Effect of a Combination of Ultrasonic Germination and Fermentation Processes on the Antioxidant Activity and γ-Aminobutyric Acid Content of Food Ingredients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- -
- grain of soft spring white wheat (Triticum aestivum L.), variety Zauralochka, harvested in 2022, grown in the Ural region, Russia. The protein content was 12.5 ± 2.1 g/100 g in terms of moisture content [31];
- -
- grain of soft red spring wheat (Triticum aestivum L.), variety Erythrosperium, 2022, grown in the Ural region, Russia. The protein content was 15.5 ± 1.8 g/100 g in terms of moisture content [32];
- -
- spring barley grain (Hordeum vulgare L.), variety Chelyabinets 1, crop 2022, grown in the Urals region, Russia. The protein content was 13.2 ± 1.9 g/100 g in terms of moisture content [33].
- A.
- food ingredient obtained by milling the whole grain of soft spring white wheat of the Zauralochka variety before germination and fermentation;
- B.
- food ingredient obtained by milling whole red soft spring wheat of the variety Erythrosperium before germination and fermentation;
- C.
- food ingredient obtained by milling whole spring barley Chelyabinets 1 before germination and fermentation;
- D.
- food ingredient obtained by milling germinated and fermented whole spring white wheat grain of the Zauralochka variety;
- E.
- food ingredient obtained by milling the milled red germinated and fermented grain soft spring wheat of the Erythrosperium variety according to the above-mentioned technology;
- F.
- food ingredient obtained by milling germinated and fermented according to the above-described technology spring barley grain variety Chelyabinets 1.
2.2. Obtaining Food Ingredients from Sprouted Cereals
2.2.1. Ultrasonic Treatment of Crops
2.2.2. Crop Germination
2.2.3. Cereal Fermentation
2.2.4. Drying and Grinding Sprouted Cereals
2.2.5. Particle Size Analysis
2.2.6. Physical and Chemical Analysis of Food Ingredients
2.2.7. Antioxidant Activity (DPPH)
2.2.8. Total Flavonoid Content
2.2.9. Determination of GABA
2.2.10. Assimilability Criterion and Growth of Infusoria in Nutrient Media
2.2.11. Statistical Analyses
3. Results and Discussion
3.1. Average Particle Size Distribution of Food Ingredient Samples
3.2. Physico-Chemical Analysis of Food Ingredients
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bressiani, J.; Oro, T.; Santetti, G.S.; Almeida, J.L.; Bertolin, T.E.; Gómez, M.; Gutkoski, L.C. Properties of whole grain wheat flour and performance in bakery products as a function of particle size. J. Cereal Sci. 2017, 75, 269–277. [Google Scholar] [CrossRef]
- Franco, W.; Evert, K.; Van Nieuwenhove, C. Quinoa Flour, the Germinated Grain Flour, and Sourdough as Alternative Sources for Gluten-Free Bread Formulation: Impact on Chemical, Textural and Sensorial Characteristics. Fermentation 2021, 7, 115. [Google Scholar] [CrossRef]
- Singh, A.K.; Rehal, J.; Kaur, A.; Jyot, G. Enhancement of Attributes of Cereals by Germination and Fermentation: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1575–1589. [Google Scholar] [CrossRef]
- Lloyd, B.J.; Siebenmorgen, T.J.; Beers, K.W. Effects of commercial processing on antioxidants in rice bran. Cereal Chem. 2000, 77, 551–555. [Google Scholar] [CrossRef] [Green Version]
