Recent Progress in Microalgae-Based Technologies for Industrial Wastewater Treatment
Abstract
:1. Introduction
1.1. Classification of Algae
1.2. Major Phyla/Class Characteristics of Commercial Microalgal Genera
1.2.1. Chlorophyta
1.2.2. Haptophyta
1.2.3. Stramenopiles
1.3. Microalgae and Their Organization
Difference between Micro- and Macro Algae
1.4. Microalgae Cultivation
2. Utilization of Microalgae for Wastewater Treatment
2.1. Distillery Waste
System | Conditions | COD Removal (%) | Productivity or Biomass Conc. (g/L) | BOD Removal (%) | References |
---|---|---|---|---|---|
Stirred tank batch reactor | HRT = 30 h | 101.1 mg/L/d | 36.2 | [72] | |
Bubbled column photobioreactor | T = 30 °C, I = 1 k Lux | 16 | 0.155 g/L/h | [73] | |
Cycle tubular photobioreactor | Flow = 110 mL/min, I = 3 k Lux, T = 27 °C, pH = 6 | 3.5–3.7 | 0.61 g/L/d | 72–76 | [74] |
Algal pond | 0.14 kg/m3/pond/d, HRT = 10.9 d, DO = 1.3–1.7 mg/L, T = 27–32 °C | 98.2 | 0.01/d | 98.8 | [75] |
Semi batch photoreactors | pH = 7, Aeration = 0.1 L/min, COD = 4 g/d, T = 27 °C | >4 | 92 | [76] |
2.2. Heavy Metals
Insight into the Mechanism
2.3. Textile Waste
Dye | Microalgae | Concentrations (mg/L) | Conditions | Removal (%) | COD & BOD | Q (mg/g) | Isotherm | References |
---|---|---|---|---|---|---|---|---|
Malachite green | Chlorella sp. | 2.0–20.0 | T = 25 °C, pH = 3.0–11.0, | 9.45–33.7 | Pseudo-second-rate model | [102] | ||
Methylene blue | Chlorella pyrenoidosa | 10–60 | Dry Biomass | BOD = 87% | 7.2–29.2 | Langmuir and Freundlich Kinetics Pseudo-second-order | [103] | |
Methylene blue | Chlorella pyrenoidosa | 10–60 | Wet Biomass | BOD = 80% | 5.6–18.24 | Langmuir and Freundlich Kinetics Pseudo-second order | ||
Remazol Black B (RB) | Chlorella vulgaris | 800 | T = 39 °C, pH = 2 | 419.5 | Freundlich, Langmuir, Redlich–Peterson, and Koble–Corrigan | [104] | ||
Remazol Red (RR) | Chlorella vulgaris | 200 | T = 35 °C, pH = 2 | 52.3 | ||||
Remazol Golden Yellow RNL (RGY)) | Chlorella vulgaris | 200 | T = 25 °C, pH = 2 | 33.5 | ||||
Lanaset Red 2GA | Chlorella vulgaris | 0–60 | 44 | [105] | ||||
(Supranol Red 3BW | Chlorella vulgaris | 0–60 | 44 | |||||
Supranol Red 3BW | Chlorella vulgaris | 20 | 33 | COD = 62% | Langmuir and Freundlich models | [106] | ||
Methylene blue | Microspora sp. | 20–2500 | pH = 7, Dose = 7 g/L | 94.8 | 139.11 | [107] | ||
Malachite green | Pithophora sp. | 20–100 | Raw Algae | 64.4 | Freundlich & Langmuir Isotherm Model | [108] | ||
Malachite green | Pithophora sp. | 20–100 | Thermally Activated @ 300 °C for 50 min | 117.6 | Freundlich & Langmuir Isotherm Model | |||
Methylene blue | Scenedesmus dimorphus | 1–5 | Raw Biomass | 6.0 | Pseudo Second-Order Kinetics | [99] | ||
Methylene blue | Scenedesmus dimorphus | 1–5 | Defatted Biomass | 7.73 | ||||
Methylene blue | Scenedesmus dimorphus | 1–5 | Acid-Treated Biomass | 7.8 | ||||
Methylene blue | Spirulina platensis | 30–200 | T = 5 min, Biochar, 0.2 g/100 mL, pH = 7 | 85.2 | 57.80 | Freundlich model Pseudo-second-order model | [109] | |
Methylene blue | Spirulina platensis | 30–200 | T = 5 min, Raw Biomass, pH = 7 | 86.4 | 4.17 | |||
Azo dye | Spirogyra sp. | 15 | T = 30 °C, pH = 7 | 35.3–64 | 5.8 | Langmuir model | [110] | |
Reactive Yellow 22 | Spirogyra sp. | 100 | t = 12 h | 400 | [111] | |||
Synazol Red dye | Aspergillus Niger fungus | 15 | pH = 3, T = 30 °C, Dose = 8 g/L, t = 18 h | 88 | [112] | |||
Spirogyra sp. | 85 | |||||||
Methylene blue | Wet torrefied Chlorella sp. | 200 | Dose = 1 g/L, t = 120 h, pH = 3.7 | 91 | 113.5 | Langmuir model | [113] | |
Congo red | Dose = 2 gm/L, t = 4 h, pH = 3.7 | 90 | 164.3 |
2.4. Emerging Pollutant
2.4.1. Pharmaceuticals
2.4.2. Non-Pharmaceuticals
3. Parametric Evaluation of Bioremediation and Biosorption
3.1. Temperature
3.2. Light
3.3. Nutrients
3.3.1. Carbon
3.3.2. Nitrogen
3.3.3. Other Nutrients
3.3.4. PH
3.4. Nutrient Recovery in the Form of Valuable Biomass
3.4.1. Nitrogen Recovery
3.4.2. Phosphorus Recovery
3.4.3. Energy Savings
3.5. Comparative Analysis of Microalgae Remediation and Other Processes
4. Conclusions and Perspectives
- Most of the reported research focuses on the pilot or lab scale under strictly controlled conditions. They did not operate in a scaled-up system treating real wastewater that typically exposes microalgae to adverse conditions, including the weather condition and variable toxins concentration. This is because both conditions can change the effectiveness of toxins removal.
- Detailed metabolic engineering studies are needed to measure the actual capabilities of microalgae for biotechnology. The information can also guide in increasing the probability of modifying the microalgae cells for the improvement and enhancement of microalgae’s ability to survive under realistic conditions.
- The difficulty in the separation of microalgae biomass—microalgae harvesting—from the treated effluent after the bioremediation. The treated wastewater must be free from the microalgae biomass.
- Economic feasibility must be comprehensively assessed and compared with existing traditional processes. Very few economic studies have been conducted to elaborate the microalgae-based effluent treatment process.
- A large-scale wastewater treatment plant aided with microalgae technology needs very sensitive and complicated operation monitoring and control because the process is highly sensitive to pH, temperature, BOD, COD, and DO. This challenge should be addressed by adopting a new advanced monitoring and controlling system.
- Microalgal-based processes might be restricted to an elevated concentration of toxins such as phenolic compounds and many other organic contaminants.
- Melanoidins in distillery effluent can reduce light penetration, slowing photosynthesis and growth.
- Antimicrobial agents and antioxidants inhibit the eradication process.
- Effluent that contains a low concentration of organic toxins can be effectively removed by bioremediation.
- Immobilization of algae also aids in overcoming toxic load or shock load.
- Decolorizing effluent can effectively increase the exposed area and light intensity.
