Improved Antioxidant Capacity of Akebia trifoliata Fruit Inoculated Fermentation by Plantilactobacillus plantarum, Mechanism of Anti-Oxidative Stress through Network Pharmacology, Molecular Docking and Experiment Validation by HepG2 Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Chemicals
2.3. Preparation and Sample Collection of SFAJ and IFAJ
2.4. Determination of PH and Total Acid Content
2.5. Determination of Bioactive Components
2.5.1. Determination of Phenol Content
2.5.2. Determination of Flavonoid Content
2.5.3. Determination of Terpenoid Content
2.6. Antioxidant Activity
2.6.1. DPPH Radical Scavenging Test
2.6.2. ABTS Radical Scavenging Test
2.6.3. Hydroxyl Radical Scavenging Test
2.7. Network Pharmacology and Molecular Docking Analysis
2.7.1. Acquisition and Analysis of Target Genes of Active Components and Oxidative Stress
2.7.2. Construction of PPI Network
2.7.3. GO and KEGG Pathway Enrichment Analysis
2.7.4. Molecular Docking
2.8. Protective Effect of SFAJ and IFAJ on Oxidative Stress in HepG2 Cells
2.8.1. Cell Culture
2.8.2. Cell Viability
2.8.3. Establishment of an Oxidative Stress Model
2.8.4. Effects of SFAJ and IFAJ on the Cell Viability of H2O2-Induced HepG2 Cells
2.8.5. Effects of SFAJ and IFAJ on Intracellular ROS Levels and the Activities of Antioxidant Enzymes in H2O2-Induced HepG2 Cells
2.9. Statistical Analysis
3. Results and Discussion
3.1. Changes in PH and Total Acid Content during Fermentation
3.2. Changes in Bioactive Components during Fermentation
3.2.1. Changes in Phenol Content during Fermentation
3.2.2. Changes in Flavonoid Content during Fermentation
3.2.3. Changes in Terpenoid Content during Fermentation
3.3. Changes in Antioxidant Activities during Fermentation
3.3.1. Changes in DPPH Radical Scavenging Activity during Fermentation
3.3.2. Changes in ABTS Radical Scavenging Activity during Fermentation
3.3.3. Changes in Hydroxyl Radical Scavenging Activity during Fermentation
3.4. Correlation Heatmap and Principal Component Analysis of Metabolites and Antioxidant Activities
3.5. Network Pharmacology and Molecular Docking Analysis
3.5.1. Target Genes Analysis of Active Components and Oxidative Stress
3.5.2. Analysis of the PPI Network
3.5.3. Analysis of GO and KEGG Pathway Enrichment
3.5.4. Molecular Docking
3.6. Protective Effect on H2O2-Induced Oxidative Stress Injury in HepG2 Cells
3.6.1. Cell Viability
3.6.2. Establishment of the Oxidative Stress Model
3.6.3. Effects of SFAJ and IFAJ on the Cell Viability of H2O2-Induced HepG2 Cells
3.6.4. Effects of SFAJ and IFAJ on Intracellular ROS Level and the Activities of Antioxidant Enzymes in H2O2-Induced HepG2 Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maciąg, D.; Dobrowolska, E.; Sharafan, M.; Ekiert, H.; Tomczyk, M.; Szopa, A. Akebia quinata and Akebia trifoliata—A review of phytochemical composition, ethnopharmacological approaches and biological studies. J. Ethnopharmacol. 2021, 280, 114486. [Google Scholar] [CrossRef]
