Physicochemical, Microbiological, and Sensory Properties of Set-Type Yoghurt Supplemented with Camel Casein Hydrolysate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Acid Casein Preparation
2.2. Casein Hydrolysate Preparation
2.3. Determination of Degree of Casein Hydrolysis
2.4. Yoghurt Preparation
2.5. Texture Profile Analysis
2.6. Water-Holding Capacity of Yoghurt
3. Results and Discussion
3.1. Degree of Hydrolysis
3.2. Fermentation Time
3.3. Changes in pH
3.4. Viability of Yoghurt Culture during Fermentation and Storage
3.5. Rheological Characteristics
3.6. Water-Holding Capacity
3.7. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Keeffe, M.B.; FitzGerald, R.J. Identification of short peptide sequences in complex milk protein hydrolysates. Food Chem. 2015, 184, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Sabikhi, L.; Hassan, A.; Anand, S. Bioactive peptides in dairy products. Int. J. Dairy Technol. 2012, 65, 1–12. [Google Scholar] [CrossRef]
- Bielecka, M.; Cichosz, G.; Czeczot, H. Antioxidant, antimicrobial and anticarcinogenic activities of bovine milk proteins and their hydrolysates-A review. Int. J. Dairy Technol. 2022, 127, 105208. [Google Scholar] [CrossRef]
- Karami, Z.; Akbari-Adergani, B. Bioactive food derived peptides: A review on correlation between structure of bioactive peptides and their functional properties. J. Food Sci. Technol. 2019, 56, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Vandenplas, Y.; De Greef, E.; Xinias, I.; Vrani, O.; Mavroudi, A.; Hammoud, M.; Halut, C. Safety of a thickened extensive casein hydrolysate formula. Nutrition 2016, 32, 206–212. [Google Scholar] [CrossRef] [PubMed]
- De Greef, E.; Hauser, B.; Devreker, T.; Veereman-Wauters, G.; Vandenplas, Y. Diagnosis and management of cow’s milk protein allergy in infants. World J. Pediatr. 2012, 8, 19–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalamaiah, M.; Yu, W.; Wu, J. Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chem. 2018, 245, 205–222. [Google Scholar] [CrossRef]
- Sharma, S.; Singh, R.; Rana, S. Bioactive Peptides: A Review. Int. J. Bioautomation 2011, 15, 223–250. [Google Scholar]
- Christman, J.M. Antimicrobial Activity of Casein Hydrolysates against Listeria monocytogenes and Escherichia Coli O157:H7. Master’s Thesis, University of Tennessee, Knoxville, TN, USA, 2010. [Google Scholar]
- Meignanalakshmi, S.; Vinoth Kumar, S.V. Antibacterial activity of papain hydrolysates of buffalo milk whey protein against mastitis pathogens. Int. J. Pharma Bio Sci. 2013, 4, 1133. [Google Scholar]
- Sánchez-Rivera, L.; Ferreira Santos, P.; Sevilla, M.A.; Montero, M.J.; Recio, I.; Miralles, B. Implication of Opioid Receptors in the Antihypertensive Effect of a Bovine Casein Hydrolysate and αs1-Casein-Derived Peptides. J. Agric. Food Chem. 2020, 68, 1877–1883. [Google Scholar] [CrossRef]
- Miralles, B.; Amigo, L.; Recio, I. Critical review and perspectives on food-derived antihypertensive peptides. J. Agric. Food Chem. 2018, 66, 9384–9390. [Google Scholar] [CrossRef]
- Alhaj, O.A.; Metwalli, A.A.; Ismail, E.A.; Ali, H.S.; Al-Khalifa, A.S.; Kanekanian, A.D. Angiotensin converting enzyme-inhibitory activity and antimicrobial effect of fermented camel milk (Camelus dromedarius). Int. J. Dairy Technol. 2018, 71, 27–35. [Google Scholar] [CrossRef]
- Rao, P.S.; Bajaj, R.; Mann, B. Impact of sequential enzymatic hydrolysis on antioxidant activity and peptide profile of casein hydrolysate. J. Food Sci. Technol. 2020, 57, 4562–4575. [Google Scholar] [CrossRef]