- The optimal parametric condition should be incorporated to deal with any toxins.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sathya, R.; Arasu, M.V.; Al-Dhabi, N.A.; Vijayaraghavan, P.; Ilavenil, S.; Rejiniemon, T. Towards sustainable wastewater treatment by biological methods—A challenges and advantages of recent technologies. Urban Clim. 2023, 47, 101378. [Google Scholar] [CrossRef]
- Rasul, G. Food, water, and energy security in South Asia: A nexus perspective from the Hindu Kush Himalayan region☆. Environ. Sci. Policy 2014, 39, 35–48. [Google Scholar] [CrossRef] [Green Version]
- Ye, M.; Li, Y.Y. Methanogenic treatment of dairy wastewater: A review of current obstacles and new technological perspectives. Sci. Total Environ. 2023, 866, 161447. [Google Scholar] [CrossRef] [PubMed]
- Bhuyan, M.S. Ecological risks associated with seaweed cultivation and identifying risk minimization approaches. Algal Res. 2023, 69, 102967. [Google Scholar] [CrossRef]
- Briffa, J.; Sinagra, E.; Blundell, R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 2020, 6, e04691. [Google Scholar] [CrossRef]
- Méndez, E.; González-Fuentes, M.A.; Rebollar-Perez, G.; Méndez-Albores, A.; Torres, E. Emerging pollutant treatments in wastewater: Cases of antibiotics and hormones. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2017, 52, 235–253. [Google Scholar] [CrossRef]
- de la Paz, A.; Salinas, N.; Matamoros, V. Unravelling the role of vegetation in the attenuation of contaminants of emerging concern from wetland systems: Preliminary results from column studies. Water Res. 2019, 166, 115031. [Google Scholar] [CrossRef]
- Sophia, A.C.; Lima, E.C. Removal of emerging contaminants from the environment by adsorption. Ecotoxicol. Environ. Saf. 2018, 150, 1–17. [Google Scholar] [CrossRef]
- Montes-Grajales, D.; Fennix-Agudelo, M.; Miranda-Castro, W. Occurrence of personal care products as emerging chemicals of concern in water resources: A review. Sci. Total Environ. 2017, 595, 601–614. [Google Scholar] [CrossRef]
- Peña-Guzmán, C.; Ulloa-Sánchez, S.; Mora, K.; Helena-Bustos, R.; Lopez-Barrera, E.; Alvarez, J.; Rodriguez-Pinzón, M. Emerging pollutants in the urban water cycle in Latin America: A review of the current literature. J. Environ. Manag. 2019, 237, 408–423. [Google Scholar] [CrossRef]
- Crini, G.; Lichtfouse, E.; Wilson, L.D.; Morin-Crini, N. Adsorption-Oriented Processes Using Conventional and Non-Conventional Adsorbents for Wastewater Treatment; Springer: Cham, Switzerland, 2018; pp. 23–71. [Google Scholar] [CrossRef]
- di Iaconi, C.; del Moro, G.; de Sanctis, M.; Rossetti, S. A chemically enhanced biological process for lowering operative costs and solid residues of industrial recalcitrant wastewater treatment. Water Res. 2010, 44, 3635–3644. [Google Scholar] [CrossRef]
- Gunatilake, S.K. Methods of Removing Heavy Metals from Industrial Wastewater. J. Multidiscip. Eng. Sci. Stud. 2015, 1. Available online: http://www.jmess.org/wp-content/uploads/2015/11/JMESSP13420004.pdf (accessed on 20 January 2023).
- Rasheed, T.; Bilal, M.; Nabeel, F.; Adeel, M.; Iqbal, H.M.N. Environmentally-related contaminants of high concern: Potential sources and analytical modalities for detection, quantification, and treatment. Environ. Int. 2019, 122, 52–66. [Google Scholar] [CrossRef]
- di Iaconi, C.; Lopez, A.; Ramadori, R.; di Pinto, A.C.; Passino, R. Combined chemical and biological degradation of tannery wastewater by a periodic submerged filter (SBBR). Water Res. 2002, 36, 2205–2214. [Google Scholar] [CrossRef]
- Abdelfattah, A.; Ali, S.S.; Ramadan, H.; El-Aswar, E.I.; Eltawab, R.; Ho, S.-H.; Elsamahy, T.; Li, S.; El-Sheekh, M.M.; Schagerl, M.; et al. Microalgae-based wastewater treatment: Mechanisms, challenges, recent advances, and future prospects. Environ. Sci. Ecotechnol. 2023, 13, 100205. [Google Scholar] [CrossRef]
- Hosseinzadeh, A.; Zhou, J.L.; Li, X.; Afsari, M.; Altaee, A. Techno-economic and environmental impact assessment of hydrogen production processes using bio-waste as renewable energy resource. Renew. Sustain. Energy Rev. 2022, 156, 111991. [Google Scholar] [CrossRef]
- Kharayat, Y. Distillery wastewater: Bioremediation approaches. J. Integr. Environ. Sci. 2012, 9, 69–91. [Google Scholar] [CrossRef]
- Gadd, G.M. Biosorption: Critical review of scientific rationale, environmental importance and significance for pollution treatment. J. Chem. Technol. Biotechnol. Int. Res. Process Environ. Clean Technol. 2009, 84, 13–28. [Google Scholar] [CrossRef]
- Nagarajan, D.; Lee, D.J.; Varjani, S.; Lam, S.S.; Allakhverdiev, S.I.; Chang, J.S. Microalgae-based wastewater treatment—Microalgae-bacteria consortia, multi-omics approaches and algal stress response. Sci. Total Environ. 2022, 845, 157110. [Google Scholar] [CrossRef]
- Demertzioglou, M.; Genitsaris, S.; Mazaris, A.D.; Kyparissis, A.; Voutsa, D.; Kozari, A.; Kormas, K.A.; Stefanidou, N.; Katsiapi, M.; Michaloudi, E.; et al. A catastrophic change in a european protected wetland: From harmful phytoplankton blooms to fish and bird kill. Environ. Pollut. 2022, 312, 120038. [Google Scholar] [CrossRef]
- Chen, C.; Tang, T.; Shi, Q.; Zhou, Z.; Fan, J. The potential and challenge of microalgae as promising future food sources. Trends Food Sci. Technol. 2022, 126, 99–112. [Google Scholar] [CrossRef]
- Choudhary, S.; Tripathi, S.; Mohan Poluri, K. Microalgal-Based Bioenergy: Strategies, Prospects, and Sustainability. Energy Fuels 2022, 36, 14584–14612. [Google Scholar] [CrossRef]
- Lau, Z.L.; Low, S.S.; Ezeigwe, E.R.; Chew, K.W.; Chai, W.S.; Bhatnagar, A.; Yap, Y.J.; Show, P.L. A review on the diverse interactions between microalgae and nanomaterials: Growth variation, photosynthetic performance and toxicity. Bioresour. Technol. 2022, 351, 127048. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Fan, X.; Zhang, J.; Qiao, S.; Wang, X.; Zhang, X.; Miao, L.; Hou, J. A critical review on the interaction of iron-based nanoparticles with blue-green algae and their metabolites: From mechanisms to applications. Algal Res. 2022, 64, 102670. [Google Scholar] [CrossRef]
- Wei, L.; Xiaopan, S.; Heydari, F. Microalgae Classification Using Improved Metaheuristic Algorithm. Math. Probl. Eng. 2022, 2022, 3783977. [Google Scholar] [CrossRef]
- Lalucat, J.; Gomila, M.; Mulet, M.; Zaruma, A.; García-Valdés, E. Past, present and future of the boundaries of the Pseudomonas genus: Proposal of Stutzerimonas gen. Nov. Syst. Appl. Microbiol. 2022, 45, 126289. [Google Scholar] [CrossRef]
- Manning, S.R.; Perri, K.A.; Blackwell, K. Bioactive Polysaccharides from Microalgae. In Polysaccharides of Microbial Origin; Springer International Publishing: Cham, Switzerland, 2022; pp. 625–648. [Google Scholar] [CrossRef]
- Saber, A.A.; El-Refaey, A.A.; Saber, H.; Singh, P.; van Vuuren, S.J.; Cantonati, M. Cyanoprokaryotes and algae: Classification and habitats. In Handbook of Algal Biofuels; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–38. [Google Scholar] [CrossRef]
- Rothschild, L.J.; Mancinelli, R.L. Life in extreme environments. Nature 2001, 409, 1092–1101. [Google Scholar] [CrossRef] [Green Version]
- Round, F.E. The taxonomy of the Chlorophyta. Br. Phycol. Bull. 1963, 2, 224–235. [Google Scholar] [CrossRef]
- Smith, G.M. Nuclear phases and alternation of generations in the Chlorophyceae. Bot. Rev. 1938, 4, 132–139. [Google Scholar] [CrossRef]
- Voerman, S.E.; Ruseckas, A.; Turnbull, G.A.; Samuel, I.D.W.; Burdett, H.L. Red algae acclimate to low light by modifying phycobilisome composition to maintain efficient light harvesting. BMC Biol. 2022, 20, 291. [Google Scholar] [CrossRef]
- Srivastava, S.; Bhargava, A. Biological Synthesis of Nanoparticles: Algae. In Green Nanoparticles: The Future of Nanobiotechnology; Springer: Singapore, 2022; pp. 139–171. [Google Scholar] [CrossRef]
- Bai, Y.; Cao, T.; Dautermann, O.; Buschbeck, P.; Cantrell, M.B.; Chen, Y.; Lein, C.D.; Shi, X.; Ware, M.A.; Yang, F.; et al. Green diatom mutants reveal an intricate biosynthetic pathway of fucoxanthin. Proc. Natl. Acad. Sci. USA 2022, 119, e2203708119. [Google Scholar] [CrossRef]
- Malcata, F.X.; Pinto, I.S.; Guedes, A.C. (Eds.) Marine Macro- and Microalgae; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Bringloe, T.T.; Starko, S.; Wade, R.M.; Vieira, C.; Kawai, H.; De Clerck, O.; Cock, J.M.; Coelho, S.M.; Destombe, C.; Valero, M.; et al. Phylogeny and Evolution of the Brown Algae. CRC Crit. Rev. Plant Sci. 2020, 39, 281–321. [Google Scholar] [CrossRef]
- Taxonomy and Risk Classification of Algae Informing the Risk Classification of a Dynamic Taxonomic Group Ordering Information Advisory Committee. 2021. Available online: http://www.cogem.net (accessed on 20 January 2023).
