Products and Properties of Components from Heat-Denatured Peanut Meal Following Solid-State Fermentation by Aspergillus oryzae and Saccharomyces cerevisiae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Medium
2.3. Preparation of Inoculum Cultures of Strains
2.4. The Mixed Microbial Solid-State Fermentation HDPM Process
2.5. Initial Separation and Purification of the Fermentation Broth
2.6. Response Surface Methodology (RSM) of the Fermentation Process
2.7. Determination Method
2.7.1. Determination of Soluble Nitrogen Content (Lowery Method)
2.7.2. Determination of NSPs Content
2.7.3. Determination of Antioxidant Activities
2.7.4. Determination of Amino Acids and Trace Minerals Content
2.7.5. Determination of the Physicochemical Properties
2.8. Statistical Analysis
3. Results and Discussion
3.1. Response Surface Methodology (RSM) Results Analysis
3.1.1. Model Building and Significance Analysis
1.42X12 − 3.5X22 − 4.45X32 + 3.78X42
10.23X3X4 − 0.36X12 − 6.67X22 − 1.95X32 + 6.95X42
0.63X12 − 1.69X22 − 1.86X32 + X42
0.63X12 − 1.69X22 − 1.86X32 + X42
3.1.2. Intuitive Analysis of RSM
3.1.3. Determination of Optimum Conditions
3.2. Analysis of Antioxidant Activities
3.3. Amino Acid and Trace Minerals Analysis
3.4. Physicochemical Properties of FHDPM and HDPM
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, L.; Sun, J.; Liu, S.; Bi, J.; Zhang, C.; Yang, Q. Ultrasonic-assisted enzymolysis to improve the antioxidant activities of peanut (Arachin conarachin L.) antioxidant hydrolysate. Int. J. Mol. Sci. 2012, 13, 9051–9068. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Qi, H.; Zhang, C.; Bi, J.; Wang, M.; Yang, W.; Sun, J.; Xu, T. Optimization of peanut antibacterial peptides preparation with ultrasonic-assisted enzymolysis by response surface methodology. J. Nucl. Agric. Sci. 2018, 32, 740–750. [Google Scholar]
- Mao, X.; Zhang, C.; Chen, X.; Lin, S.; Huang, X.; Zeng, Q. Study on the preparation of peanut polypeptides from hot pressed peanut cake by enzymatic hydrolysis. Mod. Food Sci. Technol. 2013, 29, 150–152, 166. [Google Scholar]
- Yu, L.; Wang, W.; Sun, J.; Bi, J.; Zhang, C.; Yang, Q. Synchronous extraction technology of peanut (Arachin conarachin L.) non-starch polysaccharides and antioxidant peptide. J. Peanut Sci. 2014, 43, 7–15. [Google Scholar]
- Yang, X.; Teng, D.; Wang, X.; Guan, Q.; Mao, R.; Hao, Y.; Wang, J. Enhancement of Nutritional and Antioxidant Properties of Peanut Meal by Bio-modification with Bacillus licheniformis. Appl. Biochem. Biotech. 2016, 180, 1227–1242. [Google Scholar] [CrossRef] [PubMed]
- Kain, R.J.; Chen, Z. Physicochemical characterisation of heat and cold pressed peanut meal flours. Asian J. Biochem. 2008, 3, 256–266. [Google Scholar]
- Bisly, A.A.; Hettiarachchy, N.S.; Kumar, T.K.S.; Lay, J.O. Antioxidant activities of solid-state fermentation derived proteins and peptides from heat-stabilized defatted rice bran. J. Aml. Oil Chem. Soc. 2021, 99, 215–228. [Google Scholar] [CrossRef]
