Biosurfactants Produced by Yeasts: Fermentation, Screening, Recovery, Purification, Characterization, and Applications
Abstract
:1. Introduction
2. Advantages and Disadvantages of Biosurfactants in Relation to Synthetic Surfactants
3. Biosurfactants Produced by Yeast
4. Applications of Biosurfactants Produced by Yeast
4.1. Medicine and Health
4.2. Agriculture
4.3. Bioremediation and Oil Recovery
5. Screening Methods for Detection of Biosurfactants
5.1. Hemolytic Activity
5.2. Blue Agar Plate Method
5.3. Agar Plate Overlaid with Hydrocarbons
5.4. Axisymmetric Drop Shape Analysis (ADSA)
5.5. Modified Drop Collapse Method
5.6. Oil Spreading Method
5.7. Emulsification Assay (EA)
5.8. Emulsification Index (EI)
5.9. Tensiometric Measurement
6. Biosurfactant Fermentation
7. Recovery and Purification of Biosurfactants
7.1. Acetone Precipitation
7.2. Ethanol Precipitation
7.3. Ammonium Sulfate Precipitation
7.4. Acid Precipitation
7.5. Centrifugation
7.6. Crystallization
7.7. Adsorption–Desorption
7.8. Foam Fractionation
7.9. Solvent Extraction
8. Characterization of Biosurfactants
8.1. Thin-Layer Chromatography (TLC)
8.2. Fourier Transform Infrared Spectroscopy (FTIR)
8.3. High-Pressure Liquid Chromatography (HPLC)
8.4. Tandem Mass Spectrometry (MS/MS)
8.5. Nuclear Magnetic Resonance (NMR)
8.6. Raman Spectroscopy
9. Final Considerations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ribeiro, B.G.; Guerra, J.M.C.; Sarubbo, L.A. Biosurfactants: Production and Application Prospects in the Food Industry. Biotechnol. Prog. 2020, 36, e3030. [Google Scholar] [CrossRef] [PubMed]
- Banat, I.M. Characterization of Biosurfactants and Their Use in Pollution Removal—State of the Art. (Review). Acta Biotechnol. 1995, 15, 251–267. [Google Scholar] [CrossRef]
- López-Prieto, A.; Vecino, X.; Rodríguez-López, L.; Moldes, A.B.; Cruz, J.M. A Multifunctional Biosurfactant Extract Obtained from Corn Steep Water as Bactericide for Agrifood Industry. Foods 2019, 8, 410. [Google Scholar] [CrossRef]
- Banat, I.M.; Makkar, R.S.; Cameotra, S.S. Potential Commercial Applications of Microbial Surfactants. Appl. Microbiol. Biotechnol. 2000, 53, 495–508. [Google Scholar] [CrossRef]
- Silva, E.J.; Rocha e Silva, N.M.P.; Rufino, R.D.; Luna, J.M.; Silva, R.O.; Sarubbo, L.A. Characterization of a Biosurfactant Produced by Pseudomonas Cepacia CCT6659 in the Presence of Industrial Wastes and Its Application in the Biodegradation of Hydrophobic Compounds in Soil. Colloids Surf. B Biointerfaces 2014, 117, 36–41. [Google Scholar] [CrossRef]
- Santos, D.K.F.; Rufino, R.D.; Luna, J.M.; Santos, V.A.; Sarubbo, L.A. Biosurfactants: Multifunctional Biomolecules of the 21st Century. Int. J. Mol. Sci. 2016, 17, 401. [Google Scholar] [CrossRef] [PubMed]
- Díaz De Rienzo, M.A.; Banat, I.M.; Dolman, B.; Winterburn, J.; Martin, P.J. Sophorolipid Biosurfactants: Possible Uses as Antibacterial and Antibiofilm Agent. New Biotechnol. 2015, 32, 720–726. [Google Scholar] [CrossRef]
- Radzuan, M.N.; Banat, I.M.; Winterburn, J. Production and Characterization of Rhamnolipid Using Palm Oil Agricultural Refinery Waste. Bioresour. Technol. 2017, 225, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Garg, M.; Priyanka; Chatterjee, M. Isolation, Characterization and Antibacterial Effect of Biosurfactant from Candida Parapsilosis. Biotechnol. Rep. 2018, 18, e00251. [Google Scholar] [CrossRef]
- Nogueira Felix, A.K.; Martins, J.J.L.; Lima Almeida, J.G.; Giro, M.E.A.; Cavalcante, K.F.; Maciel Melo, V.M.; Loiola Pessoa, O.D.; Ponte Rocha, M.V.; Rocha Barros Gonçalves, L.; Saraiva de Santiago Aguiar, R. Purification and Characterization of a Biosurfactant Produced by Bacillus Subtilis in Cashew Apple Juice and Its Application in the Remediation of Oil-Contaminated Soil. Colloids Surf. B Biointerfaces 2019, 175, 256–263. [Google Scholar] [CrossRef]
- Louhasakul, Y.; Cheirsilp, B.; Intasit, R.; Maneerat, S.; Saimmai, A. Enhanced Valorization of Industrial Wastes for Biodiesel Feedstocks and Biocatalyst by Lipolytic Oleaginous Yeast and Biosurfactant-Producing Bacteria. Int. Biodeterior. Biodegrad. 2020, 148, 104911. [Google Scholar] [CrossRef]
- Fei, D.; Zhou, G.W.; Yu, Z.Q.; Gang, H.Z.; Liu, J.F.; Yang, S.Z.; Ye, R.Q.; Mu, B.Z. Low-Toxic and Nonirritant Biosurfactant Surfactin and Its Performances in Detergent Formulations. J. Surfactants Deterg. 2020, 23, 109–118. [Google Scholar] [CrossRef]
- Perfumo, A.; Rudden, M.; Marchant, R.; Banat, M. Biodiversity of Biosurfactants and Roles in Enhancing the (Bio) Availability of Hydrophobic Substrates. In Cellular Ecophysiology of Microbe, Handbook of Hydrocarbon and Lipid Microbiology; Springer: Cham, Switzerland, 2018; pp. 75–103. ISBN 9783319207964. [Google Scholar]
- Rebello, S.; Anoopkumar, A.N.; Sindhu, R.; Binod, P.; Pandey, A.; Aneesh, E.M. Comparative Life-Cycle Analysis of Synthetic Detergents and Biosurfactants-an Overview; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128189962. [Google Scholar]
- Fernández-Peña, L.; Guzmán, E.; Leonforte, F.; Serrano-Pueyo, A.; Regulski, K.; Tournier-Couturier, L.; Ortega, F.; Rubio, R.G.; Luengo, G.S. Effect of Molecular Structure of Eco-Friendly Glycolipid Biosurfactants on the Adsorption of Hair-Care Conditioning Polymers. Colloids Surf. B Biointerfaces 2020, 185, 110578. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, N.d.A.T.; de Souza, A.C.; Simões, L.A.; Ferreira dos Reis, G.M.; Souza, K.T.; Schwan, R.F.; Dias, D.R. Eco-Friendly Biosurfactant from Wickerhamomyces Anomalus CCMA 0358 as Larvicidal and Antimicrobial. Microbiol. Res. 2020, 241, 126571. [Google Scholar] [CrossRef] [PubMed]