- Dunmade, I.S. Sustainable Production of Value-Added Commodities from Biomass Feedstocks; Springer: Cham, Switzerland, 2020; pp. 565–577. [Google Scholar] [CrossRef]
- Camargo, J.A.; Alonso, Á. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environ. Int. 2006, 32, 831–849. [Google Scholar] [CrossRef]
- Fu, W.; Nelson, D.; Yi, Z.; Xu, M.; Khraiwesh, B.; Jijakli, K.; Chaiboonchoe, A.; Alzahmi, A.; Al-Khairy, D.; Brynjolfsson, S.; et al. Bioactive Compounds From Microalgae: Current Development and Prospects. Stud. Nat. Prod. Chem. 2017, 54, 199–225. [Google Scholar]
- You, X.; Yang, L.; Zhou, X.; Zhang, Y. Sustainability and carbon neutrality trends for microalgae-based wastewater treatment: A review. Environ. Res. 2022, 209, 112860. [Google Scholar] [CrossRef]
- Saeed, M.U.; Hussain, N.; Shahbaz, A.; Hameed, T.; Iqbal, H.M.; Bilal, M. Bioprospecting microalgae and cyanobacteria for biopharmaceutical applications. J. Basic Microbiol. 2022, 62, 1110–1124. [Google Scholar] [CrossRef]
- Barcytė, D.; Pusztai, M.; Škaloud, P.; Eliáš, M. When you Like Other Algae: Adglutina synurophila gen. et sp. nov. (Moewusinia, Chlorophyceae), a Clingy Green Microalga Associated with Synura Colonies. Protist 2022, 173, 125858. [Google Scholar] [CrossRef]
- Shukla, S.; Shukla, R.; Singh, N.; Hemansi; Saini, J.K. Next Generation Biofuels from Macroalgae: Prospects and Challenges; Springer: Singapore, 2022; pp. 55–75. [Google Scholar] [CrossRef]
- Wang, J.; Kong, F.; Wang, Y.; Ji, N.; Song, M.; Hu, Z.; Niu, Z.; Liu, C.; Wang, X.; Sun, Y.; et al. Newly recorded bloom-forming dinoflagellate Gymnodinium impudicum in Haizhou Bay, Yellow Sea, China. J. Oceanol. Limnol. 2022, 40, 2430–2445. [Google Scholar] [CrossRef]
- Chen, B.; Gu, Z.; Wu, M.; Ma, Z.; Lim, H.R.; Khoo, K.S.; Show, P.L. Advancement pathway of biochar resources from macroalgae biomass: A review. Biomass Bioenergy 2022, 167, 106650. [Google Scholar] [CrossRef]
- Saxena, R.; Rosero-Chasoy, G.; Aparicio, E.; Lara, A.; Loredo, A.; Robledo, A.; Kostas, E.T.; Rodríguez-Jasso, R.M.; Ruiz, H.A. Third Generation Biorefineries Using Micro- and Macro-Algae; Springer: Singapore, 2022; pp. 373–411. [Google Scholar] [CrossRef]
- Borics, G.; Várbíró, G.; Falucskai, J.; Végvári, Z.; T-Krasznai, E.; Görgényi, J.; B-Béres, V.; Lerf, V. A two-dimensional morphospace for cyanobacteria and microalgae: Morphological diversity, evolutionary relatedness, and size constraints. Freshw. Biol. 2023, 68, 115–126. [Google Scholar] [CrossRef]
- Gernez, P.; Zoffoli, M.L.; Lacour, T.; Fariñas, T.H.; Navarro, G.; Caballero, I.; Harmel, T. The many shades of red tides: Sentinel-2 optical types of highly-concentrated harmful algal blooms. Remote Sens. Environ. 2023, 287, 113486. [Google Scholar] [CrossRef]
- Priyanka, K.R.; Rajaram, R.; Sivakumar, S.R. A critical review on pharmacological properties of marine macroalgae. Biomass Convers. Biorefinery 2022. [Google Scholar] [CrossRef]
- Mohanty, A.K.; Wu, F.; Mincheva, R.; Hakkarainen, M.; Raquez, J.M.; Mielewski, D.F.; Narayan, R.; Netravali, A.N.; Misra, M. Sustainable polymers. Nat. Rev. Methods Prim. 2022, 2, 46. [Google Scholar] [CrossRef]
- Oslan, S.N.H.; Oslan, S.N.; Mohamad, R.; Tan, J.S.; Yusoff, A.H.; Matanjun, P.; Mokhtar, R.A.; Shapawi, R.; Huda, N. Bioprocess Strategy of Haematococcus lacustris for Biomass and Astaxanthin Production Keys to Commercialization: Perspective and Future Direction. Fermentation 2022, 8, 179. [Google Scholar] [CrossRef]
- Shekh, A.; Sharma, A.; Schenk, P.M.; Kumar, G.; Mudliar, S. Microalgae cultivation: Photobioreactors, CO2 utilization, and value-added products of industrial importance. J. Chem. Technol. Biotechnol. 2022, 97, 1064–1085. [Google Scholar] [CrossRef]
- Santana, H.; Cereijo, C.R.; Teles, V.C.; Nascimento, R.C.; Fernandes, M.S.; Brunale, P.; Campanha, R.C.; Soares, I.P.; Silva, F.C.; Sabaini, P.S.; et al. Microalgae cultivation in sugarcane vinasse: Selection, growth and biochemical characterization. Bioresour. Technol. 2017, 228, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Arutselvan, C.; Seenivasan, H.K.; Oscar, F.L.; Ramya, G.; Chi, N.T.L.; Pugazhendhi, A.; Thajuddin, N. Review on wastewater treatment by microalgae in different cultivation systems and its importance in biodiesel production. Fuel 2022, 324, 124623. [Google Scholar] [CrossRef]
- Schagerl, M.; Ludwig, I.; El-Sheekh, M.; Kornaros, M.; Ali, S.S. The efficiency of microalgae-based remediation as a green process for industrial wastewater treatment. Algal Res. 2022, 66, 102775. [Google Scholar] [CrossRef]
- Bhattacharya, I. Microalgae: An Exquisite Oil Producer. In Progress in Microalgae Research—A Path for Shaping Sustainable Futures; IntechOpen: London, UK, 2022. [Google Scholar] [CrossRef]
- Muñoz, R.; Guieysse, B. Algal–bacterial processes for the treatment of hazardous contaminants: A review. Water Res. 2006, 40, 2799–2815. [Google Scholar] [CrossRef]
- Kumar, K.; Mishra, S.K.; Shrivastav, A.; Park, M.S.; Yang, J.W. Recent trends in the mass cultivation of algae in raceway ponds. Renew. Sustain. Energy Rev. 2015, 51, 875–885. [Google Scholar] [CrossRef]
- Rawat, I.; Ranjith Kumar, R.; Mutanda, T.; Bux, F. Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Appl. Energy 2013, 103, 444–467. [Google Scholar] [CrossRef]
- Hemaiswarya, S.; Raja, R.; Ravi Kumar, R.; Ganesan, V.; Anbazhagan, C. Microalgae: A sustainable feed source for aquaculture. World J. Microbiol. Biotechnol. 2011, 27, 1737–1746. [Google Scholar] [CrossRef]
- Li, Y.; Horsman, M.; Wu, N.; Lan, C.Q.; Dubois-Calero, N. Biofuels from Microalgae. Biotechnol. Prog. 2008, 24, 815–820. [Google Scholar] [CrossRef] [PubMed]
- Patil, S. Bioethanol: Technologies, Trends, and Prospects. In Sugar Beet Cultivation, Management and Processing; Springer Nature: Singapore, 2022; pp. 863–884. [Google Scholar] [CrossRef]
- Marella, T.K.; López-Pacheco, I.Y.; Parra-Saldívar, R.; Dixit, S.; Tiwari, A. Wealth from waste: Diatoms as tools for phycoremediation of wastewater and for obtaining value from the biomass. Sci. Total Environ. 2020, 724, 137960. [Google Scholar] [CrossRef]
- Johnson, I.; Abubakar, M.; Ali, S.; Kumar, M. Cyanobacteria/Microalgae for Distillery Wastewater Treatment- Past, Present and the Future. In Microbial Wastewater Treatment; Elsevier: Amsterdam, The Netherlands, 2019; pp. 195–236. [Google Scholar] [CrossRef]
- Wang, B.; Lan, C.Q. Biomass production and nitrogen and phosphorus removal by the green alga Neochloris oleoabundans in simulated wastewater and secondary municipal wastewater effluent. Bioresour. Technol. 2011, 102, 5639–5644. [Google Scholar] [CrossRef]
- Hernández-Melchor, D.J.; Camacho-Pérez, B.; Ríos-Leal, E.; Alarcón-Bonilla, J.; López-Pérez, P.A. Modelling and multi-objective optimization for simulation of hydrogen production using a photosynthetic consortium. Int. J. Chem. React. Eng. 2020, 18, 20200019. [Google Scholar] [CrossRef]
