Lipid Recovery from Microalgae Biomass Using Sugaring-Out Extraction in Liquid Biphasic Flotation System
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Materials
2.2. Cultivation and Harvesting of Microalgae Biomass
2.3. Microalgae Preparation and Cell Disruption
2.4. Optimization of Operating Parameters
2.5. Total Lipid Content
2.6. Lipid Profile
2.7. Statistical Analysis
3. Results and Discussion
3.1. Optimum Conditions of Sugaring-Out Assisted LBF System
3.1.1. Effect of Types of Mass Separating Agent
3.1.2. Effect of Concentration of Mass Separating Agent
3.1.3. Effect of Liquid Biphasic Volume Ratio
3.1.4. Effect of Flotation Time
3.2. Microalgae Cell Disruption
3.3. Lipid Profile
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mat Aron, N.S.; Khoo, K.S.; Chew, K.W.; Show, P.L.; Chen, W.H.; Nguyen, T.H.P. Sustainability of the four generations of biofuels—A review. Int. J. Energy Res. 2020, 44, 9266–9282. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021; IPCC: Geneva, Switzerland, 2021. [Google Scholar]
- EPA, U.S.E.P.A. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990–2018; U.S.E.P.A.: Washington, DC, USA, 2020; Volume 76.
- Aron, N.S.M.; Khoo, K.S.; Chew, K.W.; Veeramuthu, A.; Chang, J.-S.; Show, P.L. Microalgae cultivation in wastewater and potential processing strategies using solvent and membrane separation technologies. J. Water Process Eng. 2020, 39, 101701. [Google Scholar] [CrossRef]
- Elrayies, G.M. Microalgae: Prospects for greener future buildings. Renew. Sustain. Energy Rev. 2018, 81, 1175–1191. [Google Scholar] [CrossRef]
- Massimi, R.; Kirkwood, A.E. Screening microalgae isolated from urban storm- and wastewater systems as feedstock for biofuel. PeerJ 2016, 4, e2396. [Google Scholar] [CrossRef] [Green Version]
- Breuer, G.; Evers, W.A.C.; de Vree, J.H.; Kleinegris, D.M.M.; Martens, D.E.; Wijffels, R.H.; Lamers, P.P. Analysis of fatty acid content and composition in microalgae. J. Vis. Exp. 2013, 5, e50628. [Google Scholar] [CrossRef] [Green Version]
- Khoo, K.S.; Chew, K.W.; Yew, G.Y.; Leong, W.H.; Chai, Y.H.; Show, P.L.; Chen, W.H. Recent advances in downstream processing of microalgae lipid recovery for biofuel production. Bioresour. Technol. 2020, 304, 122996. [Google Scholar] [CrossRef]
- Mat Aron, N.S.; Chew, K.W.; Ang, W.L.; Ratchahat, S.; Rinklebe, J.; Show, P.L. Recovery of microalgae biodiesel using liquid biphasic flotation system. Fuel 2022, 317, 123368. [Google Scholar] [CrossRef]
- Sankaran, R.; Manickam, S.; Yap, Y.J.; Ling, T.C.; Chang, J.S.; Show, P.L. Extraction of proteins from microalgae using integrated method of sugaring-out assisted liquid biphasic flotation (LBF) and ultrasound. Ultrason. Sonochem. 2018, 48, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, I.A.; Hammad, S.F.; Bedair, A.; Mansour, F.R. Sugaring-out induced homogeneous liquid-liquid microextraction as an alternative mode for biological sample preparation: A comparative study. J. Sep. Sci. 2021, 44, 3117–3125. [Google Scholar] [CrossRef]
- Tsai, W.H.; Chuang, H.Y.; Chen, H.H.; Wu, Y.W.; Cheng, S.H.; Huang, T.C. Application of sugaring-out extraction for the determination of sulfonamides in honey by high-performance liquid chromatography with fluorescence detection. J. Chromatogr. A 2010, 1217, 7812–7815. [Google Scholar] [CrossRef]
- Dhamole, P.B.; Mahajan, P.; Feng, H. Sugaring out: A new method for removal of acetonitrile from preparative RP-HPLC eluent for protein purification. Process Biochem. 2010, 45, 1672–1676. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, K.; Yu, P.; Liu, H. Sugaring-out three-liquid-phase extraction and one-step separation of Pt(IV), Pd(II) and Rh(III). Sep. Purif. Technol. 2012, 87, 127–134. [Google Scholar] [CrossRef]