- Wang, M.; Guo, X.; Song, J. Analysis of the shape characteristics and nutritional components of Akebia trifoliata in Qinba Mountains. Front. Plant Sci. 2022, 13, 975677. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhou, X.; Zheng, Y.; Wang, D.; Deng, Y.; Zhao, Y. Impact of ultrasonication/shear emulsifying/microwave-assisted enzymatic extraction on rheological, structural, and functional properties of Akebia trifoliata (Thunb.) Koidz. seed protein isolates. Food Hydrocoll. 2021, 112, 106355–106364. [Google Scholar] [CrossRef]
- Wang, X.; Yu, N.; Wang, Z.; Qiu, T.; Jiang, L.; Zhu, X.; Sun, Y.; Xiong, H. Akebia trifoliata pericarp extract ameliorates inflammation through NF-κB/MAPKs signaling pathways and modifies gut microbiota. Food Funct. 2020, 11, 4682–4696. [Google Scholar] [CrossRef]
- Wang, J.; Ren, H.; Xu, Q.; Zhou, Z.; Wu, P.; Wei, X.; Cao, Y.; Chen, X.; Tan, J. Antibacterial oleanane-type triterpenoids from pericarps of Akebia trifoliata. Food Chem. 2015, 168, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xu, Q.; Zheng, M.; Ren, H.; Lei, T.; Wu, P.; Zhou, Z.; Wei, X.; Tan, J. Bioactive 30-noroleanane triterpenes from the pericarps of Akebia trifoliata. Molecules 2014, 19, 4301–4312. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yu, N.; Peng, H.; Hu, Z.; Sun, Y.; Zhu, X.; Jiang, L.; Xiong, H. The profiling of bioactives in Akebia trifoliata pericarp and metabolites, bioavailability and in vivo anti-inflammatory activities in DSS-induced colitis mice. Food Funct. 2019, 10, 3977–3991. [Google Scholar] [CrossRef]
- Bian, G.; Yang, J.; Elango, J.; Wu, W.; Bao, B.; Bao, C. Natural triterpenoids isolated from Akebia trifoliata stem explants exert a hypoglycemic effect via α-glucosidase inhibition and glucose uptake stimulation in insulin-resistant HepG2 cells. Chem. Biodivers. 2021, 18, e2001030. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, S.; Song, X. Research advances of Akebia trifoliate (Thunb.) Koidz and its fruits. Mod. Agric. Sci. Technol. 2018, 22, 252–253. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, M.; Mujumdar, A.S.; Gao, Z. Recent research process of fermented plant extract: A review. Trends Food Sci. Technol. 2017, 65, 40–48. [Google Scholar] [CrossRef]
- Zhao, F.; Mo, Y.; Jiang, Z.; Mao, J. Research progress on functional microbial ferment product. Food Ferment. Ind. 2016, 42, 283–287. [Google Scholar] [CrossRef]
- Zou, S.; Xu, Y.; Huang, B. Optimization of the quality of chestnut rose jiaosu compound beverage based on probiotic strains and fermentation technology. J. Food Qual. 2022, 2022, 8922505. [Google Scholar] [CrossRef]
- Jiang, J.; Li, W.; Yu, S. The effect of inoculation Leuconostoc mesenteroides and Lactiplantibacillus planetarium on the quality of Pleurotus eryngii Jiaosu. LWT Food Sci. Technol. 2022, 163, 113445. [Google Scholar] [CrossRef]
- Fang, S.; Jin, Z.; Xu, Y.; Sha, R.; Mao, J.; Jiang, Z. Chinese bayberry Jiaosu fermentation-changes of mycobiota composition and antioxidant properties. Int. J. Food Eng. 2021, 17, 455–463. [Google Scholar] [CrossRef]
- QB/T 5324-2018; Guideline for Jiaosu products classification. Ministry of Industry and Information Technology of the People’s Republic of China: Beijing, China, 2018.
- QB/T 5323-2018; Plant Jiaosu. Ministry of Industry and Information Technology of the People’s Republic of China: Beijing, China, 2018.