- Serejo, M.L.; Ruas, G.; Braga, G.B.; Paulo, P.L.; Boncz, M. Chlorella vulgaris growth on anaerobically digested sugarcane vinasse: Influence of turbidity. An. Acad. Bras. Ciências 2021, 93, e20190084. [Google Scholar] [CrossRef]
- Krishnamoorthy, S.; Premalatha, M.; Vijayasekaran, M. Characterization of distillery wastewater—An approach to retrofit existing effluent treatment plant operation with phycoremediation. J. Clean. Prod. 2017, 148, 735–750. [Google Scholar] [CrossRef]
- de Mattos LF, A.; Bastos, R.G. COD and nitrogen removal from sugarcane vinasse by heterotrophic green algae Desmodesmus sp. Desalination Water Treat. 2016, 57, 9465–9473. [Google Scholar] [CrossRef]
- Yang, C.; Ding, Z.; Zhang, K. Growth of Chlorella pyrenoidosa in wastewater from cassava ethanol fermentation. World J. Microbiol. Biotechnol. 2008, 24, 2919–2925. [Google Scholar] [CrossRef]
- Fernández, N.; Montalvo, S.; Borja, R.; Guerrero, L.; Sánchez, E.; Cortés, I.; Colmenarejo, M.; Travieso, L.; Raposo, F. Performance evaluation of an anaerobic fluidized bed reactor with natural zeolite as support material when treating high-strength distillery wastewater. Renew. Energy 2008, 33, 2458–2466. [Google Scholar] [CrossRef]
- Solovchenko, A.; Pogosyan, S.; Chivkunova, O.; Selyakh, I.; Semenova, L.; Voronova, E.; Scherbakov, P.; Konyukhov, I.; Chekanov, K.; Kirpichnikov, M.; et al. Phycoremediation of alcohol distillery wastewater with a novel Chlorella sorokiniana strain cultivated in a photobioreactor monitored on-line via chlorophyll fluorescence. Algal Res. 2014, 6, 234–241. [Google Scholar] [CrossRef]
- Naz, M.; Raza, M.A.; Zaib, S.; Tariq, M.; Afzal, M.R.; Hussain, S.; Dai, Z.; Du, D. Major Groups of Microorganisms Employed in Bioremediation. In Microbial Bioremediation; Springer International Publishing: Cham, Switzerland, 2023; pp. 141–159. [Google Scholar] [CrossRef]
- Ankit; Bauddh, K.; Korstad, J. Phycoremediation: Use of Algae to Sequester Heavy Metals. Hydrobiology 2022, 1, 288–303. [Google Scholar] [CrossRef]
- Pooja, K.; Priyanka, V.; Rao, B.C.S.; Raghavender, V. Cost-effective treatment of sewage wastewater using microalgae Chlorella vulgaris and its application as bio-fertilizer. Energy Nexus 2022, 7, 100122. [Google Scholar] [CrossRef]
- Tüzün, I.; Bayramoğlu, G.; Yalçın, E.; Başaran, G.; Çelik, G.; Arıca, M.Y. Equilibrium and kinetic studies on biosorption of Hg(II), Cd(II) and Pb(II) ions onto microalgae Chlamydomonas reinhardtii. J. Environ. Manag. 2005, 77, 85–92. [Google Scholar] [CrossRef]
- Lalhmunsiama; Gupta, P.L.; Jung, H.; Tiwari, D.; Kong, S.H.; Lee, S.M. Insight into the mechanism of Cd(II) and Pb(II) removal by sustainable magnetic biosorbent precursor to Chlorella vulgaris. J. Taiwan Inst. Chem. Eng. 2017, 71, 206–213. [Google Scholar] [CrossRef]
- Yang, J.S.; Cao, J.; Xing, G.L.; Yuan, H.L. Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Bioresour. Technol. 2015, 175, 537–544. [Google Scholar] [CrossRef]
- Cheng, J.; Yin, W.; Chang, Z.; Lundholm, N.; Jiang, Z. Biosorption capacity and kinetics of cadmium(II) on live and dead Chlorella vulgaris. J. Appl. Phycol. 2017, 29, 211–221. [Google Scholar] [CrossRef]
- Gupta, V.K.; Rastogi, A. Equilibrium and kinetic modelling of cadmium(II) biosorption by nonliving algal biomass Oedogonium sp. from aqueous phase. J. Hazard. Mater. 2008, 153, 759–766. [Google Scholar] [CrossRef]
- Kumar, M.; Singh, A.K.; Sikandar, M. Study of sorption and desorption of Cd (II) from aqueous solution using isolated green algae Chlorella vulgaris. Appl. Water Sci. 2018, 8, 225. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.; Bhat, A.H.; Buang, A. Biosorption of transition metals by freely suspended and Ca-alginate immobilised with Chlorella vulgaris: Kinetic and equilibrium modeling. J. Clean. Prod. 2018, 171, 1361–1375. [Google Scholar] [CrossRef]
- Gupta, V.K.; Rastogi, A. Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp.—A comparative study. Colloids Surf. B Biointerfaces 2008, 64, 170–178. [Google Scholar] [CrossRef]
- Dirbaz, M.; Roosta, A. Adsorption, kinetic and thermodynamic studies for the biosorption of cadmium onto microalgae Parachlorella sp. J. Environ. Chem. Eng. 2018, 6, 2302–2309. [Google Scholar] [CrossRef]
- Chu, W.-L.; Phang, S.-M. Biosorption of Heavy Metals and Dyes from Industrial Effluents by Microalgae. In Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment; Springer: Singapore, 2019; pp. 599–634. [Google Scholar] [CrossRef]
- Chen, C.Y.; Chang, H.W.; Kao, P.C.; Pan, J.L.; Chang, J.S. Biosorption of cadmium by CO2-fixing microalga Scenedesmus obliquus CNW-N. Bioresour. Technol. 2012, 105, 74–80. [Google Scholar] [CrossRef]
- Kızılkaya, B.; Türker, G.; Akgül, R.; Doğan, F. Comparative Study of Biosorption of Heavy Metals Using Living Green Algae Scenedesmus quadricauda and Neochloris pseudoalveolaris: Equilibrium and Kinetics. J. Dispers. Sci. Technol. 2012, 33, 410–419. [Google Scholar] [CrossRef]
- Lee, Y.C.; Chang, S.P. The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresour. Technol. 2011, 102, 5297–5304. [Google Scholar] [CrossRef]
- Bayramoglu, G.; Akbulut, A.; Arica, M.Y. Aminopyridine modified Spirulina platensis biomass for chromium(VI) adsorption in aqueous solution. Water Sci. Technol. 2016, 74, 914–926. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Huang, H.; Zhu, Y.; Du, Y.; Yao, L.; Jiang, X.; Gao, P. Adsorption of Pb2+ and Cd2+ onto Spirulina platensis harvested by polyacrylamide in single and binary solution systems. Colloids Surf. A Physicochem. Eng. Asp. 2019, 583, 123926. [Google Scholar] [CrossRef]
- Abdulkareem, P.M.; Anwer, S.S. Biosorption of cadmium and lead using microalgae spirulina sp. Isolated from Koya City (Iraq). Appl. Ecol. Environ. Res. 2020, 18, 2657–2668. [Google Scholar] [CrossRef]
- Nuhoglu, Y.; Malkoc, E.; Gürses, A.; Canpolat, N. The removal of Cu(II) from aqueous solutions by Ulothrix zonata. Bioresour. Technol. 2002, 85, 331–333. [Google Scholar] [CrossRef]
- El-Sheekh, M.M.; El-Shouny, W.A.; Osman, M.E.H.; El-Gammal, E.W.E. Growth and heavy metals removal efficiency of Nostoc muscorum and Anabaena subcylindrica in sewage and industrial wastewater effluents. Environ. Toxicol. Pharmacol. 2005, 19, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Zeng, Q.; Li, H.; Liu, H.; Lu, Q. Emerging technologies of algae-based wastewater remediation for bio-fertilizer production: A promising pathway to sustainable agriculture. J. Chem. Technol. Biotechnol. 2020, 96, 551–563. [Google Scholar] [CrossRef]
- Monteiro, C.M.; Castro, P.M.L.; Malcata, F.X. Metal uptake by microalgae: Underlying mechanisms and practical applications. Biotechnol. Prog. 2012, 28, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Gul, J.; Naqvi, S.R.; Ali, I.; Farooq, W.; Liaqat, R.; AlMohamadi, H.; Štěpanec, L.; Juchelková, D. Recent progress in microalgae-derived biochar for the treatment of textile industry wastewater. Chemosphere 2022, 306, 135565. [Google Scholar] [CrossRef] [PubMed]