- Heidari, F.; Øverland, M.; Hansen, J.Ø.; Mydland, L.T.; Urriola, P.E.; Chen, C.; Shurson, G.C.; Hu, B. Solid-state fermentation of Pleurotus ostreatus to improve the nutritional profile of mechanically-fractionated canola meal. Biochem. Eng. J. 2022, 187, 108591. [Google Scholar] [CrossRef]
- Sabar, S.W.P.; Adi, R.; Novi, A.; Fathoni, H.R.; Wahyu, S.; Agung, I. Changes in nutritional and antinutritional aspects of soybean meals by mechanical and solid-state fermentation treatments with Bacillus subtilis and Aspergillus oryzae. Bioresour. Technol. Rep. 2022, 17, 100925. [Google Scholar]
- Aydın, A.; Emrah, G.; Güray, E. Improvement of nutritional quality of some oilseed meals through solid-state fermentation using Aspergillus niger. Turk. J. Agric. Food Sci. Technol. 2019, 7, 1411–1414. [Google Scholar]
- Yin, H.; Jia, F.; Huang, J. The variation of two extracellular enzymes and soybean meal bitterness during solid-state fermentation of Bacillus subtilis. Grain Oil Sci. Technol. B 2019, 2, 39–43. [Google Scholar] [CrossRef]
- Zhao, Y.; Sun-Waterhouse, D.X.; Zhao, M.; Zhao, Q.; Qiu, C.; Su, G. Effects of solid-state fermentation and proteolytic hydrolysis on defatted soybean meal. LWT—Food Sci. Technol. 2018, 97, 496–502. [Google Scholar] [CrossRef]
- Ling, C.; Tang, H.; Zhou, C.; Yang, C.; Wang, J. Changes of flavor components of almond meal by synergistic fermentation with Aspergillus oryzae and Aspergillus niger. J. Tianjin Univ. Sci. Technol. 2021, 36, 10–15. [Google Scholar]
- Wu, B.; Song, J. The research of Bacillus subtilis and Aspergillus oryzae mixing fermentation to make bean pulp feed stuffs. J. Shandong Inst. Light Ind. 2010, 24, 12–15. [Google Scholar]
- Li, Y.; Hao, J.; Cheng, Y.; Zhao, R.; Yin, L.; Li, L. Improvement of okara mouthfeel by Aspergillus niger and Aspergillus oryzae fermentation. Trans. Chin. Soc. Agric. Eng. 2012, 28, 248–253. [Google Scholar]
- Vittorio, S.; Manuel, B.B.J.; Claudia, B.; Sandro, C.P.; Riccardo, C.; Michael, G.D.; Konrad, G.; Evgenia, L.; Alicja, M.; Gilles, R.; et al. Safety evaluation of the food enzyme α-amylase from Aspergillus oryzae (strain DP-Bzb41). EFSA J. 2019, 17, e05899. [Google Scholar]
- Pham, T.A.; Tran, L.N.; Dam, T.H.; To, K.A. Valorization of cassava bagasse using co-culture of Aspergillus oryzae VS1 and Sporidiobolus pararoseus O1 in solid-state fermentation. Waste Biomass Valoriz. 2022, 13, 3003–3012. [Google Scholar] [CrossRef]
- Fadel, M.; Sawsan, A.-H.; Hayat, S.; Ahmed, Y.; Mayar, A. Production of glucoamylase, α-amylase and cellulase by Aspergillus oryzae F-923 cultivated on wheat bran under solid state fermentation. J. Adv. Biol. Biotechnol. 2020, 23, 8–22. [Google Scholar] [CrossRef]