- Saimmai, A.; Riansa-Ngawong, W.; Maneerat, S.; Dikit, P. Application of Biosurfactants in the Medical Field. Walailak J. Sci. Technol. 2020, 17, 154–166. [Google Scholar] [CrossRef]
- Mnif, I.; Ghribi, D. Glycolipid Biosurfactants: Main Properties and Potential Applications in Agriculture and Food Industry. J. Sci. Food Agric. 2016, 96, 4310–4320. [Google Scholar] [CrossRef] [PubMed]
- Marcelino, P.R.F.; Silva, V.L.; Philippini, R.R.; Zuben, C.J.V.; Contiero, J.; Santos, J.C.; da Silva, S.S.; Ricardo Franco Marcelino, P.; Luiz da Silva, V.; Rodrigues Philippini, R.; et al. Biosurfactants Produced by Scheffersomyces stipitis Cultured in Sugarcane Bagasse Hydrolysate as New Green Larvicides for the Control of Aedes aegypti, a Vector of Neglected Tropical Diseases. PLoS ONE 2017, 12, e0187125. [Google Scholar] [CrossRef] [PubMed]
- Rane, A.N.; Baikar, V.V.; Ravi Kumar, D.V.; Deopurkar, R.L. Agro-Industrial Wastes for Production of Biosurfactant by Bacillus Subtilis ANR 88 and Its Application in Synthesis of Silver and Gold Nanoparticles. Front. Microbiol. 2017, 8, 492. [Google Scholar] [CrossRef]
- Radha, P.; Suhazsini, P.; Prabhu, K.; Jayakumar, A.; Kandasamy, R. Chicken Tallow, a Renewable Source for the Production of Biosurfactant by Yarrowia Lipolytica MTCC9520, and Its Application in Silver Nanoparticle Synthesis. J. Surfactants Deterg. 2020, 23, 119–135. [Google Scholar] [CrossRef]
- Rywińska, A.; Juszczyk, P.; Wojtatowicz, M.; Robak, M.; Lazar, Z.; Tomaszewska, L.; Rymowicz, W. Glycerol as a Promising Substrate for Yarrowia Lipolytica Biotechnological Applications. Biomass Bioenergy 2013, 48, 148–166. [Google Scholar] [CrossRef]
- Campos, J.M.; Stamford, T.L.M.; Sarubbo, L.A. Production of a Bioemulsifier with Potential Application in the Food Industry. Appl. Biochem. Biotechnol. 2014, 172, 3234–3252. [Google Scholar] [CrossRef]
- Chen, C.; Sun, N.; Li, D.; Long, S.; Tang, X.; Xiao, G.; Wang, L. Optimization and Characterization of Biosurfactant Production from Kitchen Waste Oil Using Pseudomonas Aeruginosa. Environ. Sci. Pollut. Res. 2018, 25, 14934–14943. [Google Scholar] [CrossRef]
- Marcelino, P.R.F.; Peres, G.F.D.; Terán-Hilares, R.; Pagnocca, F.C.; Rosa, C.A.; Lacerda, T.M.; dos Santos, J.C.; da Silva, S.S. Biosurfactants Production by Yeasts Using Sugarcane Bagasse Hemicellulosic Hydrolysate as New Sustainable Alternative for Lignocellulosic Biorefineries. Ind. Crops Prod. 2019, 129, 212–223. [Google Scholar] [CrossRef]
- Johnson, P.; Trybala, A.; Starov, V.; Pinfield, V.J. Effect of Synthetic Surfactants on the Environment and the Potential for Substitution by Biosurfactants. Adv. Colloid Interface Sci. 2021, 288, 102340. [Google Scholar] [CrossRef] [PubMed]
- Stuart, M.; Lapworth, D.; Crane, E.; Hart, A. Review of Risk from Potential Emerging Contaminants in UK Groundwater. Sci. Total Environ. 2012, 416, 1–21. [Google Scholar] [CrossRef]
- Siyal, A.A.; Shamsuddin, M.R.; Low, A.; Rabat, N.E. A Review on Recent Developments in the Adsorption of Surfactants from Wastewater. J. Environ. Manag. 2020, 254, 109797. [Google Scholar] [CrossRef] [PubMed]
- Berg, J.C. An Introduction to Interfaces & Colloids: The Bridge to Nanoscience; World Scientific: Singapore, 2010. [Google Scholar]
- Uchegbu, I.F.; Schätzlein, A.G.; Cheng, W.P.; Lalatsa, A. Fundamentals of Pharmaceutical Nanoscience; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Sharma, D.; Saharan, B.S. Functional Characterization of Biomedical Potential of Biosurfactant Produced by Lactobacillus Helveticus. Biotechnol. Rep. 2016, 11, 27–35. [Google Scholar] [CrossRef]
- Solomon, O.B.; Oluwafemi, A.; Muktar, G.; Mohammed, S.A. Production and Characterization of Biosurfactants by Candida Boleticola H09 and Rhodotorula Bogoriensis H15 for Crude Oil Recovery and Cleaning of Oil Contaminated Fabrics. Int. J. Life Sci. Technol. 2017, 10, 109–123. [Google Scholar]
- Souza, K.S.T.; Gudiña, E.J.; Azevedo, Z.; de Freitas, V.; Schwan, R.F.; Rodrigues, L.R.; Dias, D.R.; Teixeira, J.A. New Glycolipid Biosurfactants Produced by the Yeast Strain Wickerhamomyces Anomalus CCMA 0358. Colloids Surf. B Biointerfaces 2017, 154, 373–382. [Google Scholar] [CrossRef]
- Nwaguma, I.V.; Chikere, C.B.; Okpokwasili, G.C. Effect of Cultural Conditions on Biosurfactant Production by Candida sp. Isolated from the Sap of Elaeis guineensis. Biotechnol. J. Int. 2019, 23, 1–14. [Google Scholar] [CrossRef]
- Camarate, M.C.; Merma, A.G.; Hacha, R.R.; Torem, M.L. Selective Bioflocculation of Ultrafine Hematite Particles from Quartz Using a Biosurfactant Extracted from Candida Stellata Yeast. Sep. Sci. Technol. 2021, 57, 36–47. [Google Scholar] [CrossRef]
- Derguine-Mecheri, L.; Kebbouche-Gana, S.; Djenane, D. Biosurfactant Production from Newly Isolated Rhodotorula sp.YBR and Its Great Potential in Enhanced Removal of Hydrocarbons from Contaminated Soils. World J. Microbiol. Biotechnol. 2021, 37, 18. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, B.G.; Veras, B.O.; Aguiar, J.S.; Guerra, J.M.C.; Sarubbo, L.A. Biosurfactant Produced by Candida Utilis UFPEDA1009 with Potential Application in Cookie Formulation. Electron. J. Biotechnol. 2020, 46, 14–21. [Google Scholar] [CrossRef]
