Thermophilic Dark Fermentation for Simultaneous Mixed Volatile Fatty Acids and Biohydrogen Production from Food Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Food Waste and Inoculum Preparation
2.2. Batch Dark Fermentation Test
2.2.1. Performance Test for Hydrogen Production Using Pretreated Sludge
2.2.2. Batch VFAs Production at Various Initial Food Waste Concentrations
2.3. CSTR Start-Up and Operation
2.4. Analytical Methods
2.5. Bacteria Community Analysis
3. Results and Discussion:
3.1. Performance of Digested Sludge Pretreated by Load Shock Method
3.2. Batch Dark Fermentation of Food Waste at Various Initial Loadings
3.3. Dark Fermentation of Food Waste in the CSTR
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thanomnim, B.; Papong, S.; Onbhuddha, R. The methodology to evaluate food waste generation with existing data in Thailand. Thai Environ. Eng. J. 2022, 36, 1–9. [Google Scholar]
- Nam, J.-Y. Optimum Conditions for Enhanced Biohydrogen Production from a Mixture of Food Waste and Sewage Sludge with Alkali Pretreatment. Energies 2023, 16, 3281. [Google Scholar] [CrossRef]
- Ong, K.L.; Kaur, G.; Pensupa, N.; Uisan, K.; Lin, C.S.K. Trends in food waste valorization for the production of chemicals, materials and fuels: Case study South and Southeast Asia. Bioresour. Technol. 2018, 248, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Atasoy, M.; Owusu-Agyeman, I.; Plaza, E.; Cetecioglu, Z. Bio-based volatile fatty acid production and recovery from waste streams: Current status and future challenges. Bioresour. Technol. 2018, 268, 773–786. [Google Scholar] [CrossRef] [PubMed]
- Banmairuroy, W.; Kritjaroen, T.; Homsombat, W. The effect of knowledge-oriented leadership and human resource development on sustainable competitive advantage through organizational innovation’s component factors: Evidence from Thailand’s new S-curve industries. Asia Pac. Manag. Rev. 2022, 27, 200–209. [Google Scholar] [CrossRef]
- Rodríguez, J.; Kleerebezem, R.; Lema, J.M.; van Loosdrecht, M.C. Modeling product formation in anaerobic mixed culture fermentations. Biotechnol. Bioeng. 2006, 93, 592–606. [Google Scholar] [CrossRef]
- Gottardo, M.; Dosta, J.; Cavinato, C.; Crognale, S.; Tonanzi, B.; Rossetti, S.; Bolzonella, D.; Pavan, P.; Valentino, F. Boosting butyrate and hydrogen production in acidogenic fermentation of food waste and sewage sludge mixture: A pilot scale demonstration. J. Clean. Prod. 2023, 404, 136919. [Google Scholar] [CrossRef]
- Chen, H.; Yang, T.; Shen, Z.; Yang, E.; Liu, K.; Wang, H.; Chen, J.; Sanjaya, E.H.; Wu, S. Can digestate recirculation promote biohythane production from two-stage co-digestion of rice straw and pig manure? J. Environ. Manag. 2022, 319, 115655. [Google Scholar] [CrossRef]
- Zhou, M.; Yan, B.; Wong, J.W.; Zhang, Y. Enhanced volatile fatty acids production from anaerobic fermentation of food waste: A mini-review focusing on acidogenic metabolic pathways. Bioresour. Technol. 2018, 248, 68–78. [Google Scholar] [CrossRef]
- Liu, H.; Han, P.; Liu, H.; Zhou, G.; Fu, B.; Zheng, Z. Full-scale production of VFAs from sewage sludge by anaerobic alkaline fermentation to improve biological nutrients removal in domestic wastewater. Bioresour. Technol. 2018, 260, 105–114. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, Y.; Dai, K.; Shen, N.; Zeng, R.J. The glucose metabolic distribution in thermophilic (55 °C) mixed culture fermentation: A chemostat study. Int. J. Hydrogen Energy 2015, 40, 919–926. [Google Scholar] [CrossRef]
- Strazzera, G.; Battista, F.; Garcia, N.H.; Frison, N.; Bolzonella, D. Volatile fatty acids production from food wastes for biorefinery platforms: A review. J. Environ. Manag. 2018, 226, 278–288. [Google Scholar] [CrossRef]