- Sarat Chandra, T.; Mudliar, S.; Vidyashankar, S.; Mukherji, S.; Sarada, R.; Krishnamurthi, K.; Chauhan, V. Defatted algal biomass as a non-conventional low-cost adsorbent: Surface characterization and methylene blue adsorption characteristics. Bioresour. Technol. 2015, 184, 395–404. [Google Scholar] [CrossRef]
- Nautiyal, P.; Subramanian, K.A.; Dastidar, M.G. Experimental Investigation on Adsorption Properties of Biochar Derived from Algae Biomass Residue of Biodiesel Production. Environ. Process. 2017, 4, 179–193. [Google Scholar] [CrossRef]
- Jing, F.; Sohi, S.P.; Liu, Y.; Chen, J. Insight into mechanism of aged biochar for adsorption of PAEs: Reciprocal effects of ageing and coexisting Cd2+. Environ. Pollut. 2018, 242, 1098–1107. [Google Scholar] [CrossRef]
- Tsai, W.T.; Chen, H.R. Removal of malachite green from aqueous solution using low-cost chlorella-based biomass. J. Hazard. Mater. 2010, 175, 844–849. [Google Scholar] [CrossRef]
- Pathak, V.V.; Kothari, R.; Chopra, A.; Singh, D. Experimental and kinetic studies for phycoremediation and dye removal by Chlorella pyrenoidosa from textile wastewater. J. Environ. Manag. 2015, 163, 270–277. [Google Scholar] [CrossRef]
- Aksu, Z.; Tezer, S. Biosorption of reactive dyes on the green alga Chlorella vulgaris. Process Biochem. 2005, 40, 1347–1361. [Google Scholar] [CrossRef]
- Chu, W.-L.; See, Y.-C.; Phang, S.-M. Use of immobilised Chlorella vulgaris for the removal of colour from textile dyes. J. Appl. Phycol. 2009, 21, 641–648. [Google Scholar] [CrossRef]
- Martínez-Córdova, L.R.; Robles-Porchas, G.R.; Vargas-Albores, F.; Porchas-Cornejo, M.A.; Martínez-Porchas, M. Microbial bioremediation of aquaculture effluents. In Microbial Biodegradation and Bioremediation; Elsevier: Amsterdam, The Netherlands, 2022; pp. 409–417. [Google Scholar] [CrossRef]
- Maurya, R.; Ghosh, T.; Paliwal, C.; Shrivastav, A.; Chokshi, K.; Pancha, I.; Ghosh, A.; Mishra, S. Biosorption of Methylene Blue by De-Oiled Algal Biomass: Equilibrium, Kinetics and Artificial Neural Network Modelling. PLoS ONE 2014, 9, e109545. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.V.; Sivanesan, S.; Ramamurthi, V. Adsorption of malachite green onto Pithophora sp., a fresh water algae: Equilibrium and kinetic modelling. Process Biochem. 2005, 40, 2865–2872. [Google Scholar] [CrossRef]
- Sharmila, J.; Saravanan, P.; Sivasankar, S.; Chamundeeswari, M. A novel and an eco-friendly approach for organic dyes degradation using Spirulina platensis cultivated water. Catal. Today 2020, 340, 245–252. [Google Scholar]
- Mohan, S.V.; Ramanaiah, S.v.; Sarma, P.N. Biosorption of direct azo dye from aqueous phase onto Spirogyra sp. I02: Evaluation of kinetics and mechanistic aspects. Biochem. Eng. J. 2008, 38, 61–69. [Google Scholar] [CrossRef]
- Venkata Mohan, S.; Chandrasekhar Rao, N.; Krishna Prasad, K.; Karthikeyan, J. Treatment of simulated Reactive Yellow 22 (Azo) dye effluents using Spirogyra species. Waste Manag. 2002, 22, 575–582. [Google Scholar] [CrossRef]
- Patel, Y.; Chhaya, U.; Rudakiya, D.M.; Joshi, S. Biological Decolorization and Degradation of Synthetic Dyes: A Green Step toward Sustainable Environment; Springer: Singapore, 2021; pp. 77–110. [Google Scholar] [CrossRef]
- Yu, K.L.; Lee, X.J.; Ong, H.C.; Chen, W.-H.; Chang, J.-S.; Lin, C.-S.; Show, P.L.; Ling, T.C. Adsorptive removal of cationic methylene blue and anionic Congo red dyes using wet-torrefied microalgal biochar: Equilibrium, kinetic and mechanism modeling. Environ. Pollut. 2021, 272, 115986. [Google Scholar] [CrossRef]
- Arruda, V.; Simões, M.; Gomes, I.B. Synthetic Musk Fragrances in Water Systems and Their Impact on Microbial Communities. Water 2022, 14, 692. [Google Scholar] [CrossRef]
- Xie, P.; Chen, C.; Zhang, C.; Su, G.; Ren, N.; Ho, S.-H. Revealing the role of adsorption in ciprofloxacin and sulfadiazine elimination routes in microalgae. Water Res. 2020, 172, 115475. [Google Scholar] [CrossRef]
- Kiki, C.; Rashid, A.; Wang, Y.; Li, Y.; Zeng, Q.; Yu, C.-P.; Sun, Q. Dissipation of antibiotics by microalgae: Kinetics, identification of transformation products and pathways. J. Hazard. Mater. 2020, 387, 121985. [Google Scholar] [CrossRef]
- Escapa, C.; Coimbra, R.N.; Paniagua, S.; García, A.I.; Otero, M. Paracetamol and salicylic acid removal from contaminated water by microalgae. J. Environ. Manag. 2017, 203, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.Q.; Govindwar, S.; Kurade, M.B.; Paeng, K.-J.; Roh, H.-S.; Khan, M.A.; Jeon, B.-H. Toxicity of sulfamethazine and sulfamethoxazole and their removal by a green microalga, Scenedesmus obliquus. Chemosphere 2019, 218, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zheng, Y.; Li, R.; Yin, Q.; Song, C. Removal of cefradine by Chlorella sp. L166 and Scenedesmus quadricauda: Toxicity investigation, degradation mechanism and metabolic pathways. Process Saf. Environ. Prot. 2022, 160, 632–640. [Google Scholar] [CrossRef]
- Encarnação, T.; Palito, C.; Pais, A.A.C.C.; Valente, A.J.M.; Burrows, H.D. Removal of Pharmaceuticals from Water by Free and Imobilised Microalgae. Molecules 2020, 25, 3639. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Sandoval, D.S.; González-Ortega, O.; Vazquez-Martínez, J.; García de la Cruz, R.F.; Soria-Guerra, R.E. Diclofenac removal by the microalgae species Chlorella vulgaris, Nannochloropsis oculata, Scenedesmus acutus, and Scenedesmus obliquus. 3 Biotech 2022, 12, 210. [Google Scholar] [CrossRef]
- Solomakou, N.; Goula, A.M. Treatment of olive mill wastewater by adsorption of phenolic compounds. Rev. Environ. Sci. Biotechnol. 2021, 20, 839–863. [Google Scholar] [CrossRef]
- Ricky, R.; Shanthakumar, S. Phycoremediation integrated approach for the removal of pharmaceuticals and personal care products from wastewater—A review. J. Environ. Manag. 2022, 302, 113998. [Google Scholar] [CrossRef]
- López-Sánchez, A.; Silva-Gálvez, A.L.; Aguilar-Juárez, Ó; Senés-Guerrero, C.; Orozco-Nunnelly, D.A.; Carrillo-Nieves, D.; Gradilla-Hernández, M.S. Microalgae-based livestock wastewater treatment (MbWT) as a circular bioeconomy approach: Enhancement of biomass productivity, pollutant removal and high-value compound production. J. Environ. Manag. 2022, 308, 114612. [Google Scholar] [CrossRef]
- Talebi, S.; Edalatpour, A.; Tavakoli, O. Algal biorefinery: A potential solution to the food–energy–water–environment nexus. Sustain. Energy Fuels 2022, 6, 2623–2664. [Google Scholar] [CrossRef]
- Ma, Z.; Meliana, C.; Munawaroh, H.S.H.; Karaman, C.; Karimi-Maleh, H.; Low, S.S.; Show, P.L. Recent advances in the analytical strategies of microbial biosensor for detection of pollutants. Chemosphere 2022, 306, 135515. [Google Scholar] [CrossRef]
