Effects of Capsicum oleoresin Inclusion on Rumen Fermentation and Lactation Performance in Buffaloes (Bubalus bubalis) during Summer: In Vitro and In Vivo Studies
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Vitro Experiment
2.1.1. Experimental Design
2.1.2. Sampling and Analyses
2.2. In Vivo Experiment
2.2.1. Animals and Treatments
2.2.2. Sampling, Measurements, and Analyses
2.3. Statistical Analyses
3. Results
3.1. In Vitro Experiment
3.2. In Vivo Experiment
3.2.1. THI
3.2.2. Rumen Fermentation Parameters In Vivo
3.2.3. Physiological Indicators, DMI, and Lactation Performance
3.2.4. Serum Indicators
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Ethics Approval
References
- Pantoja, L.S.G.; Amante, E.R.; da Cruz Rodrigues, A.M.; da Silva, L.H.M. World scenario for the valorization of byproducts of buffalo milk production chain. J. Clean. Prod. 2022, 364, 132605. [Google Scholar] [CrossRef]
- Kim Thanh, V.T.; Shi Chang, W. Differences in adaptation to tropical weather between buffaloes and cattle. Ital. J. Anim. Sci. 2007, 6, 1340–1343. [Google Scholar] [CrossRef]
- Bernabucci, U.; Lacetera, N.; Baumgard, L.H.; Rhoads, R.P.; Ronchi, B.; Nardone, A. Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal 2010, 4, 1167–1183. [Google Scholar] [CrossRef] [Green Version]
- Arowolo, M.A.; He, J. Use of probiotics and botanical extracts to improve ruminant production in the tropics: A review. Anim. Nutr. 2018, 4, 241–249. [Google Scholar] [CrossRef]
- Silvester, A.J.; Aseer, K.R.; Yun, J.W. Dietary polyphenols and their roles in fat browning. J. Nutr. Biochem. 2019, 64, 1–12. [Google Scholar] [CrossRef]
- Adaszek, Ł.; Gadomska, D.; Mazurek, Ł.; Łyp, P.; Madany, J.; Winiarczyk, S. Properties of capsaicin and its utility in veterinary and human medicine. Res. Vet. Sci. 2019, 123, 14–19. [Google Scholar] [CrossRef]
- Fandiño, I.; Calsamiglia, S.; Ferret, A.; Blanch, M. Anise and capsicum as alternatives to monensin to modify rumen fermentation in beef heifers fed a high concentrate diet. Anim. Feed. Sci. Technol. 2008, 145, 409–417. [Google Scholar] [CrossRef]
- Eidsvik, J.C.; McKinnon, J.J.; Blanchard, A.; Khelil, H.; Moya, D.; Penner, G.B. Effects of rumen-protected Capsicum oleoresin on dry matter intake, average daily gain, and carcass characteristics of finishing beef steers. Appl. Anim. Sci. 2022, 38, 335–342. [Google Scholar] [CrossRef]
- Westphalen, M.F.; Carvalho, P.H.; Oh, J.; Hristov, A.N.; Staniar, W.B.; Felix, T.L. Effects of feeding rumen-protected Capsicum oleoresin on growth performance, health status, and total tract digestibility of growing beef cattle. Anim. Feed. Sci. Technol. 2021, 271, 114778. [Google Scholar] [CrossRef]
- Oh, J.; Giallongo, F.; Frederick, T.; Pate, J.; Walusimbi, S.; Elias, R.; Wall, E.; Bravo, D.; Hristov, A. Effects of dietary Capsicum oleoresin on productivity and immune responses in lactating dairy cows. J. Dairy Sci. 2015, 98, 6327–6339. [Google Scholar] [CrossRef]
- Szolcsányi, J. Effect of capsaicin on thermoregulation: An update with new aspects. Temperature 2015, 2, 277–296. [Google Scholar] [CrossRef] [Green Version]
- An, Z.; Abdelrahman, M.; Zhou, J.; Riaz, U.; Gao, S.; Gao, S.; Luo, G.; Yang, L. Prepartum Maternal Supplementation of Capsicum Oleoresin Improves Colostrum Quality and Buffalo Calves’ Performance. Front. Vet. Sci. 2022, 9, 935634. [Google Scholar] [CrossRef] [PubMed]
- An, Z.; Luo, G.; Abdelrahman, M.; Riaz, U.; Gao, S.; Yao, Z.; Ye, T.; Lv, H.; Zhao, J.; Chen, C. Effects of capsicum oleoresin supplementation on rumen fermentation and microbial abundance under different temperature and dietary conditions In vitro. Front. Microbiol. 2022, 13, 1005818. [Google Scholar] [CrossRef] [PubMed]
- Eihvalde, I.; Kairisa, D.; Sematovica, I. Long-term continuous monitoring of ruminal PH and temperature for dairy cows with indwelling and wireless data transmitting unit. Parameters 2016, 3555, 4829. [Google Scholar]
- Menke, K.H. Estimation of the energetic feed value obtained from chemical analysis and In vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Bartocci, S.; Tripaldi, C.; Terramoccia, S. Characteristics of foodstuffs and diets, and the quanti-qualitative milk parameters of Mediterranean buffaloes bred in Italy using the intensive system: An estimate of the nutritional requirements of buffalo herds lactating or dry. Livest. Prod. Sci. 2002, 77, 45–58. [Google Scholar] [CrossRef]
- Weatherburn, M. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- National Research Council (U.S.). A Guide to Environmental Research on Animals: National Academies; National Research Council (U.S.): Rockville, MD, USA, 1971.