- Watanabe, A.; Suzuki, M.; Ujiie, S.; Gomi, K. Purification and enzymatic characterization of a novel β-1,6-glucosidase from Aspergillus oryzae. J. Biosci. Bioeng. 2016, 121, 259–264. [Google Scholar] [CrossRef]
- El-Deen, A.M.N.; Shata, H.M.A.H.; Farid, M.A.F. Improvement of β-glucosidase production by co-culture of Aspergillus niger and A. oryzae under solid state fermentation through feeding process. Ann. Microbiol. 2014, 64, 627–637. [Google Scholar] [CrossRef]
- Liu, J.; Liu, H.; Zhao, Q.; Jiang, L.; Zhang, X.; Zhang, Y. Cloning, expression and characterization of three novel histidine acid phytases from Aspergillus niger, Aspergillus oryzae and Penicillium sp. J. Pure Appl. Microbiol. 2013, 7, 11–19. [Google Scholar]
- Santiesteban-Lopez, N.A.; Ceron-Carrillo, T.G.; Carmona-Silva, J.L.; Chavez-Medina, J. Cultivation of Aspergillus oryzae and Saccharomyces cerevisiae in whey for the production of single-celled protein intended for feeding cattle. Int. J. Food Sci. Biotechnol. 2020, 5, 12–21. [Google Scholar] [CrossRef]
- Song, L.; Chen, Y.; Du, Y.; Wang, X.; Guo, X.; Dong, J.; Xiao, D. Saccharomyces cerevisiae proteinase A excretion and wine making. World J. Microbiol. Biotechnol. 2017, 33, 210. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, X.; Chen, X.; Siewers, V. CRISPR/Cas9-mediated point mutations improve α-amylase secretion in Saccharomyces cerevisiae. FEMS Yeast Res. 2022, 22, foac033. [Google Scholar] [CrossRef]
- Lee, W.-H.; Jin, Y. Improved ethanol production by engineered Saccharomyces cerevisiae expressing a mutated cellobiose transporter during simultaneous saccharification and fermentation. J. Biotechnol. 2017, 245, 1–8. [Google Scholar] [CrossRef]
- Yu, L.; Xu, T.; Zhang, C.; Sun, J.; Bi, J. Technology optimization on preparation of peanut antioxidant peptides by Bacillus subtilis solid state fermentation method. Appl. Mech. Mater. 2016, 835, 103–108. [Google Scholar] [CrossRef]
- Yu, L.; Gong, Q.; Yang, Q.; Sun, J.; Bi, J.; Zhang, C. Technology optimization on microwave-assisted extraction water soluble dietary fiber from peanut hull and its antioxidant activity. Food Sci. Technol. Res. 2011, 27, 401–408. [Google Scholar] [CrossRef]
- Yu, L.; Yang, W.; Sun, J.; Zhang, C.; Bi, J.; Yang, Q. Preparation, characterisation and physicochemical properties of the phosphate modified peanut protein obtained from Arachin Conarachin L. Food Chem. 2015, 170, 169–179. [Google Scholar] [CrossRef]
- Dos Soares, F.S.; Signoretti, R.D.; de Oliveira, J.S.; da Silva, G.T.; de Oliverira Alves Rufino, M.; de Souza, C.G.; Pinheiro, J.K.; Neto, S.G. Nitrogen balance and microbial protein synthesis in dairy cows fed with peanut meal to replace soybean meal. Trop. Anim. Health Prod. 2022, 54, 335. [Google Scholar]
- Li, M.H.; Lucas, P.M. Evaluation of peanut meal as an alternative dietary protein source for channel catfish. N. Am. J. Aquac. 2017, 79, 95–99. [Google Scholar] [CrossRef]