- Teixeira Souza, K.S.; Gudiña, E.J.; Schwan, R.F.; Rodrigues, L.R.; Dias, D.R.; Teixeira, J.A. Improvement of Biosurfactant Production by Wickerhamomyces Anomalus CCMA 0358 and Its Potential Application in Bioremediation. J. Hazard. Mater. 2018, 346, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Ashby, R.D.; Nuñez, A.; Solaiman, D.K.Y.; Foglia, T.A. Sophorolipid Biosynthesis from a Biodiesel Co-Product Stream. JAOCS J. Am. Oil Chem. Soc. 2005, 82, 625–630. [Google Scholar] [CrossRef]
- Morita, T.; Konishi, M.; Fukuoka, T.; Imura, T.; Kitamoto, D. Microbial Conversion of Glycerol into Glycolipid Biosurfactants, Mannosylerythritol Lipids, by a Basidiomycete Yeast, Pseudozyma Antarctica JCM 10317T. J. Biosci. Bioeng. 2007, 104, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, M.; Daniels, L. Evaluation of Sophorolipid Biosurfactant Production by Candida Bombicola Using Animal Fat. Bioresour. Technol. 1995, 54, 143–150. [Google Scholar] [CrossRef]
- Solaiman, D.K.Y.; Ashby, R.D.; Nuñez, A.; Foglia, T.A. Production of Sophorolipids by Candida Bombicola Grown on Soy Molasses as Substrate. Biotechnol. Lett. 2004, 26, 1241–1245. [Google Scholar] [CrossRef]
- Ahmad, Z.; Crowley, D.; Marina, N.; Jha, S.K. Estimation of Biosurfactant Yield Produced by Klebseilla Sp. FKOD36 Bacteria Using Artificial Neural Network Approach. Measurement 2016, 81, 163–173. [Google Scholar] [CrossRef]
- García-Reyes, S.; Yáñez-Ocampo, G.; Wong-Villarreal, A.; Rajaretinam, R.K.; Thavasimuthu, C.; Patiño, R.; Ortiz-Hernández, M.L. Partial Characterization of a Biosurfactant Extracted from Pseudomonas Sp. B0406 That Enhances the Solubility of Pesticides. Environ. Technol. 2018, 39, 2622–2631. [Google Scholar] [CrossRef] [PubMed]
- Günther, M.; Grumaz, C.; Lorenz, S.; Stevens, P.; Lindemann, E.; Hirth, T.; Sohn, K.; Zibek, S.; Rupp, S. The Transcriptomic Profile of Pseudozyma aphidis during Production of Mannosylerythritol Lipids. Appl. Microbiol. Biotechnol. 2015, 99, 1375–1388. [Google Scholar] [CrossRef] [PubMed]
- Rau, U.; Nguyen, L.A.; Roeper, H.; Koch, H.; Lang, S. Fed-Batch Bioreactor Production of Mannosylerythritol Lipids Secreted by Pseudozyma aphidis. Appl. Microbiol. Biotechnol. 2005, 68, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Shekhar, S.; Sundaramanickam, A.; Balasubramanian, T. Biosurfactant Producing Microbes and Their Potential Applications: A Review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1522–1554. [Google Scholar] [CrossRef]
- Kaur, J.; Kaur, S.; Kumar, M.; Krishnan, P.; Kaur, J.; Priya Minhas, A. Studies on Production, Optimization and Machine Learning-Based Prediction of Biosurfactant from Debaryomyces hansenii CBS767. Int. J. Environ. Sci. Technol. 2022, 19, 8465–8478. [Google Scholar] [CrossRef]
- Lin, X.; Zhou, H.; Zeng, F.; Jiang, L.; Atakpa, E.O.; Chen, G.; Zhang, C.; Xie, Q. A Biosurfactant-Producing Yeast Rhodotorula sp.CC01 Utilizing Landfill Leachate as Nitrogen Source and Its Broad Degradation Spectra of Petroleum Hydrocarbons. World J. Microbiol. Biotechnol. 2022, 38, 68. [Google Scholar] [CrossRef]
- Luna, J.M.; Rufino, R.D.; Campos-Takaki, G.M.; Sarubbo, L.A. Properties of the Biosurfactant Produced by Candida Sphaerica Cultivated in Low-Cost Substrates. Chem. Eng. Trans. 2012, 27, 67–72. [Google Scholar] [CrossRef]
- Ribeiro, B.G.; Campos Guerra, J.M.; Sarubbo, L.A. Production of a Biosurfactant from S. Cerevisiae and Its Application in Salad Dressing. Biocatal. Agric. Biotechnol. 2022, 42, 102358. [Google Scholar] [CrossRef]
- Santos, D.K.F.; Rufino, R.D.; Luna, J.M.; Santos, V.A.; Salgueiro, A.A.; Sarubbo, L.A. Synthesis and Evaluation of Biosurfactant Produced by Candida lipolytica Using Animal Fat and Corn Steep Liquor. J. Pet. Sci. Eng. 2013, 105, 43–50. [Google Scholar] [CrossRef]
- Camargo, F.P.; de Menezes, A.J.; Tonello, P.S.; Dos Santos, A.C.A.; Duarte, I.C.S. Characterization of Biosurfactant from Yeast Using Residual Soybean Oil under Acidic Conditions and Their Use in Metal Removal Processes. FEMS Microbiol. Lett. 2018, 365, fny098. [Google Scholar] [CrossRef]
- Almeida, D.G.; da Silva, R.d.C.F.S.; Luna, J.M.; Rufino, R.D.; Santos, V.A.; Sarubbo, L.A. Response Surface Methodology for Optimizing the Production of Biosurfactant by Candida Tropicalis on Industrial Waste Substrates. Front. Microbiol. 2017, 8, 157. [Google Scholar] [CrossRef]
- Alfian, A.R.; Watchaputi, K.; Sooklim, C.; Soontorngun, N. Production of New Antimicrobial Palm Oil-Derived Sophorolipids by the Yeast Starmerella riodocensis sp. Nov. against Candida Albicans Hyphal and Biofilm Formation. Microb. Cell Factories 2022, 21, 63. [Google Scholar] [CrossRef] [PubMed]
- Pareilleux, A. Hydrocarbon Assimilation by Candida Lipolytica: Formation of a Biosurfactant; Effects on Respiratory Activity and Growth. Eur. J. Appl. Microbiol. Biotechnol. 1979, 8, 91–101. [Google Scholar] [CrossRef]
- Cooper, D.G.; Paddock, D.A. Production of a Biosurfactant from Torulopsis Bombicola. Appl. Environ. Microbiol. 1984, 47, 173–176. [Google Scholar] [CrossRef]
- Ilori, M.O.; Adebusoye, S.A.; Ojo, A.C. Isolation and Characterization of Hydrocarbon-Degrading and Biosurfactant-Producing Yeast Strains Obtained from a Polluted Lagoon Water. World J. Microbiol. Biotechnol. 2008, 24, 2539–2545. [Google Scholar] [CrossRef]
- Hirata, Y.; Ryu, M.; Oda, Y.; Igarashi, K.; Nagatsuka, A.; Furuta, T.; Sugiura, M. Novel Characteristics of Sophorolipids, Yeast Glycolipid Biosurfactants, as Biodegradable Low-Foaming Surfactants. J. Biosci. Bioeng. 2009, 108, 142–146. [Google Scholar] [CrossRef]
