A Trial for the Construction of a Cosmetic Pattern Map Considering Their Effects on Skin Microbiota—Principal Component Analysis of the Effects on Short-Chain Fatty Acid Production by Skin Microbiota Staphylococcus epidermidis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Reagents
2.3. Nitrogen Replacement in the Culture Vessel
2.4. Co-Culture of S. epidermidis and Cosmetics
2.5. Extraction of Exogenous Metabolites (Removal of Foreign Substances)
2.6. Short-Chain Fatty Acid (BTB Method) Analysis via High-Performance Liquid Chromatography (HPLC)
2.7. Peak Identification
2.8. Statistical Analysis
3. Results
3.1. Establishment of an Anaerobic Culture and Short-Chain Fatty Acid Production Measurement System for S. epidermidis
3.2. Change in Short-Chain Fatty Acid Production via S. epidermidis upon Addition of Cosmetics
3.3. Classification of Cosmetics Based on Principal Component Analysis of the Amount of Short-Chain Fatty Acids Produced by Indigenous Skin Bacteria
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yamamura, H. History of Japanese Cosmetics; Yoshikawa Kobunkan: Tokyo, Japan, 2016; pp. 19–30. [Google Scholar]
- Miki, M. Types and ways of using cosmetics-skin care cosmetics-. J. Jpn. Cosmet. Sci. Ind. 2018, 42, 109–124. [Google Scholar]
- Ryuen, H. Cosmetic industry and consumers. J. Jpn. Res. Assoc. Text. End-Uses 2012, 53, 1032–1037. [Google Scholar]
- Miyagawa, M.; Fujikawa, A.; Nagadome, M.; Kohama, K.; Ogami, T.; Kitamura, S.; Kitagaki, H. Glycosylceramides Purified from the Japanese Traditional Non-Pathogenic Fungus Aspergillus and Koji Increase the Expression of Genes Involved in Tight Junctions and Ceramide Delivery in Normal Human Epidermal Keratinocytes. Fermentation 2019, 5, 43. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, A.; Moriguchi, C.; Shigematsu, Y.; Tanabe, K.; Haraguchi, N.; Iwashita, S.; Tokudome, Y.; Kitagaki, H. Fermented Cosmetics and Metabolites of Skin Microbiota—A New Approach to Skin Health. Fermentation 2022, 8, 703. [Google Scholar] [CrossRef]
- Venus, M.; Waterman, J.; McNab, I. Basic physiology of the skin. Surgery 2010, 28, 469–472. [Google Scholar]
- Byrd, A.L.; Belkaid, Y.; Segre, J.A. The human skin microbiome. Nat. Rev. Microbiol. 2018, 16, 143–155. [Google Scholar] [CrossRef]
- Fluhr, J.W.; Mao-Qiang, M.; Brown, B.E.; Wertz, P.W.; Crumrine, D.; Sundberg, J.P.; Feingold, K.R.; Elias, P.M. Glycerol Regulates Stratum Corneum Hydration in Sebaceous Gland Deficient (Asebia) Mice. Investig. Derm. 2003, 120, 728–737. [Google Scholar] [CrossRef] [Green Version]
- Nodake, Y.; Matsumoto, S.; Miura, R.; Honda, H.; Ishibashi, G.; Matsumoto, S.; Dekio, I.; Sakakibara, R. Pilot study on novel skin care method by augmentation with Staphylococcus epidermidis, an autologous skin microbe—A blinded randomized clinical trial. Sci. Direct. 2015, 79, 119–126. [Google Scholar] [CrossRef]
- Mizukoshi, K. Effects of lactic acid on the flexibility of the stratum corneum. Skin Res. Technol. 2020, 26, 599–607. [Google Scholar] [CrossRef]
- Naik, S.; Bouladoux, N.; Wilhelm, C.; Molloy, M.J.; Salcedo, R.; Kastenmuller, W.; Deming, C.; Quinones, M.; Koo, L.; Conlan, S.; et al. Compartmentalized Control of Skin Immunity by Resident Commensals. Science 2012, 337, 1115–1119. [Google Scholar] [CrossRef] [Green Version]
- Prince, A. Staphylococcus aureus metabolites promote IL-10. Nat. Microbiol. 2020, 5, 1183–1184. [Google Scholar] [CrossRef]