- Temudo, M.F.; Muyzer, G.; Kleerebezem, R.; van Loosdrecht, M. Diversity of microbial communities in open mixed culture fermentations: Impact of the pH and carbon source. Appl. Microbiol. Biotechnol. 2008, 80, 1121–1130. [Google Scholar] [CrossRef] [Green Version]
- Kongjan, P.; Sompong, O.; Angelidaki, I. Biohydrogen production from desugared molasses (DM) using thermophilic mixed cultures immobilized on heat treated anaerobic sludge granules. Int. J. Hydrogen Energy 2011, 36, 14261–14269. [Google Scholar] [CrossRef]
- Villanueva-Galindo, E.; Vital-Jácome, M.; Moreno-Andrade, I. Dark fermentation for H2 production from food waste and novel strategies for its enhancement. Int. J. Hydrogen Energy 2023, 48, 9957–9970. [Google Scholar] [CrossRef]
- Luo, L.; Sriram, S.; Johnravindar, D.; Martin, T.L.P.; Wong, J.W.; Pradhan, N. Effect of inoculum pretreatment on the microbial and metabolic dynamics of food waste dark fermentation. Bioresour. Technol. 2022, 358, 127404. [Google Scholar] [CrossRef]
- Raposo, F.; Fernández-Cegrí, V.; De la Rubia, M.; Borja, R.; Béline, F.; Cavinato, C.; Demirer, G.; Fernández, B.; Fernández-Polanco, M.; Frigon, J. Biochemical methane potential (BMP) of solid organic substrates: Evaluation of anaerobic biodegradability using data from an international interlaboratory study. J. Chem. Technol. Biotechnol. 2011, 86, 1088–1098. [Google Scholar] [CrossRef]
- Linke, B. Kinetic study of thermophilic anaerobic digestion of solid wastes from potato processing. Biomass Bioenergy 2006, 30, 892–896. [Google Scholar] [CrossRef]
- Kongjan, P.; Sama, K.; Sani, K.; Jariyaboon, R.; Reungsang, A. Feasibility of bio-hythane production by co-digesting skim latex serum (SLS) with palm oil mill effluent (POME) through two-phase anaerobic process. Int. J. Hydrogen Energy 2018, 43, 9577–9590. [Google Scholar] [CrossRef]
- Angenent, L.T.; Karim, K.; Al-Dahhan, M.H.; Wrenn, B.A.; Domíguez-Espinosa, R. Production of bioenergy and biochemicals from industrial and agricultural wastewater. TRENDS Biotechnol. 2004, 22, 477–485. [Google Scholar] [CrossRef]
- Rice, E.W.; Bridgewater, L.; Association, A.P.H. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Kaparaju, P.; Serrano, M.; Thomsen, A.B.; Kongjan, P.; Angelidaki, I. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour. Technol. 2009, 100, 2562–2568. [Google Scholar] [CrossRef] [PubMed]
- Kongjan, P.; O-Thong, S.; Kotay, M.; Min, B.; Angelidaki, I. Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture. Biotechnol. Bioeng. 2010, 105, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Paritosh, K.; Kushwaha, S.K.; Yadav, M.; Pareek, N.; Chawade, A.; Vivekanand, V. Food waste to energy: An overview of sustainable approaches for food waste management and nutrient recycling. BioMed Res. Int. 2017, 2017, 2370927. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Andrade, I.; Berrocal-Bravo, M.J.; Valdez-Vazquez, I. Biohydrogen production from food waste and waste activated sludge in codigestion: Influence of organic loading rate and changes in microbial community. J. Chem. Technol. Biotechnol. 2023, 98, 230–237. [Google Scholar] [CrossRef]
- Yahya, M.; Herrmann, C.; Ismaili, S.; Jost, C.; Truppel, I.; Ghorbal, A. Kinetic studies for hydrogen and methane co-production from food wastes using multiple models. Biomass Bioenergy 2022, 161, 106449. [Google Scholar] [CrossRef]
- Kotsopoulos, T.A.; Zeng, R.J.; Angelidaki, I. Biohydrogen production in granular up-flow anaerobic sludge blanket (UASB) reactors with mixed cultures under hyper-thermophilic temperature (70 °C). Biotechnol. Bioeng. 2006, 94, 296–302. [Google Scholar] [CrossRef]
- Kim, S.-H.; Kumar, G.; Chen, W.-H.; Khanal, S.K. Renewable hydrogen production from biomass and wastes (ReBioH2-2020). Bioresour. Technol. 2021, 331, 125024. [Google Scholar] [CrossRef]
