New Generation Sustainable Technologies for Soilless Vegetable Production
Abstract
:1. Introduction
1.1. Background on Soilless Vegetable Production
1.2. Importance of Next-Generation Technologies in Advancing the Field
1.3. Objective of the Review Article
1.4. Methodology for Literature Selection and Analysis in Soilless Agricultural Technologies
2. Hydroponic Systems
2.1. Overview of Hydroponic Systems
2.2. Recent Technological Advancements in Hydroponics
2.3. Impact of Hydroponic Systems on Soilless Vegetable Production
2.4. Scalability and Replicability of Soilless Cultures
3. Substrate-Based Systems
3.1. Introduction to Substrate-Based Systems
3.2. Substrate Materials and Their Benefits
3.3. Innovations in Substrate-Based Cultivation Techniques
4. Automation and Precision Farming
4.1. Role of Automation in Soilless Vegetable Production
4.2. Application of Precision Farming/Agriculture Techniques in Hydroponics
4.3. Prospects and Trends in Automated Soilless Crop Systems
5. Sensing and Monitoring Technologies
5.1. Importance of Sensing and Monitoring in Soilless Vegetable Production
5.2. Advances in Sensor Technologies for Nutrient Management and Environmental Control
5.3. Real-Time Monitoring Systems for Optimizing Crop Growth and Resource Utilization
5.4. Case Studies Demonstrating the Effectiveness of Sensing and Monitoring Technologies
6. Artificial Intelligence and Data Analytics
6.1. Clarifying AI Applications in Soilless Agriculture: Beyond Predictive Analytics
6.2. Integration of Artificial Intelligence (AI) in Soilless Crop Systems
6.3. AI-Based Decision Support Systems (DSS) for Optimizing Cultivation Parameters
6.4. Potential Challenges and Ethical Considerations in AI-Driven Cultivation
7. Environmental Sustainability and Resource Management
7.1. Role of Next-Generation Technologies in Enhancing Sustainability
Next-Gen Technologies | Advantages for Sustainability | Potential Drawbacks | Key Areas of Impact | References |
---|---|---|---|---|
AI and Machine Learning | Resource optimization, waste reduction | Energy consumption, data privacy | Water and nutrient management | [44,149,236,237,238,239] |
IoT Devices | Real-time monitoring, energy efficiency | Security risks, e-waste | Climate control, irrigation | [240,241,242,243] |
Blockchain | Traceability, transparent supply chain | Complexity, scalability issues | Food safety, environmental impact | [244,245,246,247,248] |
Renewable Energy Sources | Low carbon footprint, long-term cost savings | Initial setup cost, intermittency | Energy supply for systems | [11,249,250,251,252] |
Drones and Robotics | Reduced labor, precision agriculture | High initial cost, regulatory hurdles | Planting, harvesting, monitoring | [253,254,255,256] |
7.2. Efficient Water and Nutrient Management Strategies
7.3. Energy-Saving Techniques in Soilless Vegetable Production
7.4. Life Cycle Assessment and Eco-Friendly Practices
8. Future Directions and Challenges
8.1. Promising Areas for Further Research and Development
8.2. Regulatory and Policy Considerations for Next-Generation Technologies
8.3. Potential Limitations and Hurdles to Widespread Adoption