- Li, J.; Gu, Y.; Wang, Z.; Jiang, Z.; Sha, R.; Mao, J. The Changes of antioxidant activity of Dendrobium huoshanense Jiaosu. J. Chin. Inst. Food Sci. Technol. 2023, 23, 80–89. [Google Scholar]
- Li, X.; He, T.; Mao, Y.; Mao, J.; Lai, X.; Tu, H.; Zhou, Y.; Sha, R. Changes in physicochemical properties, metabolites and antioxidant activity of edible grass during spontaneous fermentation. Fermentation 2023, 9, 377. [Google Scholar] [CrossRef]
- Chen, B.; Zheng, M.; Deng, Z.; Li, H. Optimization of fermentation medium and the high-density culture conditions for Lactobacillus plantarum ZJ316. J. Chin. Inst. Food Sci. Technol. 2020, 20, 65–74. [Google Scholar] [CrossRef]
- Yi, O.S.; Meyer, A.S.; Frankel, E.N. Antioxidant activity of grape extracts in a lecithin liposome system. J. Am. Oil Chem. Soc. 1997, 74, 1301–1307. [Google Scholar] [CrossRef]
- Wolfe, K.; Wu, X.; Liu, R. Antioxidant activity of apple peels. J. Agric. Food. Chem. 2003, 51, 609–614. [Google Scholar] [CrossRef]
- Fang, P.; He, P. Ginseng total saponin content measured with vitriol-carbinol in Jinjian capsule. J. Zhejiang Chin. Med. Univ. 2011, 35, 747–752. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1990, 26, 1231–1237. [Google Scholar] [CrossRef]
- Liu, W.; Xu, J.; Jing, P.; Yao, W.; Gao, X.; Yu, L. Preparation of a hydroxypropyl Ganoderma lucidum polysaccharide and its physicochemical properties. Food Chem. 2010, 122, 965–971. [Google Scholar] [CrossRef]
- Jimenez-Lopez, J.; Ruiz-Medina, A.; Ortega-Barrales, P.; Llorent-Martinez, E.J. Phytochemical profile and antioxidant activity of caper berries (Capparis spinosa L.): Evaluation of the influence of the fermentation process. Food Chem. 2018, 250, 54–59. [Google Scholar] [CrossRef]
- Wei, M.; Shaoyang, W.; Gu, P.; Ouyang, X.; Liu, S.; Li, Y.; Zhang, B.; Zhu, B. Comparison of physicochemical indexes, amino acids, phenolic compounds and volatile compounds in bog bilberry juice fermented by Lactobacillus plantarum under different pH conditions. J. Food Sci. Technol. 2018, 55, 2240–2250. [Google Scholar] [CrossRef] [PubMed]
- Chrząszcz, M.; Krzemińska, B.; Celiński, R.; Szewczyk, K. Phenolic composition and antioxidant activity of plants belonging to the Cephalaria (Caprifoliaceae) genus. Plants 2021, 10, 952. [Google Scholar] [CrossRef]
- Wang, D.; Wang, Y.; Zhang, Y.; Zuo, Z.; Liu, S.; Zhang, Y.; Li, Z. Components and antioxidant activity during the fermentation process of kidney bean Jiaosu. Sci. Technol. Food Ind. 2021, 42, 18–24. [Google Scholar] [CrossRef]
- Liang, Y. Purifying and bacteriostatic action of the chlorogenic acid of huge dandelion. Food Sci. Technol. 2013, 38, 227–230. [Google Scholar] [CrossRef]
- Tosi, E.A.; Ré, E.; Ortega, M.E.; Cazzoli, A.F. Food preservative based on propolis: Bacteriostatic activity of propolis polyphenols and flavonoids upon Escherichia coli. Food Chem. 2007, 104, 1025–1029. [Google Scholar] [CrossRef]