- Da Silva, R.L.; Damasceno, F.M.; Rocha, M.K.H.R.; Sartori, M.M.P.; Barros, M.M.; Pezzato, L.E. Replacement of soybean meal by peanut meal in diets for juvenile Nile tilapia, Oreochromis niloticus. Lat. Am. J. Aquat. Res. 2017, 45, 1044–1053. [Google Scholar] [CrossRef]
- Zhang, L.; Fang, Q.; Huang, D.; Liu, Y.; Zeng, Y.; Xie, Y.; Luo, J. Anaerobic fermentation of peanut meal to produce even-chain volatile fatty acids using Saccharomyces cerevisiae inoculum. Environ. Technol. 2021, 42, 3820–3831. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Lin, S.; Zhang, C.; Chen, X.; Lai, J.; Zhou, Y.; Zeng, Q. Research on improving nutritional value of peanut meal by solid-state fermentation with manifold strains. Food Res. Dev. 2015, 36, 91–94. [Google Scholar]
- Zhao, G.; Ding, L.; Pan, Z.; Kong, D.; Hadiatullah, H.; Fan, Z. Proteinase and glycoside hydrolase production is enhanced in solid-state fermentation by manipulating the carbon and nitrogen fluxes in Aspergillus oryzae. Food Chem. 2019, 271, 606–613. [Google Scholar] [CrossRef]
- Meini, M.-R.; Cabezudo, I.; Galetto, C.S.; Romanini, D. Production of grape pomace extracts with enhanced antioxidant and prebiotic activities through solid-state fermentation by Aspergillus niger and Aspergillus oryzae. Food Biosci. 2021, 42, 101168. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Wang, L.; Guo, X.; Qi, X.; Qian, H. Influence of the degree of hydrolysis (DH) on antioxidant properties and radical-scavenging activities of peanut peptides prepared from fermented peanut meal. Eur. Food Res. Technol. 2011, 232, 941–950. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Lu, X.; Zhang, H.; Wang, L.; Guo, X.; Qi, X.; Qian, H. Isolation and identification of an antioxidant peptide prepared from fermented peanut meal using Bacillus subtilis fermentation. Int. J. Food Prop. 2014, 17, 1237–1253. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, H.; Han, B.; Li, H.; Liu, X. Improvement of nutritional value, molecular weight patterns (soluble peptides), free amino acid patterns, total phenolics and antioxidant activity of fermented extrusion pretreatment rapeseed meal with Bacillus subtilis YY-1 and Saccharomyces cerevisiae YY-2. LWT—Food Sci. Technol. 2022, 160, 113280. [Google Scholar]
- Chi, C.; Cho, S.-J. Improvement of bioactivity of soybean meal by solid-state fermentation with Bacillus amyloliquefaciens versus Lactobacillus spp. and Saccharomyces cerevisiae. LWT—Food Sci. Technol. 2016, 68, 619–625. [Google Scholar] [CrossRef]
- Liu, N.; Wang, Y.; An, X.; Qi, J. Study on the enhancement of antioxidant properties of rice bran using mixed-bacteria solid-state fermentation. Fermentation 2022, 8, 212. [Google Scholar] [CrossRef]
- Zhang, D.; Tan, B.; Zhang, Y.; Ye, Y.; Gao, K. Improved nutritional and antioxidant properties of hulless barley following solid-state fermentation with Saccharomyces cerevisiae and Lactobacillus plantarum. J. Food Process. Preserv. 2021, 46, e16245. [Google Scholar] [CrossRef]