- Li, G.; Chen, S.; Chen, J.; Peng, D.; Gu, X. Predicting rectal temperature and respiration rate responses in lactating dairy cows exposed to heat stress. J. Dairy Sci. 2020, 103, 5466–5484. [Google Scholar] [CrossRef]
- Lees, A.; Lees, J.; Lisle, A.; Sullivan, M.; Gaughan, J. Effect of heat stress on rumen temperature of three breeds of cattle. Int. J. Biometeorol. 2018, 62, 207–215. [Google Scholar] [CrossRef]
- Mahmood, M.; Petri, R.M.; Gavrău, A.; Zebeli, Q.; Khiaosa-ard, R. Betaine addition as a potent ruminal fermentation modulator under hyperthermal and hyperosmotic conditions In vitro. J. Sci. Food Agric. 2020, 100, 2261–2271. [Google Scholar] [CrossRef]
- Khiaosa-Ard, R.; Mahmood, M.; Lerch, F.; Traintinger, F.-P.; Petri, R.M.; Münnich, M.; Zebeli, Q. Physicochemical stressors and mixed alkaloid supplementation modulate ruminal microbiota and fermentation In vitro. Anaerobe 2020, 65, 102263. [Google Scholar] [CrossRef]
- Nasr, M.A. The impact of crossbreeding Egyptian and Italian buffalo on milk yield and composition under subtropical environmental conditions. J. Dairy Res. 2016, 83, 196–201. [Google Scholar] [CrossRef]
- Cardozo, P.; Calsamiglia, S.; Ferret, A.; Kamel, C. Screening for the effects of natural plant extracts at different pH on In vitro rumen microbial fermentation of a high-concentrate diet for beef cattle. J. Anim. Sci. 2005, 83, 2572–2579. [Google Scholar] [CrossRef]
- Fandiño, I.; Ferret, A.; Calsamiglia, S. Dose and combinations of anise oil and capsicum oleoresin as rumen fermentation modifiers In vitro and in vivowith high concentrate diets fed to Holstein beef heifers. Anim. Feed. Sci. Technol. 2020, 260, 114363. [Google Scholar] [CrossRef]
- Castillo-Lopez, E.; Rivera-Chacon, R.; Ricci, S.; Petri, R.M.; Reisinger, N.; Zebeli, Q. Short-term screening of multiple phytogenic compounds for their potential to modulate chewing behavior, ruminal fermentation profile, and pH in cattle fed grain-rich diets. J. Dairy Sci. 2021, 104, 4271–4289. [Google Scholar] [CrossRef]
- Ricci, S.; Rivera-Chacon, R.; Petri, R.M.; Sener-Aydemir, A.; Sharma, S.; Reisinger, N.; Zebeli, Q.; Castillo-Lopez, E. Supplementation with phytogenic compounds modulates salivation and salivary physico-chemical composition in cattle fed a high-concentrate diet. Front. Physiol. 2021, 12, 645529. [Google Scholar] [CrossRef]
- Rodríguez-Prado, M.; Ferret, A.; Zwieten, J.; Gonzalez, L.; Bravo, D.; Calsamiglia, S. Effects of dietary addition of capsicum extract on intake, water consumption, and rumen fermentation of fattening heifers fed a high-concentrate diet. J. Anim. Sci. 2012, 90, 1879–1884. [Google Scholar] [CrossRef]
- Silva, R. Suplementação de Vacas Leiteiras com Óleos Essenciais. Ph.D. Thesis, Universidade Federal de Lavras, Lavras, Brazil, 2017. [Google Scholar]