- Wang, Y.; Kuo, S.; Shu, M.; Yu, J.; Huang, S.; Dai, A.; Two, A.; Gallo, R.L.; Huang, C.M. Staphylococcus epidermidis in the human skin microbiome mediates fermentation to inhibit the growth of Propionibacterium acnes: Implications of probiotics in acne vulgaris. Microb. Cell Physiol. 2014, 98, 411–424. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Dai, A.; Huang, S.; Kuo, S.; Shu, M.; Tapia, C.P.; Yu, J.; Two, A.; Zhang, H.; Gallo, R.L.; et al. Propionic acid and its esterified derivative suppress the growth of methicillin-resistant Staphylococcus aureus USA300. Benef. Microbes 2014, 5, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Sigurdsson, J.; Björnsson, A.; Gudmundsson, S.T. Formic acid burn—Local and systemic effects Report of a case. Burn. Incl. Therm. Inj. 1983, 9, 358–361. [Google Scholar] [CrossRef]
- Hwang, J.H.; Lee, S.; Lee, H.G.; Choi, D.; Lim, K.M. Evaluation of Skin Irritation of Acids Commonly Used in Cleaners in 3D-Reconstructed Human Epidermis Model, KeraSkinTM. Toxics 2022, 10, 558. [Google Scholar] [CrossRef]
- Becker, L.C.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G.; Jr Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Safety Assessment of Glycerin as Used in Cosmetics. Int. J. Toxicol. 2019, 38, 6S–22S. [Google Scholar] [CrossRef]
- Dubal, Z.B.; Paturkar, A.M.; Waskar, V.S.; Zende, R.J.; Latha, C.; Rawool, D.B.; Kadam, M.M. Effect of food grade organic acids on inoculated S. aureus, L. monocytogenes, E. coli and S. typhimurium in sheep/goat meat stored at refrigeration temperature. Meat Sci. 2004, 66, 817–821. [Google Scholar] [CrossRef]
- Lowy, F.D. Staphylococcus aureus infections. N. Engl. J. Med. 1998, 339, 520–532. [Google Scholar] [CrossRef]
- Iwase, T.; Uehara, Y.; Shinji, H.; Tajima, A.; Seo, H.; Takada, K.; Agata, T.; Mizunoe, Y. Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 2010, 465, 346–349. [Google Scholar] [CrossRef]
- Al-Mahrous, M.; Sandiford, S.K.; Tagg, J.R.; Upton, M. Purification and characterization of a novel delta-lysin variant that inhibits Staphylococcus aureus and has limited hemolytic activity. Peptides 2010, 31, 1661–1668. [Google Scholar] [CrossRef]
- Cogen, A.L.; Yamasaki, K.; Sanchez, K.M.; Dorschner, R.A.; Lai, Y.; MacLeod, D.T.; Torpey, J.W.; Otto, M.; Nizet, V.; Kim, J.E.; et al. Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. J. Investig. Dermatol. 2010, 130, 192–200. [Google Scholar] [CrossRef] [Green Version]
- Christensen, G.J.; Scholz, C.F.; Enghild, J.; Rohde, H.; Kilian, M.; Thürmer, A.; Brzuszkiewicz, E.; Lomholt, H.B.; Brüggemann, H. Antagonism between Staphylococcus epidermidis and Propionibacterium acnes and its genomic basis. BMC Genom. 2016, 17, 152. [Google Scholar] [CrossRef] [Green Version]
- Grice, E.A.; Segre, J.A. The skin microbiome. Nat. Rev. Microbiol. 2011, 9, 244–253. [Google Scholar] [CrossRef]
- Wiesner, J.; Vilcinskas, A. Antimicrobial peptides: The ancient arm of the human immune system. Virulence 2010, 1, 440–464. [Google Scholar] [CrossRef]
- Christensen, G.J.; Brüggemann, H. Bacterial skin commensals and their role as host guardians. Benef. Microbes 2014, 5, 201–215. [Google Scholar] [CrossRef]
- Lai, Y.; Di Nardo, A.; Nakatsuji, T.; Leichtle, A.; Yang, Y.; Cogen, A.L.; Wu, Z.R.; Hooper, L.V.; Schmidt, R.R.; von Aulock, S.; et al. Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nat. Med. 2009, 15, 1377–1382. [Google Scholar] [CrossRef]
- van der Krieken, D.A.; Ederveen, T.H.; van Hijum, S.A.; Jansen, P.A.; Melchers, W.J.; Scheepers, P.T.; Schalkwijk, J.; Zeeuwen, P.L. An In vitro Model for Bacterial Growth on Human Stratum Corneum. Acta Derm. Venereol. 2016, 96, 873–879. [Google Scholar] [CrossRef] [Green Version]