- Kiros, T.G.; Nadege, R.; Marden, J.P.; Kuhn, G.; Catunda, F. Yeast proteins extracted from Saccharomyces cerevisiae as alternative sources of protein in swine nutrition. J. Anim. Sci. 2021, 99, 212. [Google Scholar] [CrossRef]
- Olasky, G.C.; Nicolás, E.M.; Angelis, M.S.; María, H.C.; Silvia, R. Meat Substitute Development from Fungal Protein (Aspergillus oryzae). Foods 2022, 11, 2940. [Google Scholar]
- Chen, L.; Madl, R.L.; Vadlani, P.V. Nutritional enhancement of soy meal via Aspergillus oryzae solid-state fermentation. Cereal Chem. 2013, 90, 529–534. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, Y.; Lu, Z.; Wang, Y. Solid-state fermentation of corn-soybean meal mixed feed with Bacillus subtilis and Enterococcus faecium for degrading antinutritional factors and enhancing nutritional value. J. Anim. Sci. Biotechnol. 2017, 8, 50. [Google Scholar] [CrossRef]
- Humer, E.; Schedle, K. Fermentation of food and feed: A technology for efficient utilization of macro and trace elements in monogastrics. J. Trace Elem. Med. Biol. 2016, 378, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Kwak, W.S.; Kim, Y.I.; Choi, D.Y.; Lee, Y.H. Effect of feeding mixed microbial culture fortified with trace minerals on ruminal fermentation, nutrient digestibility, nitrogen and trace mineral balance in sheep. J. Anim. Sci. Technol. 2016, 58, 21. [Google Scholar] [CrossRef]
- Shah, A.A.; Liu, Z.; Qian, C.; Wu, J.; Sultana, N.; Zhong, X. Potential effect of the microbial fermented feed utilization on physicochemical traits, antioxidant enzyme and trace mineral analysis in rabbit meat. J. Anim. Physiol. Anim. Nutr. 2020, 104, 767–775. [Google Scholar] [CrossRef]
- Upadhaya, S.D.; Ryu, J.H.; Kang, K.I.; Cho, S.J.; Kim, I.H. Effect of fermentation of soybean meal with varying protein solubility on ileal digestibility of nutrients in growing pigs. Anim. Prod. Sci. 2016, 156, 2023. [Google Scholar] [CrossRef]
- Lu, F.; Alenyorege, E.A.; Ouyang, N.; Zhou, A.; Ma, H. Simulated natural and high temperature solid-state fermentation of soybean meal: A comparative study regarding microorganisms, functional properties and structural characteristics. LWT—Food Sci. Technol. 2022, 159, 113125. [Google Scholar] [CrossRef]
- Ma, J.; Zhu, X.; Shi, L.; Ni, C.; Hou, J.; Cheng, J. Enhancement of soluble protein, polypeptide production and functional properties of heat-denatured soybean meal by fermentation of Monascus purpureus 04093. CyTA—J. Food 2019, 17, 1014–1022. [Google Scholar] [CrossRef]
- Olukomaiya, O.O.; Fernando, W.C.; Mereddy, R.; Li, X.; Sultanbawa, Y. Solid-state fermentation of canola meal with Aspergillus sojae, Aspergillus ficuum and their co-cultures: Effects on physicochemical, microbiological and functional properties. LWT—Food Sci. Technol. 2020, 127, 109362. [Google Scholar] [CrossRef]