- Inagaki, H.; Kurganov, E.; Park, Y.; Furube, E.; Miyata, S. Oral gavage of capsaicin causes TRPV1-dependent acute hypothermia and TRPV1-independent long-lasting increase of locomotor activity in the mouse. Physiol. Behav. 2019, 206, 213–224. [Google Scholar] [CrossRef]
- Vennekens, R.; Vriens, J.; Nilius, B. Herbal compounds and toxins modulating TRP channels. Curr. Neuropharmacol. 2008, 6, 79–96. [Google Scholar] [CrossRef] [Green Version]
- Chung, M.-K.; Wang, S. Cold suppresses agonist-induced activation of TRPV1. J. Dent. Res. 2011, 90, 1098–1102. [Google Scholar] [CrossRef] [Green Version]
- Foskolos, A.; Ferret, A.; Siurana, A.; Castillejos, L.; Calsamiglia, S. Effects of capsicum and propyl-propane thiosulfonate on rumen fermentation, digestion, and milk production and composition in dairy cows. Animals 2020, 10, 859. [Google Scholar] [CrossRef]
- Rejeb, M.; Sadraoui, R.; Najar, T.; M’rad, M.B. A complex interrelationship between rectal temperature and dairy cows’ performance under heat stress conditions. Open J. Anim. Sci. 2016, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Wall, E.; Bravo, D. 1554 Supplementation with rumen-protected capsicum oleoresin increases milk production and component yield in lactating dairy cows. J. Anim. Sci. 2016, 94, 755. [Google Scholar] [CrossRef]
- Kumar, J.; Madan, A.K.; Kumar, M.; Sirohi, R.; Yadav, B.; Reddy, A.V.; Swain, D.K. Impact of season on antioxidants, nutritional metabolic status, cortisol and heat shock proteins in Hariana and Sahiwal cattle. Biol. Rhythm. Res. 2018, 49, 29–38. [Google Scholar] [CrossRef]
- Stelwagen, K.; Wall, E.; Bravo, D. 1395 Effect of rumen-protected capsicum on milk production in early lactating cows in a pasture-based system. J. Anim. Sci. 2016, 94, 675. [Google Scholar] [CrossRef]
- Grazziotin, R.; Halfen, J.; Rosa, F.; Schmitt, E.; Anderson, J.; Ballard, V.; Osorio, J. Altered rumen fermentation patterns in lactating dairy cows supplemented with phytochemicals improve milk production and efficiency. J. Dairy Sci. 2020, 103, 301–312. [Google Scholar] [CrossRef]
- Silvestre, T.; Räisänen, S.; Cueva, S.; Wasson, D.; Lage, C.; Martins, L.; Wall, E.; Hristov, A. Effects of a combination of Capsicum oleoresin and clove essential oil on metabolic status, lactational performance, and enteric methane emissions in dairy cows. J. Dairy Sci. 2022, 105, 9610–9622. [Google Scholar] [CrossRef]
- Rhoads, M.; Rhoads, R.; VanBaale, M.; Collier, R.; Sanders, S.; Weber, W.; Crooker, B.; Baumgard, L. Effects of heat stress and plane of nutrition on lactating Holstein cows: I. Production, metabolism, and aspects of circulating somatotropin. J. Dairy Sci. 2009, 92, 1986–1997. [Google Scholar] [CrossRef] [Green Version]
Chemical Composition | Content (%) |
---|---|
% of dry matter | |
Organic matter | 88.74 |
Crude protein | 13.26 |
Neutral detergent fibre | 57.81 |
Acid detergent fibre | 35.15 |
Item | Temperature (TEM) | Capsicum oleoresin (CAP) | SEM | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