- Niehues, H.; Bouwstra, J.A.; El Ghalbzouri, A.; Brandner, J.M.; Zeeuwen PL, J.M.; van den Bogaard, E.H. 3D skin models for 3R research: The potential of 3D reconstructed skin models to study skin barrier function. Exp. Dermatol. 2018, 27, 501–511. [Google Scholar] [CrossRef] [Green Version]
- Sfriso, R.; Egert, M.; Gempeler, M.; Voegeli, R.; Campiche, R. Revealing the secret life of skin—With the microbiome you never walk alone. Int. J. Cosmet. Sci. 2020, 42, 116–126. [Google Scholar] [CrossRef]
- Holland, K.T.; Bojar, R.A. Cosmetics: What is their influence on the skin microflora? Am. J. Clin. Dermatol. 2002, 3, 445–449. [Google Scholar] [CrossRef]
- Saegeman, V.S.; Ectors, N.L.; Lismont, D.; Verduyckt, B.; Verhaegen, J. Short- and long-term bacterial inhibiting effect of high concentrations of glycerol used in the preservation of skin allografts. Burns 2008, 34, 205–211. [Google Scholar] [CrossRef]
- Rubiano, M.E.; Maillard, J.Y.; Rubino, J.R.; Ijaz, M.K. Use of a small-scale, portable test chamber for determining the bactericidal efficacy of aerosolized glycol formulations. Lett. Appl. Microbiol. 2020, 70, 356–364. [Google Scholar] [CrossRef]
- Hua, T.M. Characterizing the Effect of Allantoin on Skin-Associated Microbes; California State University, Sacramento ProQuest Dissertations Publishing: San Francisco, CA, USA, 2022; p. 29207136. [Google Scholar]
- Liu, H.; Du, Y.; Yang, J.; Zhu, H. Structural characterization and antimicrobial activity of chitosan/betaine derivative complex. Carbohydr. Polym. 2004, 55, 291–297. [Google Scholar] [CrossRef]
- Nasrollahi, S.A.; Fattahi, M.; Khamesipoor, A.; Amiri, F.; Ahmadi, M.; Kavkani, M.S.; Lotfali, E.; Ayatollahi, A.; Skandari, S.E.; Firooz, A. Effects of Cosmetic Preservatives on Healthy Facial Skin Microflora. J. Clin. Aesthetic Dermatol. 2022, 15, 34–37. [Google Scholar]
- Root, J.L.; McIntyre, O.R.; Jacobs, N.J.; Daghlian, C.P. Inhibitory effect of disodium EDTA upon the growth of Staphylococcus epidermidis in vitro: Relation to infection prophylaxis of Hickman catheters. Antimicrob. Agents Chemother. 1988, 32, 1627–1631. [Google Scholar] [CrossRef] [Green Version]
- Kong, H.H.; Segre, J.A. Skin microbiome: Looking back to move forward. J. Investig. Dermatol. 2012, 132, 933–939. [Google Scholar] [CrossRef] [Green Version]
- Harris-Tryon, T.A.; Grice, E.A. Microbiota and maintenance of skin barrier function. Science 2022, 376, 940–945. [Google Scholar] [CrossRef]
- Aykut, B.; Pushalkar, S.; Chen, R.; Li, Q.; Abengozar, R.; Kim, J.I.; Shadaloey, S.A.; Wu, D.; Preiss, P.; Verma, N.; et al. The fungal mycobiome promotes pancreatic oncogenesis via activation of MBL. Nature 2019, 574, 264–267. [Google Scholar] [CrossRef]
- David Boothe, W.; Tarbox, J.A.; Tarbox, M.B. Atopic Dermatitis: Pathophysiology. In Management of Atopic Dermatitis; Fortson, E., Feldman, S., Strowd, L., Eds.; Advances in Experimental Medicine and Biology; Springer: Berlin/Heidelberg, Germany, 2017; p. 1027. [Google Scholar] [CrossRef]
- Clausen, M.; Agner, T.; Lilje, B.; Edslev, S.M.; Johannesen, T.B.; Andersen, P.S. Association of Disease Severity With Skin Microbiome and Filaggrin Gene Mutations in Adult Atopic Dermatitis. JAMA Dermatol. 2018, 154, 293–300. [Google Scholar] [CrossRef] [Green Version]
- Available online: https://www.precedenceresearch.com/cosmetics-market (accessed on 3 June 2023).