- Bamdad, F.; Shin, S.H.; Suh, J.W.; Nimalaratne, C.; Sunwoo, H. Anti-inflammatory and antioxidant properties of casein hy-drolysate produced using high hydrostatic pressure combined with proteolytic enzymes. Molecules 2017, 22, 609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagaoka, S.; Futamura, Y.; Miwa, K.; Awano, T.; Yamauchi, K.; Kanamaru, Y.; Tadashi, K.; Kuwata, T. Identification of novel hypocholesterolemic peptides derived from bovine milk beta-lactoglobulin. Biochem. Biophys Res. Commun. 2001, 281, 7–11. [Google Scholar] [CrossRef]
- Akhgar, R.N.R.; Hesari, J.; Damirchi, S.A. Effect of slurry incorporation into retentate on proteolysis of Iranian ultrafiltered white cheese. Czech J. Food Sci. 2016, 34, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Lucas, A.; Sodini, I.; Monnet, C.; Jolivet, P.; Corrieu, G. Probiotic cell counts and acidification in fermented milks supplemented with milk protein hydrolysates. Int. Dairy J. 2004, 14, 47–53. [Google Scholar] [CrossRef]
- Ardö, Y. Enzymes in Cheese Ripening. In Agents Change; Springer Nature: Berlin, Germany, 2021; pp. 363–395. [Google Scholar]
- Zhang, Q.; Ren, J.; Zhao, H.; Mouming, Z.; Xu, J.; Zhao, Q. Influence of casein hydrolysates on the growth and lactic acid pro-duction of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus. Int. J. Food Sci. Technol. 2011, 46, 1014–1020. [Google Scholar] [CrossRef]
- Ma, Y.S.; Zhao, H.J.; Zhao, X.H. Comparison of the effects of the alcalase-hydrolysates of caseinate, and of fish and bovine gelatins on the acidification and textural features of set-style skimmed yogurt-type products. Foods 2019, 8, 501. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.Z.; Wang, J.S.; Zhao, M.M.; Jiang, Y.M.; Chun, C. Effect of Casein Hydrolysates on Yoghurt Fermentation and Texture Properties during Storage. Food Technol. Biotechnol. 2006, 44, 429–434. [Google Scholar]
- Sodini, I.; Lucas, A.; Tissier, J.P.; Corrieu, G. Physical properties and microstructure of yoghurts supplemented with milk protein hydrolysates. Int. Dairy J. 2005, 15, 29–35. [Google Scholar] [CrossRef]
- Han, M.; Liao, W.Y.; Wu, S.M.; Gong, X.; Bai, C. Use of Streptococcus thermophilus for the in situ production of γ-aminobutyric acid-enriched fermented milk. J. Dairy Sci. 2020, 103, 98–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salmen, S.H.; Abu-Tarboush, H.M.; Al-Saleh, A.A.; Metwalli, A.A. Amino acids content and electrophoretic profile of camel milk casein from different camel breeds in Saudi Arabia. Saudi J. Biol. Sci. 2012, 19, 177–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Saleh, A.A.; Metwalli, A.A.; Ismail, E.A.; Alhaj, O.A. Antioxidative activity of camel milk casein hydrolysates. J. Camel Pract. Res. 2014, 21, 229–237. [Google Scholar] [CrossRef] [Green Version]
- Jennes, R.; Koops, J. Preparation and properties of a salt solution which simulates milk ultrafiltrate. Neth. Milk Dairy J. 1962, 16, 153–164. [Google Scholar]
- Donkor, O.N.; Henriksson, A.; Vasiljevic, T.; Shah, N.P. Probiotic strains as starter cultures improve angiotensin-converting enzyme inhibitory activity in soy yoghurt. J. Food Sci. 2005, 70, 375–381. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Isanga, J.; Zhang, G. Production and evaluation of some physicochemical parameters of peanut milk yoghurt. LWT Food Sci. Technol. 2009, 42, 1132–1138. [Google Scholar] [CrossRef]
- Ugwu, C.P.; Abarshi, M.M.; Mada, S.B.; Sanusi, B.; Nzelibe, H.C. Camel and horse milk casein hydrolysates exhibit angiotensin converting enzyme inhibitory and antioxidative effects in vitro and in silico. Int. J. Pept. Res. Ther. 2019, 25, 1595–1604. [Google Scholar] [CrossRef]