- Rozan, P.; Kuo, Y.H.; Lambein, F. Free amino acids present in commercially available seedlings sold for human consumption. A potential hazard for consumers. J. Agric. Food Chem. 2000, 48, 716–723. [Google Scholar] [CrossRef]
- Park, H.; Puligundla, P.; Mok, C. Cold plasma decontamination of brown rice grains: Impact on biochemical and sensory qualities of their corresponding seedlings and aqueous tea infusions. LWT 2020, 131, 109508. [Google Scholar] [CrossRef]
- Peñaranda, J.D.; Bueno, M.; Álvarez, F.; Pérez, P.D.; Perezábad, L. Sprouted grains in product development. Case studies of sprouted wheat for baking flours and fermented beverages. Int. J. Gastron. Food Sci. 2021, 25, 100375. [Google Scholar] [CrossRef]
- Nelson, K.; Stojanovska, L.; Vasiljevic, T.; Mathai, M. Germinated grains: A superior whole grain functional food? Can. J. Physiol. Pharmacol. 2013, 91, 429–441. [Google Scholar] [CrossRef]
- Hübner, F.; O’Neil, T.; Cashman, K.D.; Arendt, E.K. The influence of germination conditions on beta-glucan, dietary fibre and phytate during the germination of oats and barley. Eur. Food Res. Technol. 2010, 231, 27–35. [Google Scholar] [CrossRef]
- Tian, B.; Xie, B.; Shi, J.; Wu, J.; Cai, Y.; Xu, T.; Xue, S.; Deng, Q. Physicochemical changes of oat seeds during germination. Food Chem. 2010, 119, 1195–1200. [Google Scholar] [CrossRef]
- Owolabi, I.O.; Saibandith, B.; Wichienchot, S.; Yupanqui, C.T. Nutritional compositions, polyphenolic profiles and antioxidant properties of pigmented rice varieties and adlay seeds enhanced by soaking and germination conditions. Funct. Foods Health Dis. 2018, 8, 561–578. [Google Scholar] [CrossRef]
- Łątka, K.; Jończyk, J.; Bajda, M. γ-Aminobutyric acid transporters as relevant biological target: Their function, structure, inhibitors and role in the therapy of different diseases. Int. J. Biol. Macromol. 2020, 158, 750–772. [Google Scholar] [CrossRef]
- Ding, J.; Johnson, J.; Chu, Y.F.; Feng, H. Enhancement of γ-aminobutyric acid, avenanthramides, and other health-promoting metabolites in germinating oats (Avena sativa L.) treated with and without power ultrasound. Food Chem. 2019, 283, 239–247. [Google Scholar] [CrossRef]
- Platel, K.; Eipeson, S.W.; Srinivasan, K. Bioaccessible mineral content of malted finger millet (Eleusine coracana), wheat (Triticum aestivum), and barley (Hordeum vulgare). J. Agric. Food Chem. 2010, 58, 8100–8103. [Google Scholar] [CrossRef]
- Koehler, P.; Hartmann, G.; Wieser, H.; Rychlik, M. Changes of folates, dietary fiber, and proteins in wheat as affected by germination. J. Agric. Food Chem. 2007, 55, 4678–4683. [Google Scholar] [CrossRef]
- Hung, P.V.; Hatcher, D.W.; Barker, W. Phenolic acid composition of sprouted wheats by ultra-performance liquid chromatography (UPLC) and their antioxidant activities. Food Chem. 2011, 126, 1896–1901. [Google Scholar] [CrossRef]
- Ashokkumar, M. Applications of ultrasound in food and bioprocessing. Ultrason. Sonochem. 2015, 25, 17–23. [Google Scholar] [CrossRef]
- Boukroufa, M.; Boutekedjiret, C.; Chemat, F. Development of a green procedure of citrus fruits waste processing to recover carotenoids. Resour.-Effic. Technol. 2017, 3, 252–262. [Google Scholar] [CrossRef]