- Riondet, C.; Cachon, R.M.; Waché, Y.; Alcaraz, G.R.; Diviès, C. Extracellular oxidoreduction potential modifies carbon and electron flow in Escherichia coli. J. Bacteriol. 2000, 182, 620–626. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, T.R.; Cavalcante, W.A.; de Oliveira, G.H.D.; Zaiat, M.; Ribeiro, R. Modeling dark fermentation of cheese whey for H2 and n-butyrate production considering the chain elongation perspective. Bioresour. Technol. Rep. 2022, 17, 100940. [Google Scholar] [CrossRef]
- Yasser Farouk, R.; Mostafa, E.; Wang, Y. Evaluation of hydrogen and volatile fatty acids production system from food waste. Biomass Convers. Biorefinery 2023, 13, 5253–5259. [Google Scholar] [CrossRef]
- Stamper, D.M.; Walch, M.; Jacobs, R.N. Bacterial population changes in a membrane bioreactor for graywater treatment monitored by denaturing gradient gel electrophoretic analysis of 16S rRNA gene fragments. Appl. Environ. Microbiol. 2003, 69, 852–860. [Google Scholar] [CrossRef] [Green Version]
- Stoklosa, R.J.; Moore, C.; Latona, R.J.; Nghiem, N.P. Butyric acid generation by Clostridium tyrobutyricum from low-moisture anhydrous ammonia (LMAA) pretreated sweet sorghum bagasse. Appl. Biochem. Biotechnol. 2021, 193, 761–776. [Google Scholar] [CrossRef]
- Ahmad, A.; Banat, F.; Taher, H. Enhanced lactic acid production from food waste in dark fermentation with indigenous microbiota. Biomass Convers. Biorefinery 2022, 12, 3425–3434. [Google Scholar] [CrossRef]
- Laothanachareon, T.; Kanchanasuta, S.; Mhuanthong, W.; Phalakornkule, C.; Pisutpaisal, N.; Champreda, V. Analysis of microbial community adaptation in mesophilic hydrogen fermentation from food waste by tagged 16S rRNA gene pyrosequencing. J. Environ. Manag. 2014, 144, 143–151. [Google Scholar] [CrossRef]
- Batstone, D.J.; Keller, J.; Angelidaki, I.; Kalyuzhnyi, S.; Pavlostathis, S.; Rozzi, A.; Sanders, W.; Siegrist, H.; Vavilin, V. The IWA anaerobic digestion model no 1 (ADM1). Water Sci. Technol. 2002, 45, 65–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nichols, D.; Bowman, J.; Sanderson, K.; Nichols, C.M.; Lewis, T.; McMeekin, T.; Nichols, P.D. Developments with Antarctic microorganisms: Culture collections, bioactivity screening, taxonomy, PUFA production and cold-adapted enzymes. Curr. Opin. Biotechnol. 1999, 10, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Huang, R.; Wu, J.; Zhang, W.; Han, Y.; Xiao, B.; Wang, D.; Zhou, Y.; Liu, B.; Yu, G. Biohythane production and microbial characteristics of two alternating mesophilic and thermophilic two-stage anaerobic co-digesters fed with rice straw and pig manure. Bioresour. Technol. 2021, 320, 124303. [Google Scholar] [CrossRef] [PubMed]
- Martins, I.; Surra, E.; Ventura, M.; Lapa, N. BioH2 from Dark Fermentation of OFMSW: Effect of the Hydraulic Retention Time and Organic Loading Rate. Appl. Sci. 2022, 12, 4240. [Google Scholar] [CrossRef]
- Atasoy, M.; Eyice, O.; Schnürer, A.; Cetecioglu, Z. Volatile fatty acids production via mixed culture fermentation: Revealing the link between pH, inoculum type and bacterial composition. Bioresour. Technol. 2019, 292, 121889. [Google Scholar] [CrossRef]
- Lay, J.J. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol. Bioeng. 2000, 68, 269–278. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, Y.; Dai, K.; Zeng, R.J. The chemostat study of metabolic distribution in extreme-thermophilic (70 °C) mixed culture fermentation. Appl. Microbiol. Biotechnol. 2014, 98, 10267–10273. [Google Scholar] [CrossRef] [PubMed]
- Capilla, M.; Silvestre, C.; Valles, A.; Álvarez-Hornos, F.J.; San-Valero, P.; Gabaldón, C. The Influence of Sugar Composition and pH Regulation in Batch and Continuous Acetone–Butanol–Ethanol Fermentation. Fermentation 2022, 8, 226. [Google Scholar] [CrossRef]