- Rana, S.; Singh, J.; Wadhawan, A.; Khanna, A.; Singh, G.; Chatterjee, M. Evaluation of In Vivo Toxicity of Novel Biosurfactant from Candida Parapsilosis Loaded in PLA-PEG Polymeric Nanoparticles. J. Pharm. Sci. 2021, 110, 1727–1738. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Zeng, G.; Tang, L.; Wang, J.; Wan, J.; Liu, Y.; Yu, J.; Yi, H.; Ye, S.; Deng, R. Sorption, Transport and Biodegradation—An Insight into Bioavailability of Persistent Organic Pollutants in Soil. Sci. Total Environ. 2018, 610–611, 1154–1163. [Google Scholar] [CrossRef]
- Calabrese, I.; Gelardi, G.; Merli, M.; Liveri, M.L.T.; Sciascia, L. Clay-Biosurfactant Materials as Functional Drug Delivery Systems: Slowing down Effect in the in Vitro Release of Cinnamic Acid. Appl. Clay Sci. 2017, 135, 567–574. [Google Scholar] [CrossRef]
- Markande, A.R.; Patel, D.; Varjani, S. A Review on Biosurfactants: Properties, Applications and Current Developments. Bioresour. Technol. 2021, 330, 124963. [Google Scholar] [CrossRef]
- Gaur, V.K.; Regar, R.K.; Dhiman, N.; Gautam, K.; Srivastava, J.K.; Patnaik, S.; Kamthan, M.; Manickam, N. Biosynthesis and Characterization of Sophorolipid Biosurfactant by Candida spp.: Application as Food Emulsifier and Antibacterial Agent. Bioresour. Technol. 2019, 285, 121314. [Google Scholar] [CrossRef]
- Rodrigues, L.; Banat, I.M.; Teixeira, J.; Oliveira, R.; Rio Oliveira, R. Biosurfactants: Potential Applications in Medicine. J. Antimicrob. Chemother. 2006, 57, 609–618. [Google Scholar] [CrossRef]
- Roy, A. A Review on the Biosurfactants: Properties, Types and Its Applications. J. Fundam. Renew. Energy Appl. 2018, 8, 1–5. [Google Scholar] [CrossRef]
- Akiyode, O.; George, D.; Getti, G.; Boateng, J. Systematic Comparison of the Functional Physico-Chemical Characteristics and Biocidal Activity of Microbial Derived Biosurfactants on Blood-Derived and Breast Cancer Cells. J. Colloid Interface Sci. 2016, 479, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Vecino, X.; Cruz, J.M.; Moldes, A.B.; Rodrigues, L.R. Biosurfactants in Cosmetic Formulations: Trends and Challenges. Crit. Rev. Biotechnol. 2017, 37, 911–923. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Morita, T.; Fukuoka, T.; Imura, T.; Kitamoto, D. Glycolipid Biosurfactants, Mannosylerythritol Lipids, Show Antioxidant and Protective Effects against H2O2-Induced Oxidative Stress in Cultured Human Skin Fibroblasts. J. Oleo Sci. 2012, 61, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Ongena, M.; Jourdan, E.; Adam, A.; Paquot, M.; Brans, A.; Joris, B.; Arpigny, J.L.; Thonart, P. Surfactin and Fengycin Lipopeptides of Bacillus subtilis as Elicitors of Induced Systemic Resistance in Plants. Environ. Microbiol. 2007, 9, 1084–1090. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Borah, S.N.; Bora, A.; Deka, S. Production, Characterization, and Antifungal Activity of a Biosurfactant Produced by Rhodotorula babjevae YS3. Microb. Cell Fact. 2017, 16, 95. [Google Scholar] [CrossRef]
- Schofield, M.H.; Thavasi, T.R.; Gross, R.A. Modified Sophorolipids for the Inhibition of Plant Pathogens. U.S. Patent 2013/00850670 A1, 11 April 2013. [Google Scholar]
- Ron, E.Z.; Rosenberg, E. Biosurfactants and Oil Bioremediation. Curr. Opin. Biotechnol. 2002, 13, 249–252. [Google Scholar] [CrossRef]
- Rufino, R.D.; Rodrigues, G.I.B.; Campos-Takaki, G.M.; Sarubbo, L.A.; Ferreira, S.R.M. Application of a Yeast Biosurfactant in the Removal of Heavy Metals and Hydrophobic Contaminant in a Soil Used as Slurry Barrier. Appl. Environ. Soil Sci. 2011, 2011, 1–7. [Google Scholar] [CrossRef]
- Luna, J.M.; Rufino, R.D.; Jara, A.M.A.T.; Brasileiro, P.P.F.; Sarubbo, L.A. Environmental Applications of the Biosurfactant Produced by Candida Sphaerica Cultivated in Low-Cost Substrates. Colloids Surf. A Physicochem. Eng. Asp. 2015, 480, 413–418. [Google Scholar] [CrossRef]
- Luna, J.M.; Filho, A.S.S.; Rufino, R.D.; Sarubbo, L.A. Production of Biosurfactant from Candida Bombicola URM 3718 for Environmental Applications. Chem. Eng. Trans. 2016, 49, 583–588. [Google Scholar] [CrossRef]
- Santos, D.K.F.; Meira, H.M.; Rufino, R.D.; Luna, J.M.; Sarubbo, L.A. Biosurfactant Production from Candida Lipolytica in Bioreactor and Evaluation of Its Toxicity for Application as a Bioremediation Agent. Process Biochem. 2017, 54, 20–27. [Google Scholar] [CrossRef]
- Santos, E.M.d.S.; Lira, I.R.A.d.S.; Meira, H.M.; Aguiar, J.D.S.; Rufino, R.D.; de Almeida, D.G.; Casazza, A.A.; Converti, A.; Sarubbo, L.A.; de Luna, J.M. Enhanced Oil Removal by a Non-Toxic Biosurfactant Formulation. Energies 2021, 14, 467. [Google Scholar] [CrossRef]
- Banat, I.M. The Isolation of a Thermophilic Biosurfactant Producing Bacillus sp. Biotechnol. Lett. 1993, 15, 591–594. [Google Scholar] [CrossRef]
- Satpute, S.K.; Bhawsar, B.D.; Dhakephalkar, P.K.; Chopade, B.A. Assessment of Different Screening Methods for Selecting Biosurfactant Producing Marine Bacteria. Indian J. Mar. Sci. 2008, 37, 243–250. [Google Scholar]
- Youssef, N.H.; Duncan, K.E.; Nagle, D.P.; Savage, K.N.; Knapp, R.M.; McInerney, M.J. Comparison of Methods to Detect Biosurfactant Production by Diverse Microorganisms. J. Microbiol. Methods 2004, 56, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Siegmund, I.; Wagner, F. New Method for Detecting Rhamnolipids Excreted by Pseudomonas Species during Growth on Mineral Agar. Biotechnol. Tech. 1991, 5, 265–268. [Google Scholar] [CrossRef]