- Naksuriya, O.; Daowtak, K.; Tima, S.; Okonogi, S.; Mueller, M.; Toegel, S.; Khonkarn, R. Hydrolyzed flavonoids from cyrtosperma johnstonii with superior antioxidant, antiproliferative, and anti-inflammatory potential for cancer prevention. Molecules 2022, 27, 3226. [Google Scholar] [CrossRef]
- Shahat, A.N.E.; Azeem, A.M.A.; Mekawey, H.M.S.; Abd El-Megid, M.H.M. Studying the effect of γ-irradiated celery leaves on antioxidant status and cardiac enzymes in hypercholesterolemic rats. Indian J. Anim. Res. 2018, 52, 502–507. [Google Scholar] [CrossRef]
- Jin, K.; Xia, H.; Liu, Y.; Li, J.; Du, G.; Lv, X.; Liu, L. Compartmentalization and transporter engineering strategies for terpenoid synthesis. Microb. Cell Fact. 2022, 21, 92. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, M.; Nankai, H.; Kameoka, H. Biotransformation of acyclic terpenoid (2E,6E)-farnesol by plant pathogenic fungus Glomerella cingulata. Phytochemistry 1996, 43, 105–109. [Google Scholar] [CrossRef]
- Dettrakul, S.; Surerum, S.; Rajviroongit, S.; Kittakoop, P. Biomimetic transformation and biological activities of globiferin, a terpenoid benzoquinone from Cordia globifera. J. Nat. Prod. 2009, 72, 861–865. [Google Scholar] [CrossRef]
- Williams, W.B.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Jiang, Z.; Mao, J.; Huang, J.; Wu, Y. Changes in antioxidant activity of grape-ferment in vitro during natural fermentation process. J. Chin. Inst. Food Sci. Technol. 2014, 14, 29–34. [Google Scholar] [CrossRef]
- Fereidoon, S.; Cesarettin, A.; Liyana-Pathirana, C.M. Antioxidant phytochemicals in hazelnut kernel (Corylus avellana L.) and hazelnut byproducts. J. Agric. Food. Chem. 2007, 55, 1212–1220. [Google Scholar] [CrossRef]
- Saravanan, S.; Parimelazhagan, T. In Vitro antioxidant, antimicrobial and anti-diabetic properties of polyphenols of Passiflora ligularis Juss. fruit pulp. Food Sci. Hum. Wellness 2014, 3, 56–64. [Google Scholar] [CrossRef]
- Hagerman, A.E.; Riedl, K.M.; Jones, G.A.; Sovik, K.N.; Ritchard, N.T.; Hartzfeld, P.W.; Riechel, T.L. High molecular weight plant polyphenolics (tannins) as biological antioxidants. J. Agric. Food. Chem. 1998, 46, 1887–1892. [Google Scholar] [CrossRef]
- Erel, O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef]
- Hochstein, P.; Atallah, A.S. The nature of oxidants and antioxidant systems in the inhibition of mutation and cancer. Mutat. Res. Fundam. Mol. Mech. Mutagen. 1988, 202, 363–375. [Google Scholar] [CrossRef]
- Suriyaprom, S.; Mosoni, P.; Leroy, S.; Kaewkod, T.; Desvaux, M.; Tragoolpua, Y. Antioxidants of fruit extracts as antimicrobial agents against pathogenic bacteria. Antioxidants 2022, 11, 602. [Google Scholar] [CrossRef]
- Yang, Z.; Li, H.; Wang, L.; Li, Y.; Lu, S.; Wen, X.; Wang, J.; Daikonya, A.; Kitanaka, S. Triterpenoids from Hippophae rhamnoides L. and their nitric oxide production-inhibitory and DPPH radical-scavenging activities. Chem. Pharm. Bull. 2007, 55, 15–18. [Google Scholar] [CrossRef]