- Li, J.; Chi, X.; Zhang, Y.; Wang, X. Enhanced coproduction of hydrogen and butanol from rice straw by a novel two-stage fermentation process. Int. Biodeterior. Biodegrad. 2018, 127, 62–68. [Google Scholar] [CrossRef]
- Monir, M.U.; Abd Aziz, A.; Yousuf, A.; Alam, M.Z. Hydrogen-rich syngas fermentation for bioethanol production using Sacharomyces cerevisiea. Int. J. Hydrogen Energy 2020, 45, 18241–18249. [Google Scholar] [CrossRef]
- Arslan, K.; Bayar, B.; Abubackar, H.N.; Veiga, M.C.; Kennes, C. Solventogenesis in Clostridium aceticum producing high concentrations of ethanol from syngas. Bioresour. Technol. 2019, 292, 121941. [Google Scholar] [CrossRef]
- Vu, D.H.; Mahboubi, A.; Root, A.; Heinmaa, I.; Taherzadeh, M.J.; Åkesson, D. Application of Immersed Membrane Bioreactor for Semi-Continuous Production of Polyhydroxyalkanoates from Organic Waste-Based Volatile Fatty Acids. Membranes 2023, 13, 569. [Google Scholar] [CrossRef]
Characteristic | Unit | Food Waste | Original Inoculum |
---|---|---|---|
pH | - | - | 7.1 ± 0.03 |
Total solid (TS) | % (w/w) | 20.93 ± 1.83 | 5.64 ± 0.78 |
Volatile solid (VS) | % (w/w) | 20.33 ± 1.68 | 4.14 ± 0.27 |
Ash | % (w/w) | 0.60 ± 0.05 | 1.50 ± 0.13 |
Carbohydrates | % TS | 81.5 ± 2.08 | - |
Proteins | % TS | 11.0 ± 0.65 | - |
Lipids | % TS | 4.75 ± 0.21 | - |
VS/TS ratio | % | 97.13 | 73.40 |
COD/VS ratio | - | 1.30 | - |
C/N ratio | - | 24.10 | 8.0 |
Food Waste Conc. | Metabolite Conc. (g/L) | Metabolite Conc. (g COD/L) | CODVFASS/CODFW (%) | kh (h−1) | R2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
%w/v | g VS/L | g COD/L | BA | AA | PA | ETOH | LA | BA | AA | PA | ETOH | LA | Total | |||
5 | 10.2 | 13.2 | 2.1 | 1.62 | 0.27 | 0.51 | 1.37 | 3.82 | 1.73 | 0.58 | 1.06 | 1.47 | 7.19 | 65.54 | 0.030 | 0.996 |
8 | 16.3 | 21.1 | 3.78 | 2.87 | 0.36 | 0.68 | 1.73 | 6.87 | 3.06 | 0.78 | 1.42 | 1.85 | 12.13 | 66.13 | 0.037 | 0.993 |
10 | 20.3 | 26.4 | 4.87 | 3.13 | 0.41 | 0.81 | 2.20 | 8.85 | 3.34 | 0.89 | 1.69 | 2.35 | 14.77 | 64.19 | 0.044 | 0.991 |
13 | 26.4 | 34.4 | 5.26 | 3.64 | 0.53 | 0.89 | 2.76 | 9.56 | 3.88 | 1.15 | 1.86 | 2.95 | 16.45 | 56.47 | 0.044 | 0.996 |
Concentration (g VS/L) | COD (g COD/L) | % COD Distribution | |
---|---|---|---|
Influent (food waste) | 26.40 | 34.32 | 100 |
Output products | 27.71 | 82.94 | |
BA | 5.74 | 10.33 | 30.10 |
AA | 3.85 | 4.12 | 12.00 |
PA | 0.56 | 1.21 | 3.52 |
ETOH | 0.83 | 1.73 | 5.05 |
LA | 2.96 | 3.17 | 11.43 |
H2 | 0.25 | 2 | 5.83 |
* Cell mass | 5.15 | 15 | |
Balance | −6.61 | −17.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jariyaboon, R.; Hayeeyunu, S.; Usmanbaha, N.; Ismail, S.B.; O-Thong, S.; Mamimin, C.; Kongjan, P. Thermophilic Dark Fermentation for Simultaneous Mixed Volatile Fatty Acids and Biohydrogen Production from Food Waste. Fermentation 2023, 9, 636. https://doi.org/10.3390/fermentation9070636
Jariyaboon R, Hayeeyunu S, Usmanbaha N, Ismail SB, O-Thong S, Mamimin C, Kongjan P. Thermophilic Dark Fermentation for Simultaneous Mixed Volatile Fatty Acids and Biohydrogen Production from Food Waste. Fermentation. 2023; 9(7):636. https://doi.org/10.3390/fermentation9070636
Chicago/Turabian StyleJariyaboon, Rattana, Surananee Hayeeyunu, Nikannapas Usmanbaha, Shahrul Bin Ismail, Sompong O-Thong, Chonticha Mamimin, and Prawit Kongjan. 2023. "Thermophilic Dark Fermentation for Simultaneous Mixed Volatile Fatty Acids and Biohydrogen Production from Food Waste" Fermentation 9, no. 7: 636. https://doi.org/10.3390/fermentation9070636
APA StyleJariyaboon, R., Hayeeyunu, S., Usmanbaha, N., Ismail, S. B., O-Thong, S., Mamimin, C., & Kongjan, P. (2023). Thermophilic Dark Fermentation for Simultaneous Mixed Volatile Fatty Acids and Biohydrogen Production from Food Waste. Fermentation, 9(7), 636. https://doi.org/10.3390/fermentation9070636