- Wang, Y.; Wan, S.; Yu, W.; Yuan, D.; Sun, L. Newly Isolated Enterobacter cloacae sp. HN01 and Klebsiella pneumoniae sp. HN02 Collaborate with Self-Secreted Biosurfactant to Improve Solubility and Bioavailability for the Biodegradation of Hydrophobic and Toxic Gaseous Para-Xylene. Chemosphere 2022, 304, 135328. [Google Scholar] [CrossRef]
- Morikawa, M.; Ito, M.; Imanaka, T. Isolation of a New Surfactin Producer Bacillus Pumilus A-1, and Cloning and Nucleotide Sequence of the Regulator Gene, Psf-1. J. Ferment. Bioeng. 1992, 74, 255–261. [Google Scholar] [CrossRef]
- Nayarisseri, A.; Singh, P.; Singh, S.K. Screening, Isolation and Characterization of Biosurfactant Producing Bacillus Subtilis Strain ANSKLAB03. Bioinformation 2018, 14, 304–314. [Google Scholar] [CrossRef] [PubMed]
- van der Vegt, W.; van der Mei, H.C.; Noordmans, J.; Busscher, H.J. Assessment of Bacterial Biosurfactant Production through Axisymmetric Drop Shape Analysis by Profile. Appl. Microbiol. Biotechnol. 1991, 35, 766–770. [Google Scholar] [CrossRef]
- Saad, S.M.I.; Neumann, A.W. Axisymmetric Drop Shape Analysis (ADSA): An Outline. Adv. Colloid Interface Sci. 2016, 238, 62–87. [Google Scholar] [CrossRef]
- Jain, D.K.; Collins-Thompson, D.L.; Lee, H.; Trevors, J.T. A Drop-Collapsing Test for Screening Surfactant-Producing Microorganisms. J. Microbiol. Methods 1991, 13, 271–279. [Google Scholar] [CrossRef]
- Bodour, A.A.; Miller-Maier, R.M. Application of a Modified Drop-Collapse Technique for Surfactant Quantitation and Screening of Biosurfactant-Producing Microorganisms. J. Microbiol. Methods 1998, 32, 273–280. [Google Scholar] [CrossRef]
- Morikawa, M.; Hirata, Y.; Imanaka, T. A Study on the Structure–Function Relationship of Lipopeptide Biosurfactants. Biochim. Biophys. Acta-Mol. Cell Biol. Lipids 2000, 1488, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Ashitha, A.; Radhakrishnan, E.K.; Jyothis, M. Characterization of Biosurfactant Produced by the Endophyte burkholderia sp. WYAT7 and Evaluation of Its Antibacterial and Antibiofilm Potentials. J. Biotechnol. 2020, 313, 1–10. [Google Scholar] [CrossRef]
- Patil, J.R.; Chopade, B.A. Studies on Bioemulsifier Production by Acinetobacter Strains Isolated from Healthy Human Skin. J. Appl. Microbiol. 2001, 91, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Tavares, J.; Alves, L.; Silva, T.P.; Paixão, S.M. Design and Validation of an Expeditious Analytical Method to Quantify the Emulsifying Activity during Biosurfactants/Bioemulsifiers Production. Colloids Surf. B Biointerfaces 2021, 208, 112111. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D.G.; Goldenberg, B.G. Surface-Active Agents from Two Bacillus Species. Appl. Environ. Microbiol. 1987, 53, 224–229. [Google Scholar] [CrossRef]
- Sharma, D.; Singh Saharan, B. Simultaneous Production of Biosurfactants and Bacteriocins by Probiotic Lactobacillus casei MRTL3. Int. J. Microbiol. 2014, 2014, 698713. [Google Scholar] [CrossRef]
- Satpute, S.K.; Banpurkar, A.G.; Dhakephalkar, P.K.; Banat, I.M.; Chopade, B.A. Methods for Investigating Biosurfactants and Bioemulsifiers: A Review. Crit. Rev. Biotechnol. 2010, 30, 127–144. [Google Scholar] [CrossRef]
- Gudiña, E.J.; Fernandes, E.C.; Rodrigues, A.I.; Teixeira, J.A.; Rodrigues, L.R. Biosurfactant Production by Bacillus Subtilis Using Corn Steep Liquor as Culture Medium. Front. Microbiol. 2015, 6, 59. [Google Scholar] [CrossRef]
- Ferreira, A.; Vecino, X.; Ferreira, D.; Cruz, J.M.; Moldes, A.B.; Rodrigues, L.R. Novel Cosmetic Formulations Containing a Biosurfactant from Lactobacillus Paracasei. Colloids Surf. B Biointerfaces 2017, 155, 522–529. [Google Scholar] [CrossRef]
- Jimoh, A.A.; Lin, J. Biotechnological Applications of Paenibacillus Sp. D9 Lipopeptide Biosurfactant Produced in Low-Cost Substrates. Appl. Biochem. Biotechnol. 2020, 191, 921–941. [Google Scholar] [CrossRef] [PubMed]
- Darvishi, P.; Ayatollahi, S.; Mowla, D.; Niazi, A. Biosurfactant Production under Extreme Environmental Conditions by an Efficient Microbial Consortium, ERCPPI-2. Colloids Surf. B Biointerfaces 2011, 84, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Jimoh, A.A.; Lin, J. Biosurfactant: A New Frontier for Greener Technology and Environmental Sustainability. Ecotoxicol. Environ. Saf. 2019, 184, 109607. [Google Scholar] [CrossRef]
- Singh, P.; Patil, Y.; Rale, V. Biosurfactant Production: Emerging Trends and Promising Strategies. J. Appl. Microbiol. 2019, 126, 2–13. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Peng, H.; Sheng, M.; Hu, S.; Qiu, J.; Gu, J. Humidity Control Strategies for Solid-State Fermentation: Capillary Water Supply by Water-Retention Materials and Negative-Pressure Auto-Controlled Irrigation. Front. Bioeng. Biotechnol. 2019, 7, 263. [Google Scholar] [CrossRef]
- Pandey, A. Solid-State Fermentation. Biochem. Eng. J. 2003, 13, 81–84. [Google Scholar] [CrossRef]
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-Industrial Wastes and Their Utilization Using Solid State Fermentation: A Review. Bioresour. Bioprocess. 2018, 5, 1. [Google Scholar] [CrossRef]
- Bernard, A.; Payton, M. Fermentation and Growth of Escherichia coli for Optimal Protein Production. Curr. Protoc. Protein Sci. 1995, 5.3.1–5.3.18. [Google Scholar] [CrossRef] [PubMed]
- Brück, H.; Coutte, F.; Delvigne, F.; Dhulster, P.; Jacques. Optimization of biosurfactant production in a trickle-bed biofilm reactor with genetically improved bacteria. In 25th National Symposium for Applied Biological Science (NSABS); ULiège-Gembloux Agro-Bio Tech-Space: Gembloux, Belgium.