- Zhang, J.; Myasein, F.; Wu, H.; El-Shourbagy, T.A. Sugaring-out assisted liquid/liquid extraction with acetonitrile for bioanalysis using liquid chromatography-mass spectrometry. Microchem. J. 2013, 108, 198–202. [Google Scholar] [CrossRef]
- Fu, C.; Li, Z.; Sun, Z.; Xie, S. A review of salting-out effect and sugaring-out effect: Driving forces for novel liquid-liquid extraction of biofuels and biochemicals. Front. Chem. Sci. Eng. 2021, 15, 854–871. [Google Scholar] [CrossRef]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for biodiesel production and other applications: A review. Renew. Sustain. Energy Rev. 2010, 14, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Chia, S.R.; Chew, K.W.; Show, P.L.; Sivakumar, M.; Ling, T.C.; Tao, Y. Isolation of protein from Chlorella sorokiniana CY1 using liquid biphasic flotation assisted with sonication through sugaring-out effect. J. Oceanol. Limnol. 2019, 37, 898–908. [Google Scholar] [CrossRef]
- Koyande, A.K.; Chew, K.W.; Lim, J.W.; Lee, S.Y.; Lam, M.K.; Show, P.L. Optimization of Protein Extraction from Chlorella Vulgaris via Novel Sugaring-out Assisted Liquid Biphasic Electric Flotation System. Eng. Life Sci. 2019, 19, 968–977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yew, G.Y.; Chew, K.W.; Malek, M.A.; Ho, Y.C.; Chen, W.H.; Ling, T.C.; Show, P.L. Hybrid liquid biphasic system for cell disruption and simultaneous lipid extraction from microalgae Chlorella sorokiniana CY-1 for biofuel production. Biotechnol. Biofuels 2019, 12, 252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Ezejias, T.; Feng, H.; Blaschek, H. Sugaring-out: A novel phase separation and extraction system. Chem. Eng. Sci. 2008, 63, 2595–2600. [Google Scholar] [CrossRef]
- Ouellette, R.J.; Rawn, J.D. Structure of Organic Compounds, 1st ed.; Ouellette, R.J., Rawn, J.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; ISBN 9780128024447. [Google Scholar]
- Morsch, L.; Andrews, M. Che 269 (Morsch and Andrews), 1st ed.; Morsch, L., Andrews, M., Eds.; Springfield: Geneseo, IL, USA, 2019; Volume 269. [Google Scholar]
- Naveena, B.; Armshaw, P.; Tony Pembroke, J. Ultrasonic intensification as a tool for enhanced microbial biofuel yields. Biotechnol. Biofuels 2015, 8, 140. [Google Scholar] [CrossRef] [Green Version]
- Sankaran, R.; Parra Cruz, R.A.; Show, P.L.; Haw, C.Y.; Lai, S.H.; Ng, E.P.; Ling, T.C. Recent advances of aqueous two-phase flotation system for the recovery of biomolecules. Fluid Phase Equilibria 2019, 501, 112271. [Google Scholar] [CrossRef]
- Phong, W.N.; Show, P.L.; Teh, W.H.; Teh, T.X.; Lim, H.M.Y.; Nazri, N.S.B.; Tan, C.H.; Chang, J.S.; Ling, T.C. Proteins recovery from wet microalgae using liquid biphasic flotation (LBF). Bioresour. Technol. 2017, 244, 1329–1336. [Google Scholar] [CrossRef]
- Show, P.L.; Tan, C.P.; Anuar, M.S.; Ariff, A.; Yusof, Y.A.; Chen, S.K.; Ling, T.C. Direct recovery of lipase derived from Burkholderia cepacia in recycling aqueous two-phase flotation. Sep. Purif. Technol. 2011, 80, 577–584. [Google Scholar] [CrossRef]
- Koyande, A.K.; Chew, K.W.; Show, P.L.; Munawaroh, H.S.H.; Chang, J.S. Liquid triphasic systems as sustainable downstream processing of Chlorella sp. biorefinery for potential biofuels and feed production. Bioresour. Technol. 2021, 333, 125075. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, A.; Kumar, P.S.; Mat Aron, N.S.; Jeevanantham, S.; Karishma, S.; Yaashikaa, P.R.; Chew, K.W.; Show, P.L. A review on bioconversion processes for hydrogen production from agro-industrial residues. Int. J. Hydrogen Energy 2021, 47, 37302–37320. [Google Scholar] [CrossRef]