CON | 2 mg/L | 20 mg/L | 200 mg/L | 2000 mg/L | TEM | CAP | TEM × CAP | |||
pH | 39 °C | 5.86 xa | 5.72 b | 5.73 b | 5.70 b | 5.74 b | 0.02 | <0.01 | <0.01 | 0.01 |
42 °C | 5.71 y | 5.67 | 5.68 | 5.72 | 5.68 | |||||
Ammonia (mmol/L) | 39 °C | 3.83 y | 3.66 | 2.60 | 3.07 | 3.99 | 0.39 | <0.01 | <0.01 | 0.56 |
42 °C | 6.15 xa | 5.16 ab | 3.94 b | 4.52 ab | 5.00ab | |||||
SCFA (mmol/L) | 39 °C | 104.70 xa | 100.68 xa | 97.11 ab | 86.42 ab | 72.63 b | 5.72 | <0.01 | <0.01 | 0.58 |
42 °C | 75.06 y | 69.98 y | 74.31 | 69.83 | 56.37 | |||||
SCFA proportion (%) | ||||||||||
Acetate | 39 °C | 59.84 yc | 62.36 yb | 63.40 yb | 66.23 ya | 68.03 a | 0.52 | <0.01 | <0.01 | <0.01 |
42 °C | 68.84 xa | 67.74 xa | 69.63 xa | 69.09 xa | 66.03 b | |||||
Propionate | 39 °C | 26.53 xa | 25.38 xab | 24.71 xb | 23.26 xc | 22.01 c | 0.27 | <0.01 | 0.02 | <0.01 |
42 °C | 20.02 yb | 19.99 yb | 20.63 yb | 21.82 yab | 22.61 a | |||||
Butyrate | 39 °C | 11.61 xa | 10.37 ab | 10.15 xb | 9.15 bc | 8.72 c | 0.26 | <0.01 | <0.01 | <0.01 |
42 °C | 9.39 yb | 10.38 a | 8.50 yb | 8.00 bc | 9.72 ab | |||||
Isobutyrate | 39 °C | 0.52 xa | 0.46 ab | 0.41 xb | 0.30 bc | 0.19 c | 0.02 | <0.01 | <0.01 | <0.01 |
42 °C | 0.33 ya | 0.35 a | 0.24 ya | 0.21 b | 0.26 ab | |||||
Valerate | 39 °C | 0.75 ab | 0.79 a | 0.70 ab | 0.54 ab | 0.49 b | 0.06 | <0.01 | 0.86 | 0.07 |
42 °C | 0.82 a | 0.90 a | 0.53 b | 0.43 b | 0.62 ab | |||||
Caproate | 39 °C | 0.75 xa | 0.64 ab | 0.63 xab | 0.52 b | 0.55 yb | 0.03 | 0.04 | <0.01 | <0.01 |
42 °C | 0.58 yb | 0.64 ab | 0.47 yb | 0.45 b | 0.75 xa | |||||
Ratio of acetate to propionate | 39 °C | 2.26 yc | 2.46 ybc | 2.57 yb | 2.85 ya | 3.09 a | 0.05 | <0.01 | 0.02 | <0.01 |
42 °C | 3.44 xa | 3.39 xab | 3.38 xab | 3.16 xb | 2.93 b |
Item | Capsicum oleoresin | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
CON | 10CAP | 20CAP | 40CAP | T | L | Q | ||
pH | 6.09 | 6.24 | 6.31 | 6.19 | 0.10 | 0.46 | 0.41 | 0.20 |
Ammonia (mmol/L) | 7.23 | 6.25 | 6.18 | 6.33 | 0.77 | 0.58 | 0.33 | 0.37 |
SCFA (mmol/L) | 125.35 | 127.98 | 131.28 | 120.50 | 2.98 | 0.84 | 0.78 | 0.46 |
SCFA proportion (mol/100 mol) | ||||||||
Acetate | 72.65 | 72.79 | 72.82 | 75.06 | 0.63 | 0.10 | 0.04 | 0.15 |
Propionate | 15.48 ab | 15.79 ab | 16.11 a | 14.26 b | 0.37 | 0.05 | 0.09 | 0.03 |
Butyrate | 9.38 | 9.04 | 8.90 | 8.56 | 0.31 | 0.36 | 0.10 | 0.99 |
Isobutyrate | 0.51 | 0.55 | 0.52 | 0.41 | 0.05 | 0.21 | 0.12 | 0.14 |
Valerate | 1.23 | 1.17 | 0.96 | 1.09 | 0.16 | 0.65 | 0.37 | 0.54 |
Caproate | 0.72 | 0.66 | 0.70 | 0.61 | 0.04 | 0.27 | 0.12 | 0.71 |
Ratio of acetate to propionate | 4.70 ab | 4.62 ab | 4.55 b | 5.29 a | 0.15 | 0.04 | 0.04 | 0.03 |
Item | Capsicum oleoresin | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
CON | 10CAP | 20CAP | 40CAP | T | L | Q | ||
Physiological indicators | ||||||||