- Amutha, R.; Gunasekaran, P. Production of Ethanol from Liquefied Cassava Starch Using Co-Immobilized Cells of Zymomonas Mobilis and Saccharomyces Diastaticus. J. Biosci. Bioeng. 2001, 92, 560–564. [Google Scholar] [CrossRef] [PubMed]
- Noah, K.S.; Bruhn, D.F.; Bala, G.A. Surfactin Production from Potato Process Effluent by Bacillus Subtilis in a Chemostat. In Twenty-Sixth Symposium on Biotechnology for Fuels and Chemicals; Davison, B.H., Evans, B.R., Finkelstein, M., McMillan, J.D., Eds.; Humana Press: Totowa, NJ, USA, 2005; pp. 465–473. ISBN 978-1-59259-991-2. [Google Scholar]
- Karnwal, A. Biosurfactant Production Using Bioreactors from Industrial Byproducts. In Biosurfactants for a Sustainable Future: Production and Applications in the Environment and Biomedicine; Wiley: Hoboken, NJ, USA, 2021; pp. 59–78. [Google Scholar]
- Vanavil, B.; Perumalsamy, M.; Seshagiri Rao, A. Biosurfactant Production from Novel Air Isolate NITT6L: Screening, Characterization and Optimization of Media. J. Microbiol. Biotechnol. 2013, 23, 1229–1243. [Google Scholar] [CrossRef] [PubMed]
- Behrens, B.; Helmer, P.O.; Tiso, T.; Blank, L.M.; Hayen, H. Rhamnolipid Biosurfactant Analysis Using Online Turbulent Flow Chromatography-Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A 2016, 1465, 90–97. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Y.; Xia, L. An Oleaginous Endophyte Bacillus Subtilis HB1310 Isolated from Thin-Shelled Walnut and Its Utilization of Cotton Stalk Hydrolysate for Lipid Production. Biotechnol. Biofuels 2014, 7, 152. [Google Scholar] [CrossRef]
- Probert, H.M.; Gibson, G.R. Investigating the Prebiotic and Gas-generating Effects of Selected Carbohydrates on the Human Colonic Microflora. Lett. Appl. Microbiol. 2002, 35, 473–480. [Google Scholar] [CrossRef]
- Rodriguez-Contreras, A.; Koller, M.; de Sousa Dias, M.M.; Calafell, M.; Braunegg, G.; Marqués-Calvo, M.S. Novel Poly [(R)-3-Hydroxybutyrate]-Producing Bacterium Isolated from a Bolivian Hypersaline Lake. Food Technol. Biotechnol. 2013, 51, 123. [Google Scholar]
- Kazak Sarilmiser, H.; Ates, O.; Ozdemir, G.; Arga, K.Y.; Toksoy Oner, E. Effective Stimulating Factors for Microbial Levan Production by Halomonas smyrnensis AAD6T. J. Biosci. Bioeng. 2015, 119, 455–463. [Google Scholar] [CrossRef]
- Xu, N.; Liu, S.; Xu, L.; Zhou, J.; Xin, F.; Zhang, W.; Qian, X.; Li, M.; Dong, W.; Jiang, M. Enhanced Rhamnolipids Production Using a Novel Bioreactor System Based on Integrated Foam-Control and Repeated Fed-Batch Fermentation Strategy. Biotechnol. Biofuels 2020, 13, 80. [Google Scholar] [CrossRef]
- Yao, S.; Zhao, S.; Lu, Z.; Gao, Y.; Lv, F.; Bie, X. Control of Agitation and Aeration Rates in the Production of Surfactin in Foam Overflowing Fed-Batch Culture with Industrial Fermentation. Rev. Argent. Microbiol. 2015, 47, 344–349. [Google Scholar] [CrossRef]
- Banat, I.M.; Satpute, S.K.; Cameotra, S.S.; Patil, R.; Nyayanit, N.V. Cost Effective Technologies and Renewable Substrates for Biosurfactants’ Production. Front. Microbiol. 2014, 5, 697. [Google Scholar] [CrossRef]
- Kreling, N.E.; Zaparoli, M.; Margarites, A.C.; Friedrich, M.T.; Thomé, A.; Colla, L.M. Extracellular Biosurfactants from Yeast and Soil–Biodiesel Interactions during Bioremediation. Int. J. Environ. Sci. Technol. 2020, 17, 395–408. [Google Scholar] [CrossRef]
- Ribeiro, B.G.; Guerra, J.M.C.; Sarubbo, L.A. Potential Food Application of a Biosurfactant Produced by Saccharomyces Cerevisiae URM 6670. Front. Bioeng. Biotechnol. 2020, 8, 434. [Google Scholar] [CrossRef] [PubMed]
- Smyth, T.J.P.; Rudden, M.; Tsaousi, K.; Marchant, R.; Banat, I.M. Protocols for the Detection and Chemical Characterisation of Microbial Glycolipids. Hydrocarbon and Lipid Microbiology Protocols: Biochemical Methods; Springer: Berlin/Heidelberg, Germany, 2014; pp. 29–60. [Google Scholar] [CrossRef]
- Saikia, R.R.; Deka, S.; Deka, M.; Banat, I.M. Isolation of Biosurfactant-Producing Pseudomonas Aeruginosa RS29 from Oil-Contaminated Soil and Evaluation of Different Nitrogen Sources in Biosurfactant Production. Ann. Microbiol. 2012, 62, 753–763. [Google Scholar] [CrossRef]
- Qiao, N.; Shao, Z. Isolation and Characterization of a Novel Biosurfactant Produced by Hydrocarbon-Degrading Bacterium Alcanivorax Dieselolei B-5. J. Appl. Microbiol. 2010, 108, 1207–1216. [Google Scholar] [CrossRef] [PubMed]
- Weber, A.; Zeiner, T. Purification of Biosurfactants. In Biosurfactants: Production and Utilization—Processes, Technologies, and Economics; CRC Press: Boca Raton, FL, USA, 2014; p. 129. [Google Scholar]
- Pruthi, V.; Singh Cameotra, S. Rapid Method for Monitoring Maximum Biosurfactant Production Obtained by Acetone Precipitation. Biotechnol. Tech. 1995, 9, 271–276. [Google Scholar] [CrossRef]
- Abouseoud, M.; Maachi, R.; Amrane, A.; Boudergua, S.; Nabi, A. Evaluation of Different Carbon and Nitrogen Sources in Production of Biosurfactant by Pseudomonas Fluorescens. Desalination 2008, 223, 143–151. [Google Scholar] [CrossRef]
- Ruangprachaya, F.; Chuenchomrat, P. Isolation and Characterization of Biosurfactant Produced by Lactic Acid Bacteria from Indigenous Thai Fermented Foods. ETP Int. J. Food Eng. 2018, 4, 268–272. [Google Scholar] [CrossRef]
- Bhosale, S.S.; Rohiwal, S.S.; Chaudhary, L.S.; Pawar, K.D.; Patil, P.S.; Tiwari, A.P. Photocatalytic Decolorization of Methyl Violet Dye Using Rhamnolipid Biosurfactant Modified Iron Oxide Nanoparticles for Wastewater Treatment. J. Mater. Sci. Mater. Electron. 2019, 30, 4590–4598. [Google Scholar] [CrossRef]
- Phetrong, K.; H-Kittikun, A.; Maneerat, S. Production and Characterization of Bioemulsifier from a Marine Bacterium, Acinetobacter Calcoaceticus subsp. Anitratus SM7. Songklanakarin J. Sci. Technol. 2008, 30, 297–305. [Google Scholar]
