.02% w/v ε-polylysine + 0.2% w/v NaHCO3 | 7.1 | 7.1 | 4.2 |
Test Parameter | Measurement Unit | Method Used | Results (without ε-PL) | Results (with 0.02% w/v ε-PL) | Results (with 0.02% w/v ε-polylysine + 0.1% w/v NaHCO3) | Results (with 0.02% w/v ε-polylysine + 0.2% w/v NaHCO3) |
---|---|---|---|---|---|---|
Total plate count | Cfu/mL | IS 5402: 2012 | 7.5 × 104 | 2.1 × 103 | 1.8 × 103 | 1.1 × 103 |
Escherichia coli (E. coli) | Per mL | IS5887 (Part 1) | >10 | absent | absent | absent |
Salmonella | Per 25 mL | IS5887 (Part 3) | absent | absent | absent | absent |
Staphylococcus aureus | Per mL | IS5887 (Part 2) | absent | absent | absent | absent |
Listeria monocytogenes | Per mL | IS14988 (Part 1) | absent | absent | absent | absent |
Bacillus cereus | Per mL | FSSAI Manual 2022 | >10 | absent | absent | absent |
Clostridium perfringes | Per mL | FSSAI Manual 2022 | absent | absent | absent | absent |
Coliform count | Cfu/mL | IS 5401 (Part 1) | >10 | ≤8 | ≤8 | ≤5 |
Hours | % Casein Present | |||
---|---|---|---|---|
without Preservative | with 0.02% ε-PL | with 0.02% ε-PL +0.1% NaHCO3 | with 0.02% ε-PL + 0.2% NaHCO3 | |
0 | 100.00 | 100.00 | 100.00 | 100.00 |
12 | 30.67 | 79.33 | 80.00 | 66.67 |
24 | 8.00 | 80.00 | 44.67 | 24.67 |
36 | 6.67 | 21.33 | 32.67 | 24.67 |
48 | 5.33 | 16.67 | 28.67 | 13.33 |
Hours | % Lactose | |||
---|---|---|---|---|
without Preservative | with 0.02% ε-PL | with 0.02% ε-PL +0.1% NaHCO3 | with 0.02% ε-PL + 0.2% NaHCO3 | |
0 | 100.00 | 100.00 | 100.00 | 100.00 |
12 | 70.00 | 50.00 | 60.00 | 60.00 |
24 | 62.78 | 40.00 | 60.00 | 60.00 |
36 | 50.00 | 40.00 | 60.00 | 60.00 |
48 | 40.00 | 32.22 | 30.00 | 40.00 |
Hours | % Fat Degradation | |||
---|---|---|---|---|
without Preservative | with 0.02% ε-PL | with 0.02% ε-PL +0.1% NaHCO3 | with 0.02% ε-PL + 0.2% NaHCO3 | |
0 | 100.00 | 100.00 | 100.00 | 100.00 |
12 | 66.74 | 13.45 | 100.00 | 100 |
24 | 65.80 | 11.37 | 89.16 | 81.96 |
36 | 52.87 | 10.43 | 77.69 | 75.18 |
48 | 52.14 | 6.26 | 74.45 | 61.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhattacharya, S.; Mishra, S.; Zuorro, A.; Salama, H.H.; Rusu, A.V.; Trif, M. ε-Polylysine Derived from Marine Bacteria-A Possible Natural Preservative for Raw Milk Storage. Fermentation 2023, 9, 156. https://doi.org/10.3390/fermentation9020156
Bhattacharya S, Mishra S, Zuorro A, Salama HH, Rusu AV, Trif M. ε-Polylysine Derived from Marine Bacteria-A Possible Natural Preservative for Raw Milk Storage. Fermentation. 2023; 9(2):156. https://doi.org/10.3390/fermentation9020156
Chicago/Turabian StyleBhattacharya, Sourish, Sandhya Mishra, Antonio Zuorro, Heba Hassan Salama, Alexandru Vasile Rusu, and Monica Trif. 2023. "ε-Polylysine Derived from Marine Bacteria-A Possible Natural Preservative for Raw Milk Storage" Fermentation 9, no. 2: 156. https://doi.org/10.3390/fermentation9020156
APA StyleBhattacharya, S., Mishra, S., Zuorro, A., Salama, H. H., Rusu, A. V., & Trif, M. (2023). ε-Polylysine Derived from Marine Bacteria-A Possible Natural Preservative for Raw Milk Storage. Fermentation, 9(2), 156. https://doi.org/10.3390/fermentation9020156