Factors | Codes | Code Level | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Strain ratio | X1 | 1.5 (3:2) | 1.0 (2:2) | 0.5 (1:2) |
Inoculation amount (mL) | X2 | 2 | 3 | 4 |
Fermentation temperature (°C) | X3 | 30 | 34 | 38 |
Fermentation time (h) | X4 | 24 | 33 | 42 |
Number | X1 | X2 | X3 | X4 | Y1 | Y2 | Y3 | Y4 |
---|---|---|---|---|---|---|---|---|
1 | −1 | −1 | 0 | 0 | 15.43 | 28.11 | 92.97 | 3.34 |
2 | 1 | −1 | 0 | 0 | 14.37 | 28.90 | 90.36 | 4.07 |
3 | −1 | 1 | 0 | 0 | 14.52 | 30.78 | 90.98 | 4.14 |
4 | 1 | 1 | 0 | 0 | 10.33 | 27.36 | 97.99 | 2.71 |
5 | 0 | 0 | −1 | −1 | 9.58 | 29.70 | 95.38 | 3.93 |
6 | 0 | 0 | 1 | −1 | 10.28 | 25.95 | 97.79 | 3.84 |
7 | 0 | 0 | −1 | 1 | 15.97 | 35.24 | 93.78 | 4.07 |
8 | 0 | 0 | 1 | 1 | 35.81 | 72.39 | 91.16 | 2.82 |
9 | −1 | 0 | 0 | −1 | 12.39 | 31.78 | 99.40 | 3.70 |
10 | 1 | 0 | 0 | −1 | 13.85 | 32.65 | 95.38 | 3.78 |
11 | −1 | 0 | 0 | 1 | 41.65 | 65.10 | 91.77 | 3.56 |
12 | 1 | 0 | 0 | 1 | 19.11 | 46.31 | 92.57 | 3.03 |
13 | 0 | −1 | −1 | 0 | 10.89 | 28.07 | 92.37 | 3.59 |
14 | 0 | 1 | −1 | 0 | 9.63 | 25.28 | 90.56 | 3.18 |
15 | 0 | −1 | 1 | 0 | 15.18 | 29.28 | 90.36 | 3.81 |
16 | 0 | 1 | 1 | 0 | 10.09 | 32.40 | 90.16 | 3.40 |
17 | −1 | 0 | −1 | 0 | 12.90 | 24.61 | 92.57 | 3.44 |
18 | 1 | 0 | −1 | 0 | 10.63 | 29.45 | 91.57 | 3.30 |
19 | −1 | 0 | 1 | 0 | 28.25 | 58.18 | 91.97 | 3.18 |
20 | 1 | 0 | 1 | 0 | 19.65 | 41.52 | 90.56 | 3.13 |
21 | 0 | −1 | 0 | −1 | 11.15 | 25.57 | 92.57 | 3.93 |
22 | 0 | 1 | 0 | −1 | 12.48 | 29.49 | 98.98 | 4.10 |
23 | 0 | −1 | 0 | 1 | 49.87 | 64.68 | 94.58 | 3.89 |
24 | 0 | 1 | 0 | 1 | 22.54 | 44.36 | 87.75 | 3.51 |
25 | 0 | 0 | 0 | 0 | 18.89 | 36.94 | 93.98 | 3.67 |
26 | 0 | 0 | 0 | 0 | 20.35 | 36.48 | 94.38 | 3.58 |
27 | 0 | 0 | 0 | 0 | 24.79 | 42.15 | 96.37 | 3.87 |
28 | 0 | 0 | 0 | 0 | 19.77 | 39.28 | 94.58 | 3.90 |
29 | 0 | 0 | 0 | 0 | 19.07 | 35.07 | 93.98 | 3.81 |
Source | Sum of Squares | df | Mean Square | F Value | Prob > F |
---|---|---|---|---|---|
Y1 Model | 2356.92 | 14 | 168.35 | 6.88 | 0.0005 |
Residual | 342.78 | 14 | 24.48 | / | / |
Lack of fit | 319.21 | 10 | 31.92 | 5.42 | 0.0589 |
Pure error | 23.57 | 4 | 5.89 | / | / |
Cor total | 2699.7 | 28 | / | / | / |
R2 = 0.8730; RAdj2 = 0.7461; CV(%) = 27.1; RPred2 = 0.3053; Adeq Precision = 9.919 | |||||
Y2 Model | 4251.17 | 14 | 303.66 | 10.67 | <0.0001 |
Residual | 398.43 | 14 | 28.46 | / | / |
Lack of fit | 367.55 | 10 | 36.76 | 4.76 | 0.073 |
Pure error | 30.88 | 4 | 7.72 | / | / |
Cor total | 4649.6 | 28 | / | / | / |
R2 = 0.9143; RAdj2 = 0.8286; CV(%) = 14.36; RPred2 = 0.5343; Adeq Precision = 14.041 | |||||
Y3 Model | 199.01 | 14 | 14.21 | 6.9 | 0.0004 |
Residual | 28.85 | 14 | 2.06 | / | / |
Lack of fit | 24.92 | 10 | 2.49 | 2.53 | 0.1919 |
Pure error | 3.93 | 4 | 0.98 | / | / |
Cor total | 227.86 | 28 | / | / | / |