- Joshi, S.J.; Geetha, S.J.; Desai, A.J. Characterization and Application of Biosurfactant Produced by Bacillus licheniformis R2. Appl. Biochem. Biotechnol. 2015, 177, 346–361. [Google Scholar] [CrossRef] [PubMed]
- Najmi, Z.; Ebrahimipour, G.; Franzetti, A.; Banat, I.M. In Situ Downstream Strategies for Cost-Effective Bio/Surfactant Recovery. Biotechnol. Appl. Biochem. 2018, 65, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Vigneshwaran, C.; Vasantharaj, K.; Krishnanand, N.; Sivasubramanian, V. Production Optimization, Purification and Characterization of Lipopeptide Biosurfactant Obtained from Brevibacillus sp. AVN13. J. Environ. Chem. Eng. 2021, 9, 104867. [Google Scholar] [CrossRef]
- Mukherjee, S.; Das, P.; Sen, R. Towards Commercial Production of Microbial Surfactants. Trends Biotechnol. 2006, 24, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D.G.; Macdonald, C.R.; Duff, S.J.B.; Kosaric, N. Enhanced Production of Surfactin from Bacillus Subtilis by Continuous Product Removal and Metal Cation Additions. Appl. Environ. Microbiol. 1981, 42, 408–412. [Google Scholar] [CrossRef]
- Thaniyavarn, J.; Roongsawang, N.; Kameyama, T.; Haruki, M.; Imanaka, T.; Morikawa, M.; Kanaya, S. Production and Characterization of Biosurfactants from Bacillus licheniformis F2.2. Biosci. Biotechnol. Biochem. 2003, 67, 1239–1244. [Google Scholar] [CrossRef]
- Nitschke, M.; Pastore, G.M. Production and Properties of a Surfactant Obtained from Bacillus subtilis Grown on Cassava Wastewater. Bioresour. Technol. 2006, 97, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Manso Pajarron, A.; de Koster, C.G.; Heerma, W.; Schmidt, M.; Haverkamp, J. Structure Identification of Natural Rhamnolipid Mixtures by Fast Atom Bombardment Tandem Mass Spectrometry. Glycoconj. J. 1993, 10, 219–226. [Google Scholar] [CrossRef]
- Dubey, K.V.; Juwarkar, A.A. Adsorption—Desorption Process Using Wood-Based Activated Carbon for Recovery of Biosurfactant from Fermented Distillery Wastewater. Biotechnol. Prog. 2005, 21, 860–867. [Google Scholar] [CrossRef]
- Ostwald, W. Verfahren Zum Verdampfen von Flüssigkeiten. Pat. Nr 1920, 327976. [Google Scholar]
- Stevenson, P.; Li, X. Foam Fractionation: Principles and Process Design; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Kosaric, N.; Sukan, F.V. Biosurfactants: Production and Utilization—Processes, Technologies, and Economics; CRC Press: Boca Raton, FL, USA, 2014; ISBN 978-1-4665-9669-6. [Google Scholar]
- Merz, J.; Zorn, H.; Burghoff, B.; Schembecker, G. Purification of a Fungal Cutinase by Adsorptive Bubble Separation: A Statistical Approach. Colloids Surfaces A Physicochem. Eng. Asp. 2011, 382, 81–87. [Google Scholar] [CrossRef]
- Tuleva, B.K.; Ivanov, G.R.; Christova, N.E. Biosurfactant Production by a New Pseudomonas Putida Strain. Z. Für Nat. C 2002, 57, 356–360. [Google Scholar] [CrossRef]
- Twigg, M.S.; Baccile, N.; Banat, I.M.; Déziel, E.; Marchant, R.; Roelants, S.; Van Bogaert, I.N.A. Microbial Biosurfactant Research: Time to Improve the Rigour in the Reporting of Synthesis, Functional Characterization and Process Development. Microb. Biotechnol. 2021, 14, 147–170. [Google Scholar] [CrossRef] [PubMed]
- Wall, P.E. Thin-Layer Chromatography: A Modern Practical Approach; Royal Society of Chemistry: Cambridge, UK, 2007; ISBN 0-85404-535-X. [Google Scholar]
- Senthil Balan, S.; Ganesh Kumar, C.; Jayalakshmi, S. Physicochemical, Structural and Biological Evaluation of Cybersan (Trigalactomargarate), a New Glycolipid Biosurfactant Produced by a Marine Yeast, Cyberlindnera saturnus Strain SBPN-27. Process Biochem. 2019, 80, 171–180. [Google Scholar] [CrossRef]
- Leitermann, F.; Syldatk, C.; Hausmann, R. Fast Quantitative Determination of Microbial Rhamnolipids from Cultivation Broths by ATR-FTIR Spectroscopy. J. Biol. Eng. 2008, 8, 13. [Google Scholar] [CrossRef]
- Haba, E.; Abalos, A.; Jáuregui, O.; Espuny, M.J.; Manresa, A. Use of Liquid Chromatography-Mass Spectroscopy for Studying the Composition and Properties of Rhamnolipids Produced by Different Strains of Pseudomonas Aeruginosa. J. Surfactants Deterg. 2003, 6, 155–161. [Google Scholar] [CrossRef]
- De Hoffmann, E. Tandem Mass Spectrometry: A Primer. J. Mass Spectrom. 1996, 31, 129–137. [Google Scholar] [CrossRef]
- Kumari, V.; Tripathi, A.K. Characterization of Pharmaceuticals Industrial Effluent Using GC—MS and FT - IR Analyses and Defining Its Toxicity. Appl. Water Sci. 2019, 9, 185. [Google Scholar] [CrossRef]
- Tulloch, A.P.; Hill, A.; Spencer, J.F.T. Structure and Reactions of Lactonic and Acidic Sophorosides of 17-Hydroxyoctadecanoic Acid. Can. J. Chem. 1968, 46, 3337–3351. [Google Scholar] [CrossRef]
- Asmer, H.J.; Lang, S.; Wagner, F.; Wray, V. Microbial Production, Structure Elucidation and Bioconversion of Sophorose Lipids. J. Am. Oil Chem. Soc. 1988, 65, 1460–1466. [Google Scholar] [CrossRef]
- Agrawal, P.K. NMR Spectroscopy in the Structural Elucidation of Oligosaccharides and Glycosides. Phytochemistry 1992, 31, 3307–3330. [Google Scholar] [CrossRef]
- Suga, K.; Bradley, M.; Rusling, J.F. Probing the Interface of Cast Surfactant Films and an Underlying Metal by Surface-Enhanced Raman Scattering Spectroscopy. Langmuir 1993, 9, 3063–3066. [Google Scholar] [CrossRef]
- Sun, Z.; Park, Y.; Zheng, S.; Ayoko, G.A.; Frost, R.L. Thermal Stability and Hot-Stage Raman Spectroscopic Study of Ca-Montmorillonite Modified with Different Surfactants: A Comparative Study. Thermochim. Acta 2013, 569, 151–160. [Google Scholar] [CrossRef]
- Leu, J.Y.; Yee, J.; Tu, C.S.; Sayson, S.; Jou, Y.S.; Geraldino, P.J. Microstructure and Molecular Vibration of Mannosylerythritol Lipids from Pseudozyma Yeast Strains. Chem. Phys. Lipids 2020, 232, 104969. [Google Scholar] [CrossRef]
Biosurfactant-Producing Microorganism | Biosurfactant Type | Substrate | Properties | References |