- Jugé, R.; Rouaud-Tinguely, P.; Breugnot, J.; Servaes, K.; Grimaldi, C.; Roth, M.P.; Coppin, H.; Closs, B. Shift in skin microbiota of Western European women across aging. J. Appl. Microbiol. 2018, 125, 907–916. [Google Scholar] [CrossRef] [Green Version]
- Gannesen, A.V.; Borrel, V.; Lefeuvre, L.; Netrusov, A.I.; Plakunov, V.K.; Feuilloley MG, J. Effect of two cosmetic compounds on the growth, biofilm formation activity, and surface properties of acneic strains of Cutibacterium acnes and Staphylococcus aureus. MicrobiologyOpen 2019, 8, e00659. [Google Scholar] [CrossRef]
- Filaire, E.; Vialleix, C.; Cadoret, J.-P.; Guénard, S.; Muller, C.; Dreux-Zigha, A.; Berthon, J.-Y. Characterization of Reactive and Sensitive Skin Microbiota: Effect of Halymenia durvillei (HD) Extract Treatment. Cosmetics 2019, 6, 69. [Google Scholar] [CrossRef] [Green Version]
- Saising, J.; Voravuthikunchai, S.P. Anti Propionibacterium acnes activity of rhodomyrtone, an effective compound from Rhodomyrtus tomentosa (Aiton) Hassk. leaves. Anaerobe 2012, 18, 400–404. [Google Scholar] [CrossRef]
Name | Cosmetics Containing Soy Milk Fermentation Liquid | Cosmetics Containing Soy Milk Fermentation Liquid | Lotion Containing Rice Ferment | Cosmetics Containing Rice Ferment | Cosmetics Containing Plant Extract | Cosmetics Claiming Plant Extract | Cosmetics Claiming Natural Ingredients | Cosmetics Containing Loofah Water | Preservative Cosmetics |
---|---|---|---|---|---|---|---|---|---|
Region | Japan | Japan | Japan | Japan | Japan | South Asia | Japan | Japan | Japan |
Code | Soy-ferment A | Soy-ferment B | Rice-ferment A | Rice-ferment B | Plant | South Asia | Natural | Loofah | Preservative |
Ingredients | Water, glycerol, 1,3-butylglycol, ethanol, isoflavone, fermented soy | Water, glycerol, dipropyleneglycol, ethanol, fermented soy | Water, glycerol, butylene glycol, fermented rice, glutamic acid | Kojic acid, allantoin, algae extract, plant extract, fermented soy | Water, butylene glycol, ethanol, glycerol, allantoin, plant extract | Water, flavor, plant oil, propylene glycol, phenoxyethanol | Water, butylene glycol, glycerol, pentylene glycol, betaine, acryloyloxyethyl phosphoryl choline polymers, fermented extract | Loofah extract | Vitamin C derivative, ethoxydiglycol, plant seed extract, butylene glycol, disodium edetate |
Preservative | Soy-Ferment A | Loofah | Natural | Plant | Soy-Ferment B | South Asia | Rice-Ferment A | Rice-Ferment B | |
---|---|---|---|---|---|---|---|---|---|
0 h | |||||||||
Succinic | 154 | 190 | 150 | 169 | 180 | 165 | 173 | 173 | 167 |
Lactic | 169 | 217 | 166 | 182 | 199 | 182 | 367 | 245 | 217 |
Formic | 39 | 49 | 43 | 34 | 35 | 42 | 44 | 52 | 28 |
Acetic | 238 | 225 | 242 | 242 | 235 | 242 | 236 | 312 | 239 |
Propionic | 264 | 299 | 293 | 280 | 292 | 284 | 293 | 315 | 289 |
Isobutyric | 110 | 70 | 149 | 130 | 97 | 88 | 136 | 112 | 67 |
24 h | |||||||||
Succinic | 164 | 200 | 180 | 179 | 201 | 191 | 193 | 166 | 189 |
Lactic | 1523 | 1690 | 1458 | 1468 | 1801 | 1716 | 1549 | 1939 | 2000 |
Formic | 107 | 93 | 100 | 107 | 80 | 87 | 104 | 88 | 94 |
Acetic | 357 | 341 | 363 | 362 | 376 | 379 | 379 | 371 | 417 |
Propionic | 282 | 300 | 301 | 287 | 280 | 277 | 272 | 289 | 278 |
Isobutyric | 167 | 151 | 302 | 232 | 191 | 199 | 335 | 146 | 211 |
48 h | |||||||||
Succinic | 175 | 199 | 176 | 184 | 191 | 196 | 181 | 207 | 183 |