Rectal temperature, °C | 38.97 a | 38.52 ab | 38.44 b | 38.95 ab | 0.18 | 0.03 | 0.75 | 0.01 |
Respiratory rates, rpm | 49.32 a | 35.36 b | 35.80 b | 46.71 ab | 3.28 | 0.05 | 0.21 | 0.66 |
Dry matter intake, kg | 8.55 | 8.95 | 9.19 | 8.64 | 0.49 | 0.24 | 0.61 | 0.07 |
Milk yield, kg/d | 7.10 b | 7.83 a | 8.00 a | 7.38 ab | 0.49 | 0.03 | 0.24 | 0.01 |
Fat, % | 6.53 | 6.79 | 6.59 | 6.81 | 0.31 | 0.75 | 0.55 | 0.93 |
Protein, % | 4.52 | 4.50 | 4.66 | 4.72 | 0.15 | 0.43 | 0.15 | 0.71 |
Lactose, % | 5.00 | 5.07 | 5.08 | 5.13 | 0.08 | 0.48 | 0.15 | 0.85 |
Total solids, % | 17.10 | 17.50 | 17.34 | 17.77 | 1.49 | 0.55 | 0.25 | 0.96 |
solid-not-fat, % | 10.41 | 10.39 | 10.51 | 10.75 | 0.25 | 0.49 | 0.19 | 0.48 |
Urea, % | 25.20 | 24.15 | 23.72 | 24.18 | 1.82 | 0.86 | 0.56 | 0.57 |
Milk solids yields | ||||||||
Fat, kg/d | 0.46 | 0.52 | 0.51 | 0.49 | 0.07 | 0.36 | 0.41 | 0.14 |
Protein, kg/d | 0.32 | 0.35 | 0.37 | 0.34 | 0.03 | 0.09 | 0.10 | 0.05 |
Lactose, kg/d | 0.36 b | 0.40 a | 0.41 a | 0.38 ab | 0.04 | 0.03 | 0.11 | 0.01 |
Item | Capsicum oleoresin | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|
CON | 10CAP | 20CAP | 40CAP | T | L | Q | ||
Insulin, mIU/L | 7.01 | 6.31 | 7.93 | 6.40 | 1.33 | 0.81 | 0.97 | 0.76 |
Glucose, mmol/mL | 4.19 b | 5.58 ab | 6.31 a | 5.03 ab | 0.44 | 0.04 | 0.11 | 0.01 |
NEFA, μmol/L | 170.89 | 246.84 | 227.85 | 273.73 | 57.68 | 0.52 | 0.54 | 0.25 |
Cortisol, pg/mL | 19.41 | 23.37 | 25.16 | 21.20 | 1.48 | 0.12 | 0.32 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, Z.; Zhao, J.; Zhang, X.; Gao, S.; Chen, C.; Niu, K.; Nie, P.; Yao, Z.; Wei, K.; Riaz, U.; et al. Effects of Capsicum oleoresin Inclusion on Rumen Fermentation and Lactation Performance in Buffaloes (Bubalus bubalis) during Summer: In Vitro and In Vivo Studies. Fermentation 2023, 9, 232. https://doi.org/10.3390/fermentation9030232
An Z, Zhao J, Zhang X, Gao S, Chen C, Niu K, Nie P, Yao Z, Wei K, Riaz U, et al. Effects of Capsicum oleoresin Inclusion on Rumen Fermentation and Lactation Performance in Buffaloes (Bubalus bubalis) during Summer: In Vitro and In Vivo Studies. Fermentation. 2023; 9(3):232. https://doi.org/10.3390/fermentation9030232
Chicago/Turabian StyleAn, Zhigao, Junwei Zhao, Xinxin Zhang, Shanshan Gao, Chao Chen, Kaifeng Niu, Pei Nie, Zhiqiu Yao, Ke Wei, Umair Riaz, and et al. 2023. "Effects of Capsicum oleoresin Inclusion on Rumen Fermentation and Lactation Performance in Buffaloes (Bubalus bubalis) during Summer: In Vitro and In Vivo Studies" Fermentation 9, no. 3: 232. https://doi.org/10.3390/fermentation9030232
APA StyleAn, Z., Zhao, J., Zhang, X., Gao, S., Chen, C., Niu, K., Nie, P., Yao, Z., Wei, K., Riaz, U., & Yang, L. (2023). Effects of Capsicum oleoresin Inclusion on Rumen Fermentation and Lactation Performance in Buffaloes (Bubalus bubalis) during Summer: In Vitro and In Vivo Studies. Fermentation, 9(3), 232. https://doi.org/10.3390/fermentation9030232