- Kurade, M.B.; Kim, J.R.; Govindwar, S.P.; Jeon, B.H. Insights into microalgae mediated biodegradation of diazinon by Chlorella vulgaris: Microalgal tolerance to xenobiotic pollutants and metabolism. Algal Res. 2016, 20, 126–134. [Google Scholar] [CrossRef]
- Wang, X.X.; Wang, W.-L.; Dao, G.-H.; Xu, Z.-B.; Zhang, T.-Y.; Wu, Y.-H.; Hu, H.-Y. Mechanism and kinetics of methylisothiazolinone removal by cultivation of Scenedesmus sp. LX1. J. Hazard. Mater. 2020, 386, 121959. [Google Scholar] [CrossRef]
- Bai, X.; Acharya, K. Removal of trimethoprim, sulfamethoxazole, and triclosan by the green alga Nannochloris sp. J. Hazard. Mater. 2016, 315, 70–75. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Poon, K.; Wang, Y.; Li, S.; Liu, H.; Lin, S.; Cai, Z. Removal and reductive dechlorination of triclosan by Chlorella pyrenoidosa. Chemosphere 2013, 92, 1498–1505. [Google Scholar] [CrossRef]
- Bano, F.; Malik, A.; Ahammad, S.Z. Removal of estradiol, diclofenac, and triclosan by naturally occurring microalgal consortium obtained from wastewater. Sustainability 2021, 13, 7690. [Google Scholar] [CrossRef]
- Gao, Q.T.; Wong, Y.S.; Tam, N.F.Y. Removal and biodegradation of nonylphenol by different Chlorella species. Mar. Pollut. Bull. 2011, 63, 445–451. [Google Scholar] [CrossRef]
- López-Pacheco, I.Y.; Salinas-Salazar, C.; Silva-Núñez, A.; Rodas-Zuluaga, L.I.; Donoso-Quezada, J.; Ayala-Mar, S.; Barceló, D.; Iqbal, H.M.; Parra-Saldívar, R. Removal and biotransformation of 4-nonylphenol by Arthrospira maxima and Chlorella vulgaris consortium. Environ. Res. 2019, 179, 108848. [Google Scholar] [CrossRef]
- Li, H.; Li, H.; Meng, F.; Zhang, B.; Lin, Y.; Wu, J.; Wang, G.; Zheng, Y. The biodegradation of Para-xylene in seawater by a newly isolated oceanic microalga Rhodomonas sp. JZB-2. J. Water Process Eng. 2020, 36, 101311. [Google Scholar] [CrossRef]
- Papazi, A.; Karamanli, M.; Kotzabasis, K. Comparative biodegradation of all chlorinated phenols by the microalga Scenedesmus obliquus—The biodegradation strategy of microalgae. J. Biotechnol. 2019, 296, 61–68. [Google Scholar] [CrossRef]
- Arias, A.H.; Souissi, A.; Glippa, O.; Roussin, M.; Dumoulin, D.; Net, S.; Ouddane, B.; Souissi, S. Removal and Biodegradation of Phenanthrene, Fluoranthene and Pyrene by the Marine Algae Rhodomonas baltica Enriched from North Atlantic Coasts. Bull. Environ. Contam. Toxicol. 2017, 98, 392–399. [Google Scholar] [CrossRef]
- de Jesus Oliveira Santos, M.; Oliveira de Souza, C.; Marcelino, H.R. Blue technology for a sustainable pharmaceutical industry: Microalgae for bioremediation and pharmaceutical production. Algal Res. 2023, 69, 102931. [Google Scholar] [CrossRef]
- Castenholz, R.W. Thermophilic blue-green algae and the thermal environment. Bacteriol Rev. 1969, 33, 476–504. [Google Scholar] [CrossRef] [PubMed]
- Sokal, S.; Palsania, P.; Kaushik, G. Bioremediation and Functional Metagenomics: Advances, Challenges, and Opportunities. In Omics Insights in Environmental Bioremediation; Springer Nature: Singapore, 2022; pp. 3–36. [Google Scholar] [CrossRef]
- Do, G.; Nmez, È.; Aksu, Z. Bioaccumulation of copper(II) and nickel(II) by the non-adapted and adapted growing Candida SP. Water Res. 2001, 35, 1425–1434. [Google Scholar]
- Frigerio, S.; Bassi, R.; Giacometti, G.M. Light Conversion in Photosynthetic Organisms. In Biophotonics; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–14. [Google Scholar] [CrossRef]
- Raeesossadati, M.J.; Ahmadzadeh, H.; McHenry, M.P.; Moheimani, N.R. CO2 bioremediation by microalgae in photobioreactors: Impacts of biomass and CO2 concentrations, light, and temperature. Algal Res. 2014, 6, 78–85. [Google Scholar] [CrossRef]
- Fret, J.; Roef, L.; Blust, R.; Diels, L.; Tavernier, S.; Vyverman, W.; Michiels, M. Reuse of rejuvenated media during laboratory and pilot scale cultivation of Nannochloropsis sp. Algal Res. 2017, 27, 265–273. [Google Scholar] [CrossRef]
- Markou, G.; Vandamme, D.; Muylaert, K. Microalgal and cyanobacterial cultivation: The supply of nutrients. Water Res. 2014, 65, 186–202. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Ergas, S.; Yuan, X.; Sahu, A.; Zhang, Q.; Dewulf, J.; Malcata, F.X.; van Langenhove, H. Enhanced CO2 fixation and biofuel production via microalgae: Recent developments and future directions. Trends Biotechnol. 2010, 28, 371–380. [Google Scholar] [CrossRef]
- Bi, R.; Xu, X.; Zhan, L.; Chen, A.; Zhang, Q.; Xiong, Z. Proper organic substitution attenuated both N2O and NO emissions derived from AOB in vegetable soils by enhancing the proportion of Nitrosomonas. Sci. Total Environ. 2023, 866, 161231. [Google Scholar] [CrossRef]
- Saleem, S.; Mushtaq, N.U.; Rasool, A.; Shah, W.H.; Tahir, I.; Rehman, R.U. Plant nutrition and soil fertility: Physiological and molecular avenues for crop improvement. In Sustainable Plant Nutrition; Academic Press: Cambridge, MA, USA, 2023; pp. 23–49. [Google Scholar] [CrossRef]
- Brierley, C.L. Bioremediation of metal-contaminated surface and groundwaters. Geomicrobiol. J. 1990, 8, 201–223. [Google Scholar] [CrossRef]
- Zuccaro, G.; Yousuf, A.; Pollio, A.; Steyer, J.P. Microalgae Cultivation Systems. In Microalgae Cultivation for Biofuels Production; Academic Press: Cambridge, MA, USA, 2020; pp. 11–29. [Google Scholar] [CrossRef]
- Bhatt, P.; Bhandari, G.; Bhatt, K.; Simsek, H. Microalgae-based removal of pollutants from wastewaters: Occurrence, toxicity and circular economy. Chemosphere 2022, 306, 135576. [Google Scholar] [CrossRef]
- Ayele, A.; Getachew, D.; Kamaraj, M.; Suresh, A. Phycoremediation of Synthetic Dyes: An Effective and Eco-Friendly Algal Technology for the Dye Abatement. J. Chem. 2021, 2021, 9923643. [Google Scholar] [CrossRef]
- Sangma, C.B.K.; Chalie-u, R. Life cycle assessment of wastewater treatment by microalgae. In Valorization of Microalgal Biomass and Wastewater Treatment; Elsevier: Amsterdam, The Netherlands, 2023; pp. 137–178. [Google Scholar] [CrossRef]
- Farooq, W.; Naqvi, S.R.; Sajid, M.; Shrivastav, A.; Kumar, K. Monitoring lipids profile, CO2 fixation, and water recyclability for the economic viability of microalgae Chlorella vulgaris cultivation at different initial nitrogen. J. Biotechnol. 2022, 345, 30–39. [Google Scholar] [CrossRef]
- Mathew, M.M.; Khatana, K.; Vats, V.; Dhanker, R.; Kumar, R.; Dahms, H.-U.; Hwang, J.-S. Biological Approaches Integrating Algae and Bacteria for the Degradation of Wastewater Contaminants—A Review. Front. Microbiol. 2022, 12, 801051. [Google Scholar] [CrossRef]
- Yang, Y.; Zhuang, L.L.; Yang, T.; Zhang, J. Recognition of key factors on attached microalgae growth from the internal sight of biofilm. Sci. Total Environ. 2022, 811, 151417. [Google Scholar] [CrossRef]
- Su, Y. Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. Sci. Total Environ. 2021, 762, 144590. [Google Scholar] [CrossRef]