- Irshad, I.; Kanekanian, A.; Peters, A.; Masud, T. Antioxidant activity of bioactive peptides derived from bovine casein hydrol-ysate fractions. J. Food Sci. Technol. 2015, 52, 231–239. [Google Scholar] [CrossRef]
- Salami, M.; Yousefi, R.; Ehsani, M.R.; Dalgalarrondo, M.; Chobert, J.M.; Haertlé, T.; Razavi, S.H.; Saboury, A.A.; Niasa-ri-Naslaji, A.; Moosavi-Movahedi, A.A. Kinetic characterization of hydrolysis of camel and bovine milk proteins by pancre-atic enzymes. Int. Dairy J. 2008, 18, 1097–1102. [Google Scholar] [CrossRef]
- Rivera, C.E.; Rosales, J.D.; Freites-Perez, J.C.; Rodriguez, E. Very Low Molecular Weight Proteins Electrophoresis Protocol. Bio-Protocol 2018, e3093. [Google Scholar] [CrossRef]
- Canon, F.; Maillard, M.B.; Henry, G.; Thierry, A.; Gagnaire, V. Positive interactions between lactic acid bacteria promoted by nitrogen-based nutritional dependencies. Appl. Environ. Microbiol. 2021, 87, e0105521. [Google Scholar] [CrossRef] [PubMed]
- Adams, C.; Sawh, F.; Green-Johnson, J.M.; Taggart, H.J.; Strap, J.L. Characterization of casein-derived peptide bioactivity: Dif-ferential effects on angiotensin-converting enzyme inhibition and cytokine and nitric oxide production. J. Dairy Sci. 2020, 103, 5805–5815. [Google Scholar] [CrossRef]
- Zhang, Q.; Ren, J.; Zhao, M.; Zhao, H.; Regenstein§, J.M.; Li, Y.; Wu, J. Isolation and characterization of three novel peptides from casein hydrolysates that stimulate the growth of mixed cultures of streptococcus thermophilus and Lactobacillus delbrueckii subsp. Bulgaricus. J. Agric. Food Chem. 2011, 59, 7045–7053. [Google Scholar] [CrossRef]
- Liu, Z.; Zhu, Y.; Wang, T.; Wang, X.; Mao, X. Effect of casein phosphopeptide-calcium complex on storage properties of yoghurt. China Dairy Industry 2016, 44, 4–6. [Google Scholar]
- Shah, N.P. Effect of milk-derived bioactive: An overview. Br. J. Nutr. 2000, 84, S3–S10. [Google Scholar] [CrossRef] [Green Version]
- Lorenzen, P.C.; Meisel, H. Influence of trypsin action in yoghurt milk on the release of caseinophosphopeptide-rich fractions and physical properties of the fermented products. Int. J. Dairy Technol. 2005, 58, 119–124. [Google Scholar] [CrossRef]
- Settier-Ramírez, L.; López-Carballo, G.; Gavara, R.; Hernández-Muñoz, P. Effect of casein hydrolysates on the survival of pro-tective cultures of Lactococcus lactis and Lactobacillus sakei in PVOH films. Food Hydrocoll. 2021, 121, 107012. [Google Scholar] [CrossRef]
- Naibaho, J.; Butula, N.; Jonuzi, E.; Korzeniowska, M.; Laaksonen, O.; Föste, M.; Yang, B. Potential of brewers’ spent grain in yogurt fermentation and evaluation of its impact in rheological behaviour, consistency, microstructural properties and acidity profile during the refrigerated storage. Food Hydrocoll. 2022, 125, 107412. [Google Scholar] [CrossRef]
- Senok, A.C.; Ismaeel, A.Y.; Botta, G.A. Probiotics: Facts and myths. Clin. Microbiol. Infect. 2005, 11, 958–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helal, A.; Rashid, N.; Dyab, M.; Otaibi, M.; Alnemr, T. Enhanced functional, sensory, microbial and texture properties of low-fat set yogurt supplemented with high-density inulin. J. Food Process. Beverages 2018, 6, 1–11. [Google Scholar]
- Dave, R.I.; Shah, N.P. The influence of ingredient supplementation on the textural characteristics of yoghurt. Aust. J. Dairy Technol. 1998, 53, 180–184. [Google Scholar]
- Corredig, M.; Salvatore, E. Enzymatic coagulation of milk. In Advanced Dairy Chemistry: Volume 1B: Proteins: Applied Aspects; McSweeney, P.L.H., O’Mahony, J.A., Eds.; Springer: New York, NY, USA, 2016; pp. 287–307. [Google Scholar]