- Naumenko, N.; Potoroko, I.; Kalinina, I. Stimulation of antioxidant activity and γ-aminobutyric acid synthesis in germinated wheat grain Triticum aestivum L. by ultrasound: Increasing the nutritional value of the product. Ultrason. Sonochem. 2022, 86, 106000. [Google Scholar] [CrossRef]
- Yang, H.; Gao, J.; Yang, A.; Chen, H. The ultrasound-treated soybean seeds improve edibility and nutritional quality of soybean sprouts. Food Res. Int. 2015, 77, 704–710. [Google Scholar] [CrossRef]
- Rodriguez, O.; Gomes, W.; Rodrigues, S.; Fernandes, F.A.N. Effect of acoustically assisted treatments on vitamins, antioxidant activity, organic acids and drying kinetics of pineapple. Ultrason. Sonochem. 2016, 35, 92–102. [Google Scholar] [CrossRef]
- Yu, J.; Engeseth, N.J.; Feng, H. High intensity ultrasound as an abiotic elicitor—Effects on antioxidant capacity and overall quality of romaine lettuce. Food Bioprocess Technol. 2016, 9, 262–273. [Google Scholar] [CrossRef]
- Ueno, H. Enzymatic and structural aspects on glutamate decarboxylase. J. Mol. Catal. B Enzym. 2000, 10, 67–79. [Google Scholar] [CrossRef]
- Soghomonian, J.J.; David, L.M. Two isoforms of glutamate decarboxylase: Why? Trends Pharmacol. Sci. 1998, 19, 500–505. [Google Scholar] [CrossRef]
- Lin, S.D.; Jeng, L.M.; Ching, A.H. Bioactive components and antioxidant properties of γ-aminobutyric acid (GABA) tea leaves. LWT-Food Sci. Technol. 2012, 46, 64–70. [Google Scholar] [CrossRef]
- Buzzi, A.; Chikhladze, M.; Falcicchia, C.; Paradiso, B.; Lanza, G.; Soukupova, M.; Marti, M.; Morari, M.; Franceschetti, S.; Simonato, M. Loss of cortical GABA terminals in Unverricht Lundborg disease. Neurobiol. Dis. 2012, 47, 216–224. [Google Scholar] [CrossRef]
- Sun, X.; Wang, J.; Li, C.; Zheng, M.; Zhang, Q.; Xiang, W.; Tang, J. The use of γ-aminobutyric acid-producing saccharomyces cerevisiae SC125 for functional fermented beverage production from apple juice. Foods 2022, 11, 1202. [Google Scholar] [CrossRef]
- Ly, D.; Mayrhofer, S.; Yogeswara, I.B.A.; Nguyen, T.-H.; Domig, K.J. Identification, classification and screening for γ-amino-butyric acid production in lactic acid bacteria from Cambodian fermented foods. Biomolecules 2019, 9, 768. [Google Scholar] [CrossRef] [Green Version]
- Park, K.B.; Oh, S.H. Production of yogurt with enhanced levels of gamma-aminobutyric acid and valuable nutrients using lactic acid bacteria and germinated soybean extract. Bioresour. Technol. 2007, 98, 1675–1679. [Google Scholar] [CrossRef]
- Han, M.H.; Yang, J.M.; Joo, Y.C.; Moon, G.S. Production of functional fermented soymilk by γ-aminobutyric acid producing lactic acid bacteria. Curr. Top. Lact. Acid Bact. Probiotics 2019, 5, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Specification of Wheat Variety Zauralochka. Available online: https://www.kurganniish.ru/node/63 (accessed on 13 February 2023).
- Specification of Wheat Variety Erythrosperium. Available online: https://glavagronom.ru/base/seeds/zernovie-pshenica-myagkaya-yarovaya-eritrospermum-59-chelyabinskiy-niish-9104038 (accessed on 13 February 2023).
- Specification of Barley Variety Chelyabinets 1. Available online: https://xn--e1agakk0a2aj.xn--p1ai/sorta-selektsii/sorta-yachmenya/106-chelyabinets-1 (accessed on 13 February 2023).