R2 = 0.8734; RAdj2 = 0.7467; CV(%) = 1.54; RPred2 = 0.3431; Adeq Precision = 10.914 | |||||
Y4 Model | 3.59 | 14 | 0.26 | 5.88 | 0.001 |
Residual | 0.61 | 14 | 0.044 | / | / |
Lack of fit | 0.54 | 10 | 0.054 | 2.89 | 0.1592 |
Pure error | 0.074 | 4 | 0.019 | / | / |
Cor total | 4.21 | 28 | / | / | / |
R2 = 0.8546; RAdj2 = 0.7092; CV(%) = 5.81; RPred2 = 0.2369; Adeq Precision = 8.976 |
Y1 | Y2 | Y3 | Y4 | |||||
---|---|---|---|---|---|---|---|---|
Factor | F value | Prob > F | F value | Prob > F | F value | Prob > F | F value | Prob > F |
Intercept | 6.87 | 0.0005 | 10.67 | <0.0001 | 6.88 | 0.0004 | 5.88 | 0.001 |
X1 | 4.71 | 0.0477 | 3.07 | 0.1018 | 0.06 | 0.8097 | 3.5 | 0.0826 |
X2 | 4.74 | 0.0471 | 0.65 | 0.4321 | 0.42 | 0.5295 | 4.86 | 0.0447 |
X3 | 8.39 | 0.0117 | 22.35 | 0.0003 | 0.72 | 0.411 | 3.34 | 0.0889 |
X4 | 45.16 | <0.0001 | 68.47 | <0.0001 | 31.41 | <0.0001 | 11.14 | 0.0049 |
X1X2 | 0.099 | 0.7573 | 0.16 | 0.6994 | 11.22 | 0.0048 | 26.85 | 0.0001 |
X1X3 | 0.41 | 0.5329 | 4.06 | 0.0636 | 0.02 | 0.8908 | 0.041 | 0.8418 |
X1X4 | 5.88 | 0.0295 | 3.39 | 0.0867 | 2.81 | 0.1156 | 2.16 | 0.164 |
X2X3 | 0.15 | 0.7046 | 0.31 | 0.5882 | 0.31 | 0.5849 | 0.0004 | 0.9849 |
X2X4 | 8.39 | 0.0117 | 5.16 | 0.0394 | 21.21 | 0.0004 | 1.8 | 0.2017 |
X3X4 | 3.74 | 0.0736 | 14.69 | 0.0018 | 3.05 | 0.1025 | 7.75 | 0.0146 |
X12 | 0.54 | 0.4758 | 0.03 | 0.8657 | 1.25 | 0.2822 | 11.05 | 0.005 |
X22 | 3.24 | 0.0933 | 10.14 | 0.0066 | 8.95 | 0.0097 | 0.031 | 0.8627 |
X32 | 5.25 | 0.038 | 0.87 | 0.368 | 10.91 | 0.0052 | 8.05 | 0.0132 |
X42 | 3.77 | 0.0724 | 10.98 | 0.0051 | 3.12 | 0.0992 | 0.87 | 0.3668 |
Regression Equation | R2 | IC50 (mg/mL) | ||
---|---|---|---|---|
DPPH free radical scavenging rate | APs | y = −1.2102x2 + 20.987x + 4.1638 | 0.9970 | 2.56 |
NSPs | y = −0.4579x2 + 13.977x − 1.7214 | 0.9982 | 4.31 | |
FHDPM | y = −1.2002x2 + 19.125x + 19.236 | 0.9914 | 1.82 | |
Hydroxyl free radical scavenging rate | APs | y = −2.1839x2 + 32.572x − 24.555 | 0.9924 | 2.82 |
NSPs | y = −10.784x2 + 63.632x +13.795 | 0.9874 | 0.64 | |
FHDPM | y = −0.4686x2 + 13.244x + 6.9326 | 0.9987 | 3.75 | |
Superoxide anion free radical scavenging rate | APs | y = −2.9775x2 + 24.782x + 31.27 | 0.9965 | 0.84 |
NSPs | y = −0.7168x2 + 13.326x + 31.508 | 0.9946 | 1.51 | |
FHDPM | y = −36.089x2 + 120.29x − 6.4993 | 0.9779 | 0.57 | |
Lipid peroxidation inhibition rate | APs | y = −0.7943x2 + 12.098x + 13.654 | 0.9973 | 4.12 |
NSPs | y = −1.4515x2 + 20.449x – 2.1251 | 0.9952 | 3.34 | |
FHDPM | y = −0.0067x2 + 4.2687x + 5.4067 | 0.9979 | 10.62 | |
Iron reducing power | APs | y = −0.0036x2 + 0.1303x − 0.0095 | 0.9986 | 4.46 |
NSPs | y = 0.0017x2 + 0.0413x − 0.0637 | 0.9959 | 9.74 | |
FHDPM | y = −0.0027x2 + 0.112x + 0.0128 | 0.9941 | 4.94 | |
Molybdenum reducing power | APs | y = −0.0091x2 + 0.4308x + 0.008 | 0.9990 | 1.17 |
NSPs | y = 0.0459x2 + 0.1557x + 0.2212 | 0.9995 | 1.30 | |