- Rajan, M.; Andrade, J.K.; Barros, R.G.; Farias Lima Guedes, T.J.; Narain, N. Enhancement of polyphenolics and antioxidant activities of jambolan (Syzygium cumini) fruit pulp using solid state fermentation by Aspergillus niger and A. flavus. Biocatal. Agric. Biotechnol. 2023, 47, 102589. [Google Scholar] [CrossRef]
- Zhang, S.; Hou, Y.; Liu, S.; Guo, S.; Ho, C.; Bai, N. Exploring active ingredients, beneficial effects, and potential mechanism of Allium tenuissimum L. flower for treating T2DM mice based on network pharmacology and gut microbiota. Nutrients 2022, 14, 3980. [Google Scholar] [CrossRef] [PubMed]
- Hanson, R.L.; Batchelor, E. Coordination of MAPK and p53 dynamics in the cellular responses to DNA damage and oxidative stress. Mol. Syst. Biol. 2022, 18, e11401. [Google Scholar] [CrossRef]
- Zeng, H.; Chen, S.; Lu, X.; Yan, Z. Investigating the molecular mechanism of iguratimod act on SLE using network pharmacology and molecular docking analysis. Front. Bioinformat. 2022, 2, 932114. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, W.; Wang, Q.; Wang, D.; Dong, D.; Mu, H.; Ye, X.; Duan, J. Purification, antioxidant and immunological activities of polysaccharides from Actinidia Chinensis roots. Int. J. Biol. Macromol. 2015, 72, 975–983. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 2015, 97, 55–74. [Google Scholar] [CrossRef]
- Ji, M.; Gong, X.; Li, X.; Wang, C.; Li, M. Advanced research on the antioxidant activity and mechanism of polyphenols from Hippophae species-A review. Molecules 2020, 25, 917. [Google Scholar] [CrossRef]
- You, S.Q.; Shi, X.Q.; Yu, D.; Zhao, D.; An, Q.; Wang, D.; Zhang, J.; Li, M.; Wang, C. Fermentation of Panax notoginseng root extract polysaccharides attenuates oxidative stress and promotes type I procollagen synthesis in human dermal fibroblast cells. BMC Complement. Med. Ther. 2021, 21, 34. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Z.; Liu, P.P.; Fu, H.; Wang, D.D.; Zhao, D.; Zhang, J.; Wang, C.; Li, M. Effects of Lactobacillus kefiri fermentation supernatant on skin aging caused by oxidative stress. J. Funct. Foods 2022, 96, 105222. [Google Scholar] [CrossRef]
Fermentation Time (d) | SFAJ | IFAJ | ||||
---|---|---|---|---|---|---|
FAC1 | FAC2 | CEI | FAC1 | FAC2 | CEI | |
0 | −2.80 | 1.28 | −2.52 | −2.66 | 1.80 | −2.22 |
6 | −1.09 | −0.35 | −1.04 | −1.11 | −0.49 | −1.05 |
12 | −0.20 | −1.49 | −0.29 | −0.39 | −1.33 | −0.48 |
18 | 0.15 | −1.04 | 0.07 | −0.12 | −1.29 | −0.24 |
24 | 0.49 | 0.07 | 0.46 | 0.64 | 0.45 | 0.62 |
30 | 0.47 | 0.90 | 0.50 | 0.46 | 0.32 | 0.44 |
36 | 0.49 | 0.91 | 0.52 | 0.46 | 0.17 | 0.43 |
42 | 0.70 | 0.47 | 0.68 | 0.68 | −0.16 | 0.60 |
48 | 0.68 | 0.55 | 0.67 | 0.68 | 0.31 | 0.64 |
54 | 0.63 | 0.62 | 0.63 | 0.77 | 0.67 | 0.76 |
60 | 0.64 | 0.52 | 0.63 | 0.86 | 0.68 | 0.84 |
66 | 0.58 | 0.55 | 0.57 | 0.77 | 0.85 | 0.78 |
72 | 0.71 | 0.59 | 0.70 | 0.89 | 0.93 | 0.89 |
Component ID | Component | Oral Bioavailability (%) | Drug-Likeness | Target Genes |
---|---|---|---|---|