- Komyshev, E.; Genaev, M.; Afonnikov, D. Evaluation of the SeedCounter, A Mobile Application for Grain Phenotyping. Front. Plant Sci. 2016, 7, 1990. [Google Scholar] [CrossRef] [Green Version]
- Krasulya, O.; Bogush, V.; Trishina, V.; Potoroko, I.; Khmelev, S.; Sivashanmugamd, P.; Anandane, S. Impact of acoustic cavitation on food emulsions. Ultrason. Sonochem. 2016, 30, 98–102. [Google Scholar] [CrossRef]
- Naumenko, N.; Potoroko, I.; Kalinina, I.; Naumenko, E.; Ivanisova, E. The Effect of Ultrasonic Water Treatment on the Change in the Microstructure of Wheat Grain, Dough, and Wheat Flour Bread. Int. J. Food Sci. 2022, 11, 1986438. [Google Scholar] [CrossRef]
- Ashokkumar, M.; Lee, J.; Kentish, S.; Grieser, F. Bubbles in an acoustic field: An overview. Ultrason. Sonochem. 2007, 14, 470–475. [Google Scholar] [CrossRef]
- Khmelev, V.N.; Lebedev, A.N.; Khmelev, M.V. Ultrasonic drying and pre sowing treatment of seeds, International Workshop and Tutorials on Electron Devices and Materials, EDM. In Proceedings of the 7th Annual International Workshop and Tutorials on Electron Devices and Materials 2006, EDM, EDM—Proceedings, Novosibirsk, Russia, 27 February–2 March 2006; pp. 251–253. [Google Scholar]
- Kalinina, I.; Fatkullin, R.; Naumenko, N.; Ruskina, A.; Popova, N.; Naumenko, E. Increasing the Efficiency of Taxifolin En-capsulation in Saccharomyces cerevisiae Yeast Cells Based on Ultrasonic Microstructuring. Fermentation 2022, 8, 378. [Google Scholar] [CrossRef]
- Kwon, H.-Y.; Choi, J.-S.; Kim, S.-J.; Kim, E.-M.; Uhm, J.-H.; Kim, B.-K.; Lee, J.-Y.; Kim, Y.-D.; Hwang, K.-T. Optimization of Solid-Phase Lactobacillus Fermentation Conditions to Increase γ-Aminobutyric Acid (GABA) Content in Selected Substrates. Fermentation 2023, 9, 22. [Google Scholar] [CrossRef]
- Wang, N.; Hou, G.G.; Kweon, M.; Lee, B. Effects of particle size on the properties of whole-grain soft wheat flour and its cracker baking performance. J. Cereal Sci. 2016, 69, 187–193. [Google Scholar] [CrossRef]
- AACC International. 2010 AACC International Approved Methods of Analysis, 11th ed.; AACC International: St. Paul, MN, USA, 2010. [Google Scholar]
- Noort, M.W.; van Haaster, D.; Hemery, Y.; Schols, H.A.; Hamer, R.J. Hamer the effect of particle size of wheat bran fractions on bread quality—Evidence for fibre–protein interactions. J. Cereal Sci. 2010, 52, 59–64. [Google Scholar] [CrossRef]
- Karshenas, M.; Goli, M.; Zamindar, N. The effect of replacing egg yolk with sesame–peanut defatted meal milk on the physicochemical, colorimetry, and rheological properties of low-cholesterol mayonnaise. Food Sci. Nutr. 2018, 6, 824. [Google Scholar] [CrossRef]
- Benam, N.S.; Goli, M.; Seyedain Ardebili, S.M.; VAezshoushtari, N. The quality characteristics of dough and toast bread prepared with wheat flour containing different levels of Portulaca oleracea leaf powder. Food Sci. Technol Camp. 2022, 42, e60820. [Google Scholar] [CrossRef]
- Shafii, Z.A.; Basri, M.; Malek, E.A.; Ismail, M. Phytochemical and antioxidant properties of Manilkara zapota (L.) Proen fruit extracts and its formulations for cosmceuetical application. Asian J. Plant Sci. Res. 2017, 7, 29–41. [Google Scholar]