9. Conclusions and Final Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hernández-Martínez, N.R.; Blanchard, C.; Wells, D.; Salazar-Gutiérrez, M.R. Current State and Future Perspectives of Commercial Strawberry Production: A Review. Sci. Hortic. 2023, 312, 111893. [Google Scholar] [CrossRef]
- Atzori, G.; Mancuso, S.; Masi, E. Seawater Potential Use in Soilless Culture: A Review. Sci. Hortic. 2019, 249, 199–207. [Google Scholar] [CrossRef]
- Tzortzakis, N.; Nicola, S.; Savvas, D.; Voogt, W. Editorial: Soilless Cultivation Through an Intensive Crop Production Scheme. Management Strategies, Challenges and Future Directions. Front. Plant Sci. 2020, 11, 363. [Google Scholar] [CrossRef] [PubMed]
- Massa, D.; Magán, J.J.; Montesano, F.F.; Tzortzakis, N. Minimizing Water and Nutrient Losses from Soilless Cropping in Southern Europe. Agric. Water Manag. 2020, 241, 106395. [Google Scholar] [CrossRef]
- Gebereegziher, W.G. Soilless Culture Technology to Transform Vegetable Farming, Reduce Land Pressure and Degradation in Drylands. Cogent Food Agric. 2023, 9, 2265106. [Google Scholar] [CrossRef]
- Fussy, A.; Papenbrock, J. An Overview of Soil and Soilless Cultivation Techniques—Chances, Challenges and the Neglected Question of Sustainability. Plants 2022, 11, 1153. [Google Scholar] [CrossRef] [PubMed]
- Gonnella, M.; Renna, M. The Evolution of Soilless Systems towards Ecological Sustainability in the Perspective of a Circular Economy. Is It Really the Opposite of Organic Agriculture? Agronomy 2021, 11, 950. [Google Scholar] [CrossRef]
- Carrasco, G.; Fuentes-Penailillo, F.; Perez, R.; Rebolledo, P.; Manriquez, P. An Approach to a Vertical Farming Low-Cost to Reach Sustainable Vegetable Crops. In Proceedings of the 2022 IEEE International Conference on Automation/25th Congress of the Chilean Association of Automatic Control: For the Development of Sustainable Agricultural Systems, ICA-ACCA 2022, Curicó, Chile, 24–28 October 2022; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2022. [Google Scholar]
- Fuentes-Penailillo, F.; Ortega-Farias, S.; Tian, F.; Perez, R.; Calderon, V.; Perez, D. Towards the Monitoring of Water Consumption of Crops Using Digital Agriculture Techniques. In Proceedings of the 2022 IEEE International Conference on Automation/25th Congress of the Chilean Association of Automatic Control: For the Development of Sustainable Agricultural Systems, ICA-ACCA 2022, Curicó, Chile, 24–28 October 2022; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2022. [Google Scholar]
- Gutter, K.; Ortega-Farías, S.; Fuentes-Penailillo, F.; Moreno, M.; Vega-Ibánez, R.; Riveros-Burgos, C.; Albornoz, J. Estimation of Vineyard Water Status Using Infrared Thermometry Measured at Two Positions of the Canopy. Acta Hortic. 2022, 1335, 331–337. [Google Scholar] [CrossRef]
- Carrasco, G.; Manrıquez, P.; Galleguillos, F.; Fuentes-Peñailillo, F.; Urrestarazu, M. Evolution of Soilless Culture in Chile. Acta Hortic. 2021, 1321, 267–273. [Google Scholar] [CrossRef]
- Gumisiriza, M.S.; Ndakidemi, P.; Nalunga, A.; Mbega, E.R. Building Sustainable Societies through Vertical Soilless Farming: A Cost-Effectiveness Analysis on a Small-Scale Non-Greenhouse Hydroponic System. Sustain. Cities Soc. 2022, 83, 103923. [Google Scholar] [CrossRef]
- Kläring, H.-P. Strategies to Control Water and Nutrient Supplies to Greenhouse Crops. A Review. Agronomie 2001, 21, 311–321. [Google Scholar] [CrossRef]