FHDPM | y = −0.0048x2 + 0.1482x + 0.2585 | 0.9824 | 1.73 | |
Iron ion chelating rate | APs | y = −0.2258x2 + 2.0863x + 47.53 | 0.9985 | 1.39 |
NSPs | y = −0.898x2 + 11.871x + 30.87 | 0.9923 | 1.88 | |
FHDPM | y = −0.3387x2 + 8.5743x + 13.675 | 0.9904 | 5.38 | |
Copper ion chelating rate | APs | y = −0.4724x2 + 8.8103x + 27.523 | 0.9986 | 3.05 |
NSPs | y = −3.0012x2 + 29.943x + 20.97 | 0.9937 | 1.09 | |
FHDPM | y = −1.1271x2 + 21.003x − 3.0002 | 0.9854 | 3.01 |
HDPM | FHDPM | HDPM | FHDPM | ||
---|---|---|---|---|---|
Aspartic acid (Asp) (%) | 5.90 | 6.50 | Tyrosine (Tyr) (%) | 1.64 | 1.96 |
Glutamic acid (Glu) (%) | 10.5 | 11.4 | Valine (Val) (%) | 1.96 | 2.30 |
Serine (Ser) (%) | 2.55 | 2.88 | Methionine (Met) (%) | 0.20 | 0.31 |
Glycine (Gly) (%) | 3.25 | 3.45 | Cysteine (Cys) (%) | 0.69 | 0.81 |
Histidine (His) (%) | 0.92 | 1.36 | Isoleucine (Ile) (%) | 1.56 | 1.79 |
Arginine (Arg) (%) | 5.77 | 6.00 | Leucine (Leu) (%) | 3.30 | 3.83 |
Threonine (Thr) (%) | 1.03 | 1.36 | Phenylalanine (Phe) (%) | 2.47 | 2.79 |
Alanine (Ala) (%) | 2.02 | 2.37 | Lysine (Lys) (%) | 1.79 | 1.87 |
Proline (Pro) (%) | 2.16 | 2.46 | Tryptophan (Trp) (%) | 0.24 | 0.26 |
Total amino acid (%) | 48.0 | 53.7 | Potassium (K) (mg/kg) | 12,839.2 | 8080.2 |
Calcium (Ca) (mg/kg) | 1497.4 | 1679.8 | Cuprum (Cu) (mg/kg) | 16.8 | 24.9 |
Zinc (Zn) (mg/kg) | 55.7 | 84.6 | Ferrum (Fe) (mg/kg) | 109.8 | 142.5 |
Selenium (Se) (mg/kg) | 0.17 | 0.29 | Manganese (Mn) (mg/kg) | 75.3 | 80.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Bi, J.; Song, Y.; Jiang, C.; Qi, H.; Chi, X.; Yang, W.; Shi, C.; Gong, Q.; Wang, M. Products and Properties of Components from Heat-Denatured Peanut Meal Following Solid-State Fermentation by Aspergillus oryzae and Saccharomyces cerevisiae. Fermentation 2023, 9, 425. https://doi.org/10.3390/fermentation9050425
Yu L, Bi J, Song Y, Jiang C, Qi H, Chi X, Yang W, Shi C, Gong Q, Wang M. Products and Properties of Components from Heat-Denatured Peanut Meal Following Solid-State Fermentation by Aspergillus oryzae and Saccharomyces cerevisiae. Fermentation. 2023; 9(5):425. https://doi.org/10.3390/fermentation9050425
Chicago/Turabian StyleYu, Lina, Jie Bi, Yu Song, Chen Jiang, Hongtao Qi, Xiaoyuan Chi, Weiqiang Yang, Chengren Shi, Qingxuan Gong, and Mingqing Wang. 2023. "Products and Properties of Components from Heat-Denatured Peanut Meal Following Solid-State Fermentation by Aspergillus oryzae and Saccharomyces cerevisiae" Fermentation 9, no. 5: 425. https://doi.org/10.3390/fermentation9050425
APA StyleYu, L., Bi, J., Song, Y., Jiang, C., Qi, H., Chi, X., Yang, W., Shi, C., Gong, Q., & Wang, M. (2023). Products and Properties of Components from Heat-Denatured Peanut Meal Following Solid-State Fermentation by Aspergillus oryzae and Saccharomyces cerevisiae. Fermentation, 9(5), 425. https://doi.org/10.3390/fermentation9050425