- Rossetti, V.; Lombard, A. Determination of glutamate decarboxylase by high performance liquid chromatography. J. Chromatogr. 1996, 681, 63–67. [Google Scholar] [CrossRef] [PubMed]
- Bai, Q.Y.; Chai, M.Q.; Gu, Z.X.; Cao, X.H.; Li, Y.; Liu, K.L. Effects of components in culture medium on glutamate decarboxylase activity and γ-aminobutyric acid accumulation in foxtail millet (Setaria italica L.) during germination. Food Chem. 2009, 116, 152–157. [Google Scholar] [CrossRef]
- Cheremnykh, E.G.; Simbireva, E.I. Ciliates taste food. Chem. Life 2009, 1, 28–31. [Google Scholar]
- Assaad, H.I.; Zhou, L.; Carroll, R.J.; Wu, G. Rapid publication-ready MS-Word tables 597 for one-way ANOVA. SpringerPlus 2014, 3, 474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elkhalifa, A.E.O.; Bernhardt, R. Some physicochemical properties of flour from germinated sorghum grain. J. Food Sci. Technol. 2013, 50, 186–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knill, C.; Kennedy, J.F. Rye: Production, chemistry and technology (2nd edition). Carbohydr. Polym. 2002, 49, 515–516. [Google Scholar] [CrossRef]
- Warechowska, M.; Markowska, A.; Warechowski, J.; Miś, A.; Nawrocka, A. Effect of tempering moisture of wheat on grinding energy, middlings and flour size distribution, and gluten and dough mixing properties. J. Cereal Sci. 2016, 69, 306–312. [Google Scholar] [CrossRef]
- Beecher, B.A.; Bettge, E.; Smidansky, E.; Giroux, M.J. Expression of wild type pin B sequence in transgenic wheat complements a hard phenotype. Theoret. Appl. Genet. 2002, 105, 870–877. [Google Scholar] [CrossRef]
- Hadnadev, M.; Hadnadev, T.D.; Simurina, O.; Filipcev, B. Empirical and fundamental rheological properties of wheat flour dough as affected by different climatic conditions. J. Agric. Sci. Technol. 2013, 15, 1381–1391. [Google Scholar]
- Sullivan, B.; Dahle, L.K.; Schipke, J.H. The oxidation of wheat flour. Cereal Chem. 1962, 40, 515–531. [Google Scholar]
- Rosell, C.M.; Wang, J.; Aja, S.; Bean, S.; Lookhart, G. Wheat flour proteins as affected by transglutaminase and glucose oxidase. Cereal Chem. 2003, 80, 52–55. [Google Scholar] [CrossRef]
- Vaher, M.; Matso, K.; Levandi, T.; Helmja, K.; Kaljurand, M. Phenolic compounds and the antioxidant activity of the bran, flour and whole grain of different wheat varieties. Procedia Chem. 2010, 2, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Das, D.; Goyal, A. Antioxidant activity and γ-aminobutyric acid (GABA) producing ability of probiotic Lactobacillus plantarum DM5 isolated from Marcha of Sikkim. LWT-Food Sci. Technol. 2015, 61, 263–268. [Google Scholar] [CrossRef]
- Rayavarapu, B.; Tallapragada, P.; Usha, M.S. Statistical optimization of γ-aminobutyric acid production by response surface methodology and artificial neural network models using Lactobacillus fermentum isolated from palm wine. Biocatal. Agric. Biotechnol. 2019, 22, 101362. [Google Scholar] [CrossRef]
- Li, H.; Qiu, T.; Huang, G.; Cao, Y. Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation. Microb. Cell Fact. 2010, 9, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagaoka, H. Treatment of germinated wheat to increase levels of GABA and IP6 catalyzed by endogenous enzymes. Biotechnol. Prog. 2005, 21, 405–410. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Mehmood, A.; Battino, M.; Xiao, J.; Chen, X. Enrichment of gamma-aminobutyric acid in foods: From conventional methods to innovative technologies. Food Res. Int. 2022, 162, 111801. [Google Scholar] [CrossRef]