- Resh, H. Hydroponic Food Production a Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower, 8th ed.; CRC Press: Boca Raton, FL, USA, 2022; ISBN 978-0-367-67822-7. [Google Scholar]
- Cowan, N.; Ferrier, L.; Spears, B.; Drewer, J.; Reay, D.; Skiba, U. CEA Systems: The Means to Achieve Future Food Security and Environmental Sustainability? Front. Sustain. Food Syst. 2022, 6, 891256. [Google Scholar] [CrossRef]
- Ragaveena, S.; Shirly Edward, A.; Surendran, U. Smart Controlled Environment Agriculture Methods: A Holistic Review. Rev. Env. Sci. Biotechnol. 2021, 20, 887–913. [Google Scholar] [CrossRef]
- Hati, A.J.; Singh, R.R. AI-Driven Pheno-Parenting: A Deep Learning Based Plant Phenotyping Trait Analysis Model on a Novel Soilless Farming Dataset. IEEE Access 2023, 11, 35298–35314. [Google Scholar] [CrossRef]
- Gumisiriza, M.S.; Kabirizi, J.M.L.; Mugerwa, M.; Ndakidemi, P.A.; Mbega, E.R. Can Soilless Farming Feed Urban East Africa? An Assessment of the Benefits and Challenges of Hydroponics in Uganda and Tanzania. Environ. Chall. 2022, 6, 100413. [Google Scholar] [CrossRef]
- D’Amico, A.; De Boni, A.; Ottomano Palmisano, G.; Acciani, C.; Roma, R. Environmental Analysis of Soilless Tomato Production in a High-Tech Greenhouse. Clean. Environ. Syst. 2023, 11, 100137. [Google Scholar] [CrossRef]
- Wittmann, S.; Jüttner, I.; Mempel, H. Indoor Farming Marjoram Production—Quality, Resource Efficiency, and Potential of Application. Agronomy 2020, 10, 1769. [Google Scholar] [CrossRef]
- Gupta, M.; Abdelsalam, M.; Khorsandroo, S.; Mittal, S. Security and Privacy in Smart Farming: Challenges and Opportunities. IEEE Access 2020, 8, 34564–34584. [Google Scholar] [CrossRef]
- Rotz, S.; Duncan, E.; Small, M.; Botschner, J.; Dara, R.; Mosby, I.; Reed, M.; Fraser, E.D.G. The Politics of Digital Agricultural Technologies: A Preliminary Review. Sociol. Rural. 2019, 59, 203–229. [Google Scholar] [CrossRef]
- Lajoie-O’Malley, A.; Bronson, K.; van der Burg, S.; Klerkx, L. The Future(s) of Digital Agriculture and Sustainable Food Systems: An Analysis of High-Level Policy Documents. Ecosyst. Serv. 2020, 45, 101183. [Google Scholar] [CrossRef]
- Windsor, G.W.; Schwarz, M. Soilless Culture for Horticultural Crop Production; FAO Plant Production and Protection Paper; 101; Food and Agriculture Organization of the United Nations: Rome, Italy, 1990; ISBN 9251029520. [Google Scholar]
- Szekely, I.; Jijakli, M.H. Bioponics as a Promising Approach to Sustainable Agriculture: A Review of the Main Methods for Producing Organic Nutrient Solution for Hydroponics. Water 2022, 14, 3975. [Google Scholar] [CrossRef]
- Bliedung, A.; Dockhorn, T.; Germer, J.; Mayerl, C.; Mohr, M. Experiences of Running a Hydroponic System in a Pilot Scale for Resource-Efficient Water Reuse. J. Water Reuse Desalination 2020, 10, 347–362. [Google Scholar] [CrossRef]
- Stegelmeier, A.A.; Rose, D.M.; Joris, B.R.; Glick, B.R. The Use of PGPB to Promote Plant Hydroponic Growth. Plants 2022, 11, 2783. [Google Scholar] [CrossRef]
- Nguyen, N.T.; McInturf, S.A.; Mendoza-Cózatl, D.G. Hydroponics: A Versatile System to Study Nutrient Allocation and Plant Responses to Nutrient Availability and Exposure to Toxic Elements. J. Vis. Exp. 2016, 2016, e54317. [Google Scholar] [CrossRef]