Lactic | 1937 | 2123 | 1808 | 1691 | 2300 | 2153 | 1821 | 2683 | 2556 |
Formic | 100 | 95 | 104 | 107 | 103 | 88 | 100 | 119 | 83 |
Acetic | 408 | 359 | 374 | 397 | 394 | 417 | 391 | 579 | 511 |
Propionic | 276 | 282 | 257 | 294 | 301 | 265 | 297 | 321 | 283 |
Isobutyric | 184 | 156 | 202 | 213 | 185 | 161 | 184 | 147 | 228 |
0 h with cosmetics | |||||||||
Succinic | 143 | 179 | 144 | 153 | 169 | 179 | 157 | 169 | 167 |
Lactic | 147 | 237 | 177 | 193 | 190 | 158 | 183 | 236 | 233 |
Formic | 50 | 52 | 32 | 46 | 38 | 42 | 56 | 44 | 33 |
Acetic | 218 | 230 | 226 | 231 | 229 | 227 | 233 | 260 | 283 |
Propionic | 306 | 293 | 279 | 294 | 280 | 276 | 292 | 303 | 294 |
Isobutyric | 109 | 49 | 166 | 103 | 79 | 69 | 117 | 98 | 94 |
24 h with cosmetics | |||||||||
Succinic | 165 | 174 | 158 | 166 | 188 | 184 | 159 | 181 | 161 |
Lactic | 1386 | 1924 | 1311 | 1772 | 1970 | 1838 | 1542 | 2566 | 2139 |
Formic | 84 | 79 | 88 | 85 | 93 | 70 | 93 | 84 | 72 |
Acetic | 331 | 281 | 354 | 309 | 339 | 330 | 372 | 397 | 383 |
Propionic | 280 | 252 | 257 | 256 | 288 | 274 | 304 | 349 | 278 |
Isobutyric | 200 | 125 | 241 | 280 | 157 | 188 | 255 | 186 | 183 |
48 h with cosmetics | |||||||||
Succinic | 155 | 177 | 166 | 157 | 182 | 177 | 162 | 190 | 172 |
Lactic | 1430 | 2299 | 1717 | 2174 | 2151 | 2433 | 1965 | 2854 | 2678 |
Formic | 61 | 73 | 70 | 91 | 87 | 70 | 94 | 94 | 67 |
Acetic | 290 | 281 | 358 | 332 | 342 | 347 | 426 | 359 | 389 |
Propionic | 280 | 247 | 266 | 266 | 294 | 246 | 269 | 282 | 261 |
Isobutyric | 165 | 129 | 313 | 263 | 179 | 127 | 179 | 260 | 172 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanabe, K.; Moriguchi, C.; Fujiyama, N.; Shigematsu, Y.; Haraguchi, N.; Hirano, Y.; Dai, H.; Inaba, S.; Tokudome, Y.; Kitagaki, H. A Trial for the Construction of a Cosmetic Pattern Map Considering Their Effects on Skin Microbiota—Principal Component Analysis of the Effects on Short-Chain Fatty Acid Production by Skin Microbiota Staphylococcus epidermidis. Fermentation 2023, 9, 647. https://doi.org/10.3390/fermentation9070647
Tanabe K, Moriguchi C, Fujiyama N, Shigematsu Y, Haraguchi N, Hirano Y, Dai H, Inaba S, Tokudome Y, Kitagaki H. A Trial for the Construction of a Cosmetic Pattern Map Considering Their Effects on Skin Microbiota—Principal Component Analysis of the Effects on Short-Chain Fatty Acid Production by Skin Microbiota Staphylococcus epidermidis. Fermentation. 2023; 9(7):647. https://doi.org/10.3390/fermentation9070647
Chicago/Turabian StyleTanabe, Kurumi, Chihiro Moriguchi, Nao Fujiyama, Yuka Shigematsu, Nanami Haraguchi, Yuto Hirano, Huanghuang Dai, Shigeki Inaba, Yoshihiro Tokudome, and Hiroshi Kitagaki. 2023. "A Trial for the Construction of a Cosmetic Pattern Map Considering Their Effects on Skin Microbiota—Principal Component Analysis of the Effects on Short-Chain Fatty Acid Production by Skin Microbiota Staphylococcus epidermidis" Fermentation 9, no. 7: 647. https://doi.org/10.3390/fermentation9070647
APA StyleTanabe, K., Moriguchi, C., Fujiyama, N., Shigematsu, Y., Haraguchi, N., Hirano, Y., Dai, H., Inaba, S., Tokudome, Y., & Kitagaki, H. (2023). A Trial for the Construction of a Cosmetic Pattern Map Considering Their Effects on Skin Microbiota—Principal Component Analysis of the Effects on Short-Chain Fatty Acid Production by Skin Microbiota Staphylococcus epidermidis. Fermentation, 9(7), 647. https://doi.org/10.3390/fermentation9070647