---|---|---|---|---|
Debaryomyces hansenii CBS767 | Glycolipid | Soybean oil | Significant emulsification activity and lowering of surface tension | [48] |
Candida utilis UFPEDA1009 | Glycolipid | Canola waste frying oil and glucose | Replace animal fat in formulation of cookies | [37] |
Rhodotorula sp.CC01 | Glycolipid | Landfill leachate and Olive oil | Potential in remediating petroleum hydrocarbons | [49] |
Candida sphaerica UCP 0995 | Glycolipid | Groundnut oil refinery and corn steep liquor | Recovered motor oil adsorbed in a sand sample | [50] |
Saccharomyces cerevisiae URM 6670 | Rhamnolipid | Soybean waste frying oil and 1% corn steep liquor | Emulsifiers in a salad dressing formulation | [51] |
Candida lipolytica UCP0988 | Glycolipid | Animal fat and corn steep liquor | Recovering residual oil from oil-saturated sand | [52] |
Meyerozyma guilliermondii | Glycolipid | Used soybean oil | Solubilize cadmium from the sewage sludge | [53] |
Candida tropicalis UCP0996 | - | Sugarcane molasses, corn steep liquor, waste frying oil | Motor oil spreading efficiency | [54] |
Cutaneotrichosporon mucoides UFMG-CM-Y6148 | Sophorolipid | Sugarcane bagasse hydrolysate | Highlighted emulsifying properties in kerosene | [25] |
Starmerella riodocensis | Sophorolipid | Glucose and palm oil | Emulsification activity against kerosene and antifungal activity against Candida albicans | [55] |
Methods | Advantages | Disadvantages |
---|---|---|
Hemolytic activity | Easy visualization | The method is not specific; Some biosurfactants do not show any hemolytic activity; Can give many false negative and false positive results. |
Blue agar plate method | Easy visualization; Efficient method | It is specific for anionic biosurfactants; The medium can be harmful and inhibits growth of some microbes. |
Agar plate overlaid with hydrocarbons | Easy visualization; Efficient method | It takes a long time (one week) for the results. |
Axisymmetric drop shape analysis | Requires a very small number of cells | Equipment is required; Complex calculation; Different samples cannot be measured in parallel. |
Modified drop collapse method | Fast and easy method; Requires no specialized equipment and just a small volume of samples | If the sample contains a small amount of BS, false negative results can occur. |
Oil spreading method | Fast, easy, and efficient method; Requires no specialized equipment and just a small volume of samples | - |
Emulsification assay | Simple screening method | Surface activity and emulsification capacity do not always correlate. Consequently, this method gives just an indication of the presence of biosurfactants. |
Emulsification index | A simple and efficient method | - |
Tensiometric measurement | Accuracy and ease of use | It requires specialized equipment; Measurements of different samples cannot be performed simultaneously. |
Microbial Source | Recovery Method of BS | Reference |
---|---|---|
Saccharomyces cerevisiae | Acid precipitation followed by solvent extraction with 1:2 methanol (extract: methanol). | [120] |
Wickerhamomyces anomalus | Adsorption–desorption chromatography (Amberlite XAD2) using methanol as eluent. | [16] |
Saccharomyces cerevisiae | Solvent extraction using ethyl acetate followed by centrifugation and filtration and addition of saturated NaCl and anhydrous MgSO4. | [121] |
Rhodotorula sp.YBR | Acid precipitation followed by solvent extraction with thrice an equal volume of ethyl acetate and methanol (2/1, v/v). | [36] |
Candida stellata | Ethanol precipitation (500 mL for 1 L of broth—1:2 v/v) followed by centrifugation. | [35] |
Candida parapsilosis | Acid precipitation followed by centrifugation. | [60] |
Candida sphaerica | Solvent extraction using ethyl acetate (1:1 v/v) followed by other solvent extraction using twice the amount of hexane. After extraction, the product was treated with a base and crystallized. | [78] |
Microbial Source | Mobile Phase | Visualization | Reference |
---|---|---|---|
Rhodotorula babjevae | Chloroform: methanol: water (65:15:2 v/v) | Iodine fumes and Anthrone reagent | [71] |
Scheffersomyces stipitis | Chloroform: methanol: distilled water (65:15:1 v/v) | Seebach reagent | [19] |
Cyberlindnera saturnus | N-hexane: ethyl acetate (5:3 v/v) and Acetonitrile: methanol: water (4:2:1 v/v) | UV light, Ninhydrin reagent, Anthrone reagent, and Rhodamine 6G reagent | [147] |
Cutaneotrichosporon mucoides | Chloroform: methanol (19:1 v/v) | Seebach reagent | [25] |
Rhodotorula sp.YBR | Acetone: acetic acid: water (70:20:10 v/v) for amino acids, Chloroform: methanol: water (60:30:10) for sugars, and Chloroform: methanol: water (65:25:10 v/v) for lipids | Iodine fumes, Ninhydrin reagent, and Molisch reagent | [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, N.d.A.T.; Simões, L.A.; Dias, D.R. Biosurfactants Produced by Yeasts: Fermentation, Screening, Recovery, Purification, Characterization, and Applications. Fermentation 2023, 9, 207. https://doi.org/10.3390/fermentation9030207
Fernandes NdAT, Simões LA, Dias DR. Biosurfactants Produced by Yeasts: Fermentation, Screening, Recovery, Purification, Characterization, and Applications. Fermentation. 2023; 9(3):207. https://doi.org/10.3390/fermentation9030207
Chicago/Turabian StyleFernandes, Natalia de Andrade Teixeira, Luara Aparecida Simões, and Disney Ribeiro Dias. 2023. "Biosurfactants Produced by Yeasts: Fermentation, Screening, Recovery, Purification, Characterization, and Applications" Fermentation 9, no. 3: 207. https://doi.org/10.3390/fermentation9030207
APA StyleFernandes, N. d. A. T., Simões, L. A., & Dias, D. R. (2023). Biosurfactants Produced by Yeasts: Fermentation, Screening, Recovery, Purification, Characterization, and Applications. Fermentation, 9(3), 207. https://doi.org/10.3390/fermentation9030207