- Sharma, N.; Acharya, S.; Kumar, K.; Singh, N.; Chaurasia, O.P. Hydroponics as an Advanced Technique for Vegetable Production: An Overview. J. Soil. Water Conserv. 2018, 17, 364. [Google Scholar] [CrossRef]
- Cooper, A. The ABC of NFT: Nutrient Film Technique; Grower Book: London, UK, 1979. [Google Scholar]
- Nursyahid, A.; Setyawan, T.A.; Sa’diyah, K.; Wardihani, E.D.; Helmy, H.; Hasan, A. Analysis of Deep Water Culture (DWC) Hydroponic Nutrient Solution Level Control Systems. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1108, 012032. [Google Scholar] [CrossRef]
- Cai, J.; Veerappan, V.; Arildsen, K.; Sullivan, C.; Piechowicz, M.; Frugoli, J.; Dickstein, R. A Modified Aeroponic System for Growing Small-Seeded Legumes and Other Plants to Study Root Systems. Plant Methods 2023, 19, 21. [Google Scholar] [CrossRef]
- Urrestarazu, M.; Carrasco Silva, G. Soiless Culture and Hydroponics; Mundi Prensa Libros S.A: Madrid, Spain, 2023; ISBN 978-84-8476-766-4. [Google Scholar]
- Quy, V.K.; Van Hau, N.; Anh, D.V.; Quy, N.M.; Ban, N.T.; Lanza, S.; Randazzo, G.; Muzirafuti, A. IoT-Enabled Smart Agriculture: Architecture, Applications, and Challenges. Appl. Sci. 2022, 12, 3396. [Google Scholar] [CrossRef]
- Alahi, M.E.E.; Sukkuea, A.; Tina, F.W.; Nag, A.; Kurdthongmee, W.; Suwannarat, K.; Mukhopadhyay, S.C. Integration of IoT-Enabled Technologies and Artificial Intelligence (AI) for Smart City Scenario: Recent Advancements and Future Trends. Sensors 2023, 23, 5206. [Google Scholar] [CrossRef]
- Monostori, I.; Heilmann, M.; Kocsy, G.; Rakszegi, M.; Ahres, M.; Altenbach, S.B.; Szalai, G.; Pál, M.; Toldi, D.; Simon-Sarkadi, L.; et al. LED Lighting–Modification of Growth, Metabolism, Yield and Flour Composition in Wheat by Spectral Quality and Intensity. Front. Plant Sci. 2018, 9, 605. [Google Scholar] [CrossRef]
- Holzinger, A.; Keiblinger, K.; Holub, P.; Zatloukal, K.; Müller, H. AI for Life: Trends in Artificial Intelligence for Biotechnology. N. Biotechnol. 2023, 74, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Kootstra, G.; Wang, X.; Blok, P.; Hemming, J.; van Henten, E. Selective Harvesting Robotics: Current Research, Trends, and Future Directions. Agric. Robot. 2021, 2, 95–104. [Google Scholar] [CrossRef]
- Clyde-Smith, D.; Campos, L.C. Engineering Hydroponic Systems for Sustainable Wastewater Treatment and Plant Growth. Appl. Sci. 2023, 13, 8032. [Google Scholar] [CrossRef]
- Aishwarya, J.M.; Vidhya, R. Study on the Efficiency of a Hydroponic Treatment for Removing Organic Loading from Wastewater and Its Application as a Nutrient for the “Amaranthus Campestris” Plant for Sustainability. Sustainability 2023, 15, 7814. [Google Scholar] [CrossRef]
- Tatas, K.; Al-Zoubi, A.; Christofides, N.; Zannettis, C.; Chrysostomou, M.; Panteli, S.; Antoniou, A. Reliable IoT-Based Monitoring and Control of Hydroponic Systems. Technologies 2022, 10, 26. [Google Scholar] [CrossRef]
- Sneineh, A.A.; Shabaneh, A.A.A. Design of a Smart Hydroponics Monitoring System Using an ESP32 Microcontroller and the Internet of Things. MethodsX 2023, 11, 102401. [Google Scholar] [CrossRef] [PubMed]
- Vanipriya, C.H.; Maruyi; Malladi, S.; Gupta, G. Artificial Intelligence Enabled Plant Emotion Xpresser in the Development Hydroponics System. Mater. Today Proc. 2021, 45, 5034–5040. [Google Scholar] [CrossRef]