- de Morais, E.G.; Murillo, A.M.; Lens PN, L.; Ferrer, I.; Uggetti, E. Selenium recovery from wastewater by the green microalgae Chlorella vulgaris and Scenedesmus sp. Sci. Total Environ. 2022, 851, 158337. [Google Scholar] [CrossRef]
- Kumar, M.; Sun, Y.; Rathour, R.; Pandey, A.; Thakur, I.S.; Tsang, D.C. Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges. Sci. Total Environ. 2020, 716, 137116. [Google Scholar] [CrossRef]
- Slade, R.; Bauen, A. Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy 2013, 53, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Rahimi, S.; Modin, O.; Mijakovic, I. Technologies for biological removal and recovery of nitrogen from wastewater. Biotechnol. Adv. 2020, 43, 107570. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Gao, R.; Wang, M.; Yang, L.; Wang, X.; Zhang, L.; Peng, Y. A critical review of one-stage anammox processes for treating industrial wastewater: Optimization strategies based on key functional microorganisms. Bioresour. Technol. 2018, 265, 498–505. [Google Scholar] [CrossRef]
System | Reactor/Vessel | Cons | Pros |
---|---|---|---|
Close | PBR (vertical) | Sophisticated construction design to address the hydrodynamics stress; tube diameter enhancement causes a decline in the exposed surface area | It has a smaller area, a high mass transfer rate, and less stress; low energy utilization; the potential to scale up; easy sterilization; reduced photooxidation and photoinhibition |
tPBR (Horizontal) | pH, DO, and CO2 fluctuation among the pipe length; the wall might be foul, but it depends on many other parameters such as the mixing of the system; requires a huge area for installation | Large exposed area; viable for outdoor culture; good productivity | |
PBRp | No chambers are required if the reactor size needs to increase with a supporting structure; complicated to maintain the culture temperature; wall might be foul; hydrodynamic stress | Huge exposed area; viable for outdoor culture; fine algae immobilization; effective light penetration with good productivity; easy maintenance | |
Open | RPR | Difficult control and optimization of culture conditions; complex long-term cultivation; requires a huge area; low productivity; low light penetration | Very economical and simple; easy for cleaning and maintenance; can be large in volume. |
Source | Wastewater Generation (L/L Ethanol) | BOD (mg/L) | pH | Color | COD (mg/L) | Suspended Solids (mg/L) |
---|---|---|---|---|---|---|
Bottling plant | 14 | 10 | 7.6 | Hazy | 250 | 150 |
Spent wash | 14.4 | 36,500 | 4.6 | Dark brown | 82,080 | 615 |
Fermenter cooling | 0.4 | 105 | 6.3 | Colorless | 750 | 220 |
Condenser cooling | 2.88 | 45 | 9.2 | Colorless | 425 | 400 |
Floor wash | 0.8 | 100 | 7.3 | Colorless | 200 | 175 |
Fermenter cleaning | 0.6 | 4000 | 3.5 | Yellow | 16,500 | 3000 |
Other | 0.8 | 30 | 8.1 | Pale yellow | 250 | 100 |
Microalgae | Toxins | Toxins Conc. (mg/L) | Biosorbent Formation Approach | Condition | Q (mg/g) | Removal Efficiency (%) | Isotherm | Reference |
---|---|---|---|---|---|---|---|---|
Chlamydomonas reinhardtii | Hg+2 | 100 | Cells gathered from logarithmic phase cultures | pH = 6 | 72.2 | Freundlich biosorption model | [78] | |
Cd+2 | 100 | pH = 5.0 | 42.6 | Freundlich biosorption model | ||||
Pb+2 | 100 | pH = 6 | 96.3 | Freundlich biosorption model | ||||
Chlorella sp. | Cd+2 | 10 | Algae immobilized in water hyacinth-derived pellets | 92.45 | [82] | |||
Chlorella minutissima | Cd+2, | 0.2–0.6 mM | Dead (lyophilized) biomass | 35.36 | [80] | |||
Cu+2, | 0.2–0.6 mM | 3.28 | ||||||
Mn+2 | 0.2–0.6 mM | 21.19 | ||||||
Zn+2 | 0.2–0.6 mM | 33.71 | ||||||
Chlorella Vulgaris | Cd+2 | 100 | Live biomass | 16.34 | 96.8 | Pseudo-first-order model | [81] | |
Chlorella vulgaris | Cd+2 | 100 | Isolated Green Algae | Dose = 1 g/L, time = 2 h, T = 25 °C, pH = 4.5 | 65.3 | 97.43 | Langmuir isotherm model | [83] |
Chlorella vulgaris | Cd+2 | 100 | Dead Biomass | t = 105 min, | 16.65 | 95.2 | Pseudo-Second-order model | [81] |
Chlorella Vulgaris | Fe+2 | 30–300 | Suspended cells | 74.54 | [84] | |||
Chlorella Vulgaris | Zn+2 | 30–300 | Suspended cells | 69.19 | ||||
Chlorella Vulgaris | Mn+2 | 30–300 | Suspended cells | 65.1 | ||||
Chlorella Vulgaris | Fe+2 | 30–300 | Immobilized cells | Dose = 0.4 g/L, t = 300 min, pH = 6.0, T = 25 °C | 128 | Langmuir and D-R isotherm model | ||
Chlorella Vulgaris | Zn+2 | 30–300 | Immobilized cells | 115.5 | ||||
Chlorella Vulgaris | Mn+2 | 30–300 | Immobilized cells | 105.25 | ||||
Nostoc sp. | Pb+2 | 100–800 | Freshly collected from ponds, ditches, etc.; dried before use | t = 90 min, pH = 5.0, Dose = 0.5 g/L | 93.5 | Langmuir Isotherm and second-order kinetics | [85] | |
Oedogonium sp. | Pb+2 | 100–800 | t = 70 min, pH = 5.0, Dose = 0.5 g/L | 145.0 | Langmuir Isotherm and second-order kinetics | |||
Parachlorella sp. | Cd+2 | 18–180 | Biomass from cultured microalgae | pH = 7, T = 35 °C | 96.2 | Langmuir model Kinetics: pseudo-first-order | [86] | |
Parachlorella sp. | Cd+2 | 18–180 | pH = 7, T = 35 °C | 90.72 | ||||
Scenedesmus obliquus | Cd+2 | 2.5–7.5 | Living cells immobilized in a loofa sponge | Flow = 15 mL/min, t = 15.5 h | 38.4 | [87] | ||
Scenedesmus obliquus CNW-N | Cd+2 | 25–200 | Biomass harvested by centrifugation and concentrated by lyophilization | Aeration with 2.5% CO2, pH = 6, T = 30 °C | 68.6 | Langmuir model Kinetics: pseudo-second order | [88] | |
Scenedesmus quadricauda | Co+2 | 5–40 | Living cultures | 2.14–52.48 | [89] | |||
Neochloris pseudoalveolaris | Cr+3 | 5–40 | Living cultures | 81.98 | ||||
Neochloris pseudoalveolaris | Pb+2 | 5–40 | Living cultures | 4.26 | ||||
Neochloris pseudoalveolaris | Cd+2 | 5–40 | Living cultures | 2.96 | ||||
Neochloris pseudoalveolaris | Ni+2 | 5–40 | Living cultures | 55.71 | ||||
Neochloris pseudoalveolaris | Mn+2 | 5–40 | Living cultures | 75.20 | ||||
Spirogyra sp. | Pb+2 | 200 | Collected from a pond, sun-dried, and then oven-dried at 70 °C for 24 h | pH = 5.0, t = 100 min | 140 mg/g | Langmuir isotherm Kinetics: pseudo-second-order Endothermic | [90] | |
Spirulina platensis | Cr+6 | 0–156.3 | Freshly harvested biomass | pH = 6 | 90 | Langmuir isotherm model | [91] | |
Spirulina platensis | Pb+2 | 100 | Dead biomass | pH = 3.0, T = 26 °C, t = 60 min, Dose = 2 gm | >90 | [92] | ||
Spirulina sp. | Cd+2 * | 3.81 | Cells lyophilizate | 0.463 | [93] | |||
Spirulina sp. | Hg+2 * | 0.76 | Cells lyophilizate | 1.340 | ||||
Ulothrix zonata | Cu+2 | 5–50 | Algae collected from irrigated water channels; dried at 100 °C for 5–6 h | t = 20 min, pH = 4.5 | >80 | [94] |
Active Ingredients | Effluent | Microalgae Species | Removal% | Condition | Effluent Conc. (mg/L) | Reference |
---|---|---|---|---|---|---|
sulfadiazine | synthetic | Chlamydomonas sp. Tai03 | 35 | T = 25 °C, CO2 = 2%, I = 250 μmol m2 s 1, t = 5–6 d | [115] | |