- Dai, Y.M.; Chen, K.T.; Chen, C.C. Study of the microwave lipid extraction from microalgae for biodiesel production. Chem. Eng. J. 2014, 250, 267–273. [Google Scholar] [CrossRef]
- Khoomrung, S.; Chumnanpuen, P.; Jansa-Ard, S.; Staìšhlman, M.; Nookaew, I.; Borén, J.; Nielsen, J. Rapid quantification of yeast lipid using microwave-assisted total lipid extraction and HPLC-CAD. Anal. Chem. 2013, 85, 4912–4919. [Google Scholar] [CrossRef]
- Zhou, X.; Jin, W.; Tu, R.; Guo, Q.; Han, S.F.; Chen, C.; Wang, Q.; Liu, W.; Jensen, P.D.; Wang, Q. Optimization of microwave assisted lipid extraction from microalga Scenedesmus obliquus grown on municipal wastewater. J. Clean. Prod. 2019, 221, 502–508. [Google Scholar] [CrossRef]
- Nagappan, S.; Devendran, S.; Tsai, P.C.; Dinakaran, S.; Dahms, H.U.; Ponnusamy, V.K. Passive cell disruption lipid extraction methods of microalgae for biofuel production—A review. Fuel 2019, 252, 699–709. [Google Scholar] [CrossRef]
- Wan, M.X.; Wang, R.M.; Xia, J.L.; Rosenberg, J.N.; Nie, Z.Y.; Kobayashi, N.; Oyler, G.A.; Betenbaugh, M.J. Physiological evaluation of a new Chlorella sorokiniana isolate for its biomass production and lipid accumulation in photoautotrophic and heterotrophic cultures. Biotechnol. Bioeng. 2012, 109, 1958–1964. [Google Scholar] [CrossRef]
- Lin, C.Y.; Lin, Y.W. Fuel characteristics of biodiesel produced from a high-acid oil from soybean soapstock by supercritical-methanol transesterification. Energies 2012, 5, 2370–2380. [Google Scholar] [CrossRef] [Green Version]
- Giakoumis, E.G.; Sarakatsanis, C.K. A comparative assessment of biodiesel cetane number predictive correlations based on fatty acid composition. Energies 2019, 12, 422. [Google Scholar] [CrossRef] [Green Version]
- Djojoputro, H.; Ismadji, S. Density and viscosity of binary mixtures of ethyl-2-methylbutyrate and ethyl hexanoate with methanol, ethanol, and 1-propanol at (293.15, 303.15, and 313.15) K. J. Chem. Eng. Data 2005, 50, 1343–1347. [Google Scholar] [CrossRef]
- Al-Esawi, N.; Al Qubeissi, M. A new approach to formulation of complex fuel surrogates. Fuel 2021, 283, 118923. [Google Scholar] [CrossRef]
Parameters | Initial Conditions | Variables |
---|---|---|
Type of sugar | Glucose | Sucrose, Fructose, Maltose |
Bottom phase: Top phase ratio | 1:1 | 1:0.5, 1:0.75, 1:1, 1:1.25, 1:1.50, 1:1.75, 1:2.0, 1:2.5, 1:2.75 |
Conc. of sugar (g/L) | 250 | 50, 100, 150, 200, 250, 300 |
Flotation time (min) | 5 | 5, 10, 15, 20, 25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mat Aron, N.S.; Chew, K.W.; Ma, Z.; Tao, Y.; Sriariyanun, M.; Tan, I.S.; Mạnh, C.N.; Xia, A.; Kurniawan, T.A.; Show, P.L. Lipid Recovery from Microalgae Biomass Using Sugaring-Out Extraction in Liquid Biphasic Flotation System. Fermentation 2023, 9, 198. https://doi.org/10.3390/fermentation9030198
Mat Aron NS, Chew KW, Ma Z, Tao Y, Sriariyanun M, Tan IS, Mạnh CN, Xia A, Kurniawan TA, Show PL. Lipid Recovery from Microalgae Biomass Using Sugaring-Out Extraction in Liquid Biphasic Flotation System. Fermentation. 2023; 9(3):198. https://doi.org/10.3390/fermentation9030198
Chicago/Turabian StyleMat Aron, Nurul Syahirah, Kit Wayne Chew, Zengling Ma, Yang Tao, Malinee Sriariyanun, Inn Shi Tan, Cường Nguyễn Mạnh, Ao Xia, Tonni Agustiono Kurniawan, and Pau Loke Show. 2023. "Lipid Recovery from Microalgae Biomass Using Sugaring-Out Extraction in Liquid Biphasic Flotation System" Fermentation 9, no. 3: 198. https://doi.org/10.3390/fermentation9030198
APA StyleMat Aron, N. S., Chew, K. W., Ma, Z., Tao, Y., Sriariyanun, M., Tan, I. S., Mạnh, C. N., Xia, A., Kurniawan, T. A., & Show, P. L. (2023). Lipid Recovery from Microalgae Biomass Using Sugaring-Out Extraction in Liquid Biphasic Flotation System. Fermentation, 9(3), 198. https://doi.org/10.3390/fermentation9030198