MOL010928 | [(2R)-2,3-dihydroxypropyl] octadecanoate | 25.20 | 0.29 | N/A * |
MOL010929 | glyceryl linolenate | 38.14 | 0.31 | PTGS1, PTGS2 |
MOL000263 | oleanolic acid | 29.02 | 0.76 | CASP9, CASP3, Hmox1, ICAM1, AMY2 |
MOL002882 | [(2R)-2,3-dihydroxypropyl] (Z)-octadec-9-enoate | 34.13 | 0.30 | N/A |
MOL000357 | sitogluside | 20.63 | 0.62 | PGR, PTGS1, Chrm3, Kcnh2, CHRM1, SCN5A, PTGS2, Htr3a, RXRA, Adra1b, ADRB2, Adra1d, NCOA2, CAM |
MOL000358 | β-sitosterol | 36.91 | 0.75 | PGR, NCOA2, PTGS1, PTGS2, Kcnh2, Chrm3, CHRM1, SCN5A, CHRM4, ADRA1A, CHRM2, Adra1b ADRB2, CHRNA2, SLC6A4, OPRM1, GABRA1, BCL2, BAX, CASP9, CASP3, CASP8, PRKCA, PON1, MAP2 |
MOL000359 | sitosterol | 36.91 | 0.75 | PGR, NCOA2, NR3C2 |
MOL000551 | hederagenol | 22.42 | 0.74 | N/A |
MOL000069 | palmitic acid | 19.3 | 0.1 | CTSD, ADH1C, PTGS1, PTGS2, RHO, NCOA2, BCL2, Il10, TNF, SLC22A5, PCYT1A, NCOA2 |
MOL007254 | arjunolic acid | 23.22 | 0.72 | N/A |
MOL008121 | 2-mono-olein | 34.23 | 0.29 | NCOA2 |
MOL008218 | 1-mono-olein | 34.13 | 0.30 | N/A |
Active Component | Target Genes | PDB ID | Binding Energy (kcal·mol−1) | Inhibition Constant (μM) |
---|---|---|---|---|
glyceryl linolenate | PTGS2 | 5IKQ | −1.22 | 127.75 |
β-sitosterol | PTGS2 | 5IKQ | −6.23 | 27.02 |
β-sitosterol | CASP3 | 7SEO | −5.22 | 148.21 |
β-sitosterol | CASP8 | 6X8H | −6.19 | 28.88 |
β-sitosterol | CASP9 | 2AR9 | −5.86 | 50.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Wang, Z.; Dai, J.; Sha, R.; Mao, J.; Mao, Y.; Cui, Y. Improved Antioxidant Capacity of Akebia trifoliata Fruit Inoculated Fermentation by Plantilactobacillus plantarum, Mechanism of Anti-Oxidative Stress through Network Pharmacology, Molecular Docking and Experiment Validation by HepG2 Cells. Fermentation 2023, 9, 432. https://doi.org/10.3390/fermentation9050432
Sun Y, Wang Z, Dai J, Sha R, Mao J, Mao Y, Cui Y. Improved Antioxidant Capacity of Akebia trifoliata Fruit Inoculated Fermentation by Plantilactobacillus plantarum, Mechanism of Anti-Oxidative Stress through Network Pharmacology, Molecular Docking and Experiment Validation by HepG2 Cells. Fermentation. 2023; 9(5):432. https://doi.org/10.3390/fermentation9050432
Chicago/Turabian StyleSun, Yuhao, Zhenzhen Wang, Jing Dai, Ruyi Sha, Jianwei Mao, Yangchen Mao, and Yanli Cui. 2023. "Improved Antioxidant Capacity of Akebia trifoliata Fruit Inoculated Fermentation by Plantilactobacillus plantarum, Mechanism of Anti-Oxidative Stress through Network Pharmacology, Molecular Docking and Experiment Validation by HepG2 Cells" Fermentation 9, no. 5: 432. https://doi.org/10.3390/fermentation9050432
APA StyleSun, Y., Wang, Z., Dai, J., Sha, R., Mao, J., Mao, Y., & Cui, Y. (2023). Improved Antioxidant Capacity of Akebia trifoliata Fruit Inoculated Fermentation by Plantilactobacillus plantarum, Mechanism of Anti-Oxidative Stress through Network Pharmacology, Molecular Docking and Experiment Validation by HepG2 Cells. Fermentation, 9(5), 432. https://doi.org/10.3390/fermentation9050432