ciprofloxacin | synthetic | 65 | T = 25 °C, CO2 = 2%, I = 250 μmol m2 s 1, t = 5–6 d | |||
sulfamerazine | synthetic | H. pluvialis | 75 | T = 25 °C, t = 40 d | 0.02 | [116] |
sulfamethoxazole | 60 | |||||
sulfamonomethoxine | 47 | |||||
trimethoprim | 40 | |||||
clarithromycin | −20 | |||||
azithromycin | 48 | |||||
roxithromycin | 35 | |||||
lomefloxacin | 70 | |||||
levofloxacin | 39 | |||||
flumequine | 40 | |||||
paracetamol | Mann and Myers | Chlorella sorokiniana | 41 | T = 25 °C, pH = (7.5 –0.5), t = 144 h | 25 | [117] |
salicylic acid | 93 | |||||
paracetamol | 69 | 250 | ||||
salicylic acid | 98 | |||||
sulfamethazine | Sterilized Bold’s Basal | Scenedesmus obliquus | 62.3 | T = 27 °C, t = 14 d | 0.25 | [118] |
sulfamethoxazole | 48.5 | |||||
cefradine | synthetic | Chlorella sp. L166 | 97.7 | 5–100 | [119] | |
Scenedesmus quadricauda | 98.5 | |||||
paracetamol | synthetic | Nannochloropsis sp. | 11.6 | t = 1 d | 300 | [120] |
ibuprofen | 12.1 | |||||
olanzapine | 32.4 | |||||
ceftazidime | Escherichia coli | 90 | t = 7 h | 100 | ||
diclofenac | synthetic | Nannochloropsis oculata CCAP 849/7 | 59–92 | T = 25 °C, Aeration = 0.3 L/min, CO2 = 7%, t = 25 d | 0.33 | [121] |
Scenedesmus acutus UTEX 72 | 12.2–26.5 | |||||
Scenedesmus obliquus CCAP 276/2 | 15–28 |
Toxins Origin | Active Pollutant | Microalgae | Medium | Condition | Initial Conc. (mg/L) | Removal% | Ref. |
---|---|---|---|---|---|---|---|
Personal care products | Methylisothiazolinone | Scenedesmus sp. LX1 | BG 11 | T = 25 °C, I = 50–60 μmol m−2 s−1, t = 4 d | 3 | 100 | [128] |
Triclosan | Nannochloris | Milli-Q water | (12/12 h) light/dark cycle, t = 7 d | 100 | [129] | ||
Triclosan | Chlorella pyrenoidosa | Acetate carbon source | T = 22 °C, I = 4000 Lux, (8/16 h) dark/light cycle, t = 6 d | 0.1–0.8 | 72.2 | [130] | |
Triclosan | Microalgal consortium | t = 5 d | 8 | 74.68 | [131] | ||
Surfactant | Nonylphenol | Chlorella vulgaris | Bristol | T = 25 °C, I = 40.1 mol m−2 s−1, t = 168 h | 0.5–1 | 80 | [132] |
4-Nonylphenol | Arthrospira maxima and Chlorella vulgaris | BG11 | Aeration = 1.5 L/m2, T = 21 °C | 9.29 | 96 | [133] | |
Industrial chemicals (aromatic hydrocarbons) | Para-xylene | Rhodomonas sp. JZB-2 | F/2 | I = 60 μmol m−2 s−1, 14/12 h cycle (light/dark), t = 6 d | 9.682 | 100 | [134] |
19 different chlorinated phenolic compounds (9–90) | Scenedesmus obliquus | Liquid culture medium | I = intensity: 50–60 μmol m−2 s−1, (light/dark) cycle = 12/12 h light/dark, T = 30 °C, t = 6 d | 90 | [135] | ||
Phenanthrene | Rhodomonas baltica | Conway medium | I = 2500 Lux, (light/dark) cycle = 12/12 h dark/light, T = 18 °C, t = 6 d | 90 | [136] | ||
Fluoranthene | 70 | ||||||
Pyrene | |||||||
Neonicotinoids | Scenedesmus sp. | I = 100 μmol m−2 s−1 | 71.24 |
Process | Advantages | Disadvantages: |
---|---|---|
Carbon Filtration | Economical and easy maintenance. Effective for organic and inorganic toxins | Not affected by toxins that attract carbon; needs the replacement of the filter when the active sites are fully accumulated; ineffective for pathogenic bacteria and viruses |
UV light | A harmless non-chemical process; simple maintenance and installation; economical and energy-efficient; effective for the eradication of microbes | It can eliminate microbes, but does not eradicate other toxins |
Oxidative | Easy to operate | Oxidizing agents need to be activated |
Fenton’s Reagents | Deals with diversified toxins | Huge sludge generation |
Ozonation | Ozone can be utilized in a gaseous form, with no effluent volume increment | Short half-life, i.e., 20 min |
Photochemical | No sludge formation | By-product formation |
Electrochemical Destruction | No chemical utilization; No sludge generation | Requires high flow rates to cause a decline in toxins removal |
Decolorization of white rot fungi | Able to degrade dyes using enzyme | Unreliable enzyme activity |
Microbial culture | Decolorized in 24–30 h | Cations are not metabolized |
Sorption by living and non-living organisms | Some toxins have an affinity for binding microbes | Not effective for all toxins |
Anaerobic | Allows some toxins to eradicate | The breakdown process yields H2S and CH4 |
Adsorption AC | Good removal of toxins | AC production needs a lot of energy, making the process uneconomic |
Membrane filtration | Removes toxins; low use of chemicals | High CAPEX, sludge formation, and membrane fouling |
Ion Exchange | Deals with only some toxins | Needs regeneration |
Electro-Kinetic Coagulation | Economically feasible | High sludge formation |
Chemical Precipitation | Simple, economical, and leads to all toxins | High sludge formation |
Chemical Coagulation | Sludge settling with dewatering | Cost-ineffective; slow process; cannot deal with all toxins |
Parameters | Microalgae-Based Eradication Process | Conventional | |
---|---|---|---|
Physical | Chemical | ||
Pollutants | Dyes, Metals, and EPs | Dyes, Metals, and EPs | Dyes, Metals, and EPs |
Modification Possibility | Yes | Yes | Yes |
Process Capacity | Moderate to High | Low | Moderate |
Removal Efficiency | Low to Moderate | Moderate | High |
Quantity Required | Huge | Huge | Huge |
Time | High | Moderate | Low |
Sludge Formation | Moderate to High | Moderate | High |
Economically Feasible | High | Moderate | Low |
Ecologically Feasible | High | Moderate | Low |
Commercially Feasible | Low | High | High |
Waste generation | Moderate to High | Low | High |
Availability | High | Moderate | Low |
Examples | Bioremediation, biosorption using E. Coli, Scenedesmus sp. LX1, Nannochloris sp., Chlorella pyrenoidosa, microalgal consortium etc., biological processes [161] | Adsorption using activated carbon, zeolite, ion exchange, coagulation/flocculation, UV, etc. | Fenton’s, oxidation, chlorination, etc. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashmi, Z.; Bilad, M.R.; Fahrurrozi; Zaini, J.; Lim, J.W.; Wibisono, Y. Recent Progress in Microalgae-Based Technologies for Industrial Wastewater Treatment. Fermentation 2023, 9, 311. https://doi.org/10.3390/fermentation9030311
Hashmi Z, Bilad MR, Fahrurrozi, Zaini J, Lim JW, Wibisono Y. Recent Progress in Microalgae-Based Technologies for Industrial Wastewater Treatment. Fermentation. 2023; 9(3):311. https://doi.org/10.3390/fermentation9030311
Chicago/Turabian StyleHashmi, Zubair, Muhammad Roil Bilad, Fahrurrozi, Juliana Zaini, Jun Wei Lim, and Yusuf Wibisono. 2023. "Recent Progress in Microalgae-Based Technologies for Industrial Wastewater Treatment" Fermentation 9, no. 3: 311. https://doi.org/10.3390/fermentation9030311
APA StyleHashmi, Z., Bilad, M. R., Fahrurrozi, Zaini, J., Lim, J. W., & Wibisono, Y. (2023). Recent Progress in Microalgae-Based Technologies for Industrial Wastewater Treatment. Fermentation, 9(3), 311. https://doi.org/10.3390/fermentation9030311