Samples | Hardness | Cohesiveness | Springiness | Adhesiveness | Gumminess | Chewiness |
---|---|---|---|---|---|---|
0 | 27.75 b | 0.4475 a | 8.7 a | 0.25 ab | 12.42 a | 108.04 a |
0.5 L | 29.67 ab | 0.483 a | 8.666 a | 0.3 ab | 14.33 a | 124.17 a |
1.0 L | 31.5 a | 0.44 a | 8.375 a | 0.4 a | 13.86 a | 116.08 a |
1.5 L | 29 ab | 0.405 a | 8.675 a | 0.38 ab | 11.75 a | 101.89 a |
0.5 W | 24.25 c | 0.445 a | 8.6 a | 0.15 b | 10.79 a | 92.80 a |
1.0 W | 31.0 a | 0.39 a | 8.7 a | 0.4 a | 12.09 a | 105.18 a |
1.5 W | 31.5 a | 0.435 a | 8.7 a | 0.33 ab | 13.70 a | 119.21 a |
Sample Type | Hardness | Cohesiveness | Springiness | Adhesiveness | Gumminess | Chewiness | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B | A | B | A | B | A | B | A | B | A | B | A | |
control | 27.75 b | 32 e | 0.4475 a | 0.443 a | 8.7 a | 8.13 a | 0.25 ab | 0.4 bcd | 12.42 a | 14.2 a | 108.04 a | 115.89 a |
0.5 L | 29.67 ab | 33.75 c | 0.483 a | 0.468 a | 8.666 a | 8.48 a | 0.3 ab | 0.45 bc | 14.33 a | 15.81 a | 124.17 a | 134.4 a |
1.0 L | 31.5 a | 35.75 c | 0.44 a | 0.448 a | 8.375 a | 8.38 a | 0.4 a | 0.575 a | 13.86 a | 16.03 a | 116.08 a | 134.78 a |
1.5 L | 29 ab | 37.25 b | 0.405 a | 0.44 a | 8.675 a | 8.33 a | 0.38 ab | 0.475 b | 11.75 a | 16.42 a | 101.89 a | 136.73 a |
0.5 W | 24.25 c | 36 c | 0.445 a | 0.417 a | 8.6 a | 8.1 a | 0.15 b | 0.25 e | 10.79 a | 15.03 a | 92.80 a | 121.47 a |
1.0 W | 31.0 a | 38.25 a | 0.39 a | 0.428 a | 8.7 a | 8.13 a | 0.4 a | 0.38 cd | 12.09 a | 16.39 a | 105.18 a | 133.28 a |
1.5 W | 31.5 a | 32.75 e | 0.317 a | 0.435 a | 8.7 a | 7.95 a | 0.33 ab | 0.35 d | 13.70 a | 13.05 a | 119.21 a | 103.13 a |
Fresh | After 21 Days | |||||||
---|---|---|---|---|---|---|---|---|
% Casein hydrolysate | Appearance | Texture | Flavour | Acceptance | Appearance | Texture | Flavour | Acceptance |
zero | 4.58 ab | 4.17 a | 4.25 a | 4 bc | 4.67 a | 4.08 ab | 4 ab | 4.25 ab |
0.5 L | 4.67 ab | 3.25 b | 3.42 b | 3.42 c | 4.67 a | 4.33 a | 4.5 a | 4.5 a |
1 L | 4.75 a | 4.5 a | 4.42 a | 4.67 ab | 4.17 ab | 4.08 ab | 3.83 ab | 4.0 abc |
1.5 L | 4.25 ab | 4.58 a | 3.83 ab | 4.17 b | 4.25 ab | 3.58 ab | 3.92 ab | 3.75 abc |
0.5 W | 4.92 a | 4.83 a | 4.5 a | 4.92 a | 4 b | 3.17 b | 3.33 b | 3.33 c |
1 W | 4.5 ab | 4.25 a | 3.5 b | 4.25 ab | 4.67 a | 4.42 a | 3.67 b | 3.92 abc |
1.5 W | 4 b | 4.17 a | 3.83 ab | 4.17 b | 4.33 ab | 3.17 b | 3.33 b | 3.5 bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Metwalli, A.A.; Ismail, E.A.; Elkhadragy, M.F.; Yehia, H.M. Physicochemical, Microbiological, and Sensory Properties of Set-Type Yoghurt Supplemented with Camel Casein Hydrolysate. Fermentation 2023, 9, 353. https://doi.org/10.3390/fermentation9040353
Metwalli AA, Ismail EA, Elkhadragy MF, Yehia HM. Physicochemical, Microbiological, and Sensory Properties of Set-Type Yoghurt Supplemented with Camel Casein Hydrolysate. Fermentation. 2023; 9(4):353. https://doi.org/10.3390/fermentation9040353
Chicago/Turabian StyleMetwalli, Ali A., Elsayed A. Ismail, Manal F. Elkhadragy, and Hany M. Yehia. 2023. "Physicochemical, Microbiological, and Sensory Properties of Set-Type Yoghurt Supplemented with Camel Casein Hydrolysate" Fermentation 9, no. 4: 353. https://doi.org/10.3390/fermentation9040353
APA StyleMetwalli, A. A., Ismail, E. A., Elkhadragy, M. F., & Yehia, H. M. (2023). Physicochemical, Microbiological, and Sensory Properties of Set-Type Yoghurt Supplemented with Camel Casein Hydrolysate. Fermentation, 9(4), 353. https://doi.org/10.3390/fermentation9040353