- Park, J.K.; Jin, S.H.; Ko, J.H.; Baek, N.I.; Choi, S.Y.; Cho, S.W. Influence of ginsenosided on the kainic acid-induced seizure activity in immature rats. J. Biochem. Mol. Biol. 1999, 32, 339–344. [Google Scholar]
- Mody, I.; Dekoninck, Y.; Otis, T.S.; Soltesz, I. Bridging the cleft at GABA synapses in the brain. Trends Neurosci. 1994, 17, 517–525. [Google Scholar] [CrossRef]
- Radhika, D.; Bajpai, V.K.; Baek, K.H. Production of GABA (γ-aminobutyric acid) by microorganisms: A review. Braz. J. Microbiol. 2012, 43, 1230–1241. [Google Scholar]
Indicator Name | A * | B * | C * | D * | E * | F * |
---|---|---|---|---|---|---|
d(0.1) (μm) | 22.00 a | 15.56 b | 18.50 b | 37.00 a | 13.08 a | 13.08 c |
d(0.5) (μm) | 296.00 a | 248.91 c | 296.00 c | 209.30 a | 148.00 a | 124.50 b |
d(0.9) (μm) | 497.80 a | 497.80 b | 497.81 c | 497.82 a | 497.83 a | 418.60 b |
Name of Indicator | A * | B * | C * | D * | E * | F * |
---|---|---|---|---|---|---|
Crude protein (% d.b.) | 11.6 ± 0.3 a | 14.8 ± 0.3 b | 13.2 ± 0.3 a | 13.9 ± 0.3 b | 16.3 ± 0.3 b | 13.9 ± 0.3 b |
Lipids (% d.b.) | 1.4 ± 0.2 bc | 1.8 ± 0.2 b | 1.9 ± 0.2 c | 1.9 ± 0.2 a | 2.1 ± 0.2 b | 2.3 ± 0.2 b |
Mass fraction of starch, % | 60.3 ± 0.6 a | 58.9 ± 0.6 a | 61.6 ± 0.5 a | 41.6 ± 0.5 a | 42.4 ± 0.5 c | 41.8 ± 0.5 c |
Mass fraction of mono- and disaccharides, % | 1.2 ± 0.4 c | 1.9 ± 0.4 a | 1.6 ± 0.4 c | 3.6 ± 0.4 bc | 4.2 ± 0.4 c | 4.6 ± 0.4 bc |
Phytic acid content, g/100 g dry matter | 2.3 ± 0.2 a | 2.5 ± 0.2 a | 2.8 ± 0.2 a | 1.7 ± 0.2 a | 1.4 ± 0.2 a | 1.2 ± 0.2 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naumenko, N.; Fatkullin, R.; Popova, N.; Ruskina, A.; Kalinina, I.; Morozov, R.; Avdin, V.V.; Antonova, A.; Vasileva, E. Effect of a Combination of Ultrasonic Germination and Fermentation Processes on the Antioxidant Activity and γ-Aminobutyric Acid Content of Food Ingredients. Fermentation 2023, 9, 246. https://doi.org/10.3390/fermentation9030246
Naumenko N, Fatkullin R, Popova N, Ruskina A, Kalinina I, Morozov R, Avdin VV, Antonova A, Vasileva E. Effect of a Combination of Ultrasonic Germination and Fermentation Processes on the Antioxidant Activity and γ-Aminobutyric Acid Content of Food Ingredients. Fermentation. 2023; 9(3):246. https://doi.org/10.3390/fermentation9030246
Chicago/Turabian StyleNaumenko, Natalya, Rinat Fatkullin, Natalia Popova, Alena Ruskina, Irina Kalinina, Roman Morozov, Vyacheslav V. Avdin, Anastasia Antonova, and Elizaveta Vasileva. 2023. "Effect of a Combination of Ultrasonic Germination and Fermentation Processes on the Antioxidant Activity and γ-Aminobutyric Acid Content of Food Ingredients" Fermentation 9, no. 3: 246. https://doi.org/10.3390/fermentation9030246
APA StyleNaumenko, N., Fatkullin, R., Popova, N., Ruskina, A., Kalinina, I., Morozov, R., Avdin, V. V., Antonova, A., & Vasileva, E. (2023). Effect of a Combination of Ultrasonic Germination and Fermentation Processes on the Antioxidant Activity and γ-Aminobutyric Acid Content of Food Ingredients. Fermentation, 9(3), 246. https://doi.org/10.3390/fermentation9030246