- Lowe, M.; Qin, R.; Mao, X. A Review on Machine Learning, Artificial Intelligence, and Smart Technology in Water Treatment and Monitoring. Water 2022, 14, 1384. [Google Scholar] [CrossRef]
- Velazquez-Gonzalez, R.S.; Garcia-Garcia, A.L.; Ventura-Zapata, E.; Barceinas-Sanchez, J.D.O.; Sosa-Savedra, J.C. A Review on Hydroponics and the Technologies Associated for Medium-and Small-Scale Operations. Agriculture 2022, 12, 646. [Google Scholar] [CrossRef]
- Kour, K.; Gupta, D.; Gupta, K.; Anand, D.; Elkamchouchi, D.H.; Pérez-Oleaga, C.M.; Ibrahim, M.; Goyal, N. Monitoring Ambient Parameters in the IoT Precision Agriculture Scenario: An Approach to Sensor Selection and Hydroponic Saffron Cultivation. Sensors 2022, 22, 8905. [Google Scholar] [CrossRef]
- Herman; Surantha, N. Intelligent Monitoring and Controlling System for Hydroponics Precision Agriculture. In Proceedings of the 2019 7th International Conference on Information and Communication Technology, ICoICT 2019, Kuala Lumpur, Malaysia, 24–26 July 2019; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019. [Google Scholar]
- Karamanis, G.; Drosos, C.; Papoutsidakis, M.; Tseles, D.; Drosos, C.; Papoutsidakis, M.; Tseles, D. Implementation of an Automated System for Controlling and Monitoring a Hydroponic Greenhouse. Int. J. Eng. Sci. Invent. 2018, 7, 27–35. [Google Scholar]
- Li, Y.; Liu, N.; Ji, F.; He, D. Optimal Red:Blue Ratio of Full Spectrum LEDs for Hydroponic Pakchoi Cultivation in Plant Factory. Int. J. Agric. Biol. Eng. 2022, 15, 72–77. [Google Scholar] [CrossRef]
- Nguyen, T.K.L.; Cho, K.M.; Lee, H.Y.; Sim, H.S.; Kim, J.H.; Son, K.H. Growth, Fruit Yield, and Bioactive Compounds of Cherry Tomato in Response to Specific White-Based Full-Spectrum Supplemental LED Lighting. Horticulturae 2022, 8, 319. [Google Scholar] [CrossRef]
- Rukhiran, M.; Netinant, P. Mobile Application Development of Hydroponic Smart Farm Using Information Flow Diagram. In Proceedings of the National Conference on Information Technology, Chonburi, Thailand, 21–22 October 2020. [Google Scholar]
- Tiglao, N.M.; Alipio, M.; Balanay, J.V.; Saldivar, E.; Tiston, J.L. Agrinex: A Low-Cost Wireless Mesh-Based Smart Irrigation System. Measurement 2020, 161, 107874. [Google Scholar] [CrossRef]
- Alipio, M.I.; Dela Cruz, A.E.M.; Doria, J.D.A.; Fruto, R.M.S. On the Design of Nutrient Film Technique Hydroponics Farm for Smart Agriculture. Eng. Agric. Environ. Food 2019, 12, 315–324. [Google Scholar] [CrossRef]
- Benke, K.; Tomkins, B. Future Food-Production Systems: Vertical Farming and Controlled-Environment Agriculture. Sustain. Sci. Pract. Policy 2017, 13, 13–26. [Google Scholar] [CrossRef]
- Carotti, L.; Pistillo, A.; Zauli, I.; Meneghello, D.; Martin, M.; Pennisi, G.; Gianquinto, G.; Orsini, F. Improving Water Use Efficiency in Vertical Farming: Effects of Growing Systems, Far-Red Radiation and Planting Density on Lettuce Cultivation. Agric. Water Manag. 2023, 285, 108365. [Google Scholar] [CrossRef]
- Kennard, N.; Stirling, R.; Prashar, A.; Lopez-Capel, E. Evaluation of Recycled Materials as Hydroponic Growing Media. Agronomy 2020, 10, 1092. [Google Scholar] [CrossRef]
- Souza, V.; Gimenes, R.M.T.; de Almeida, M.G.; Farinha, M.U.S.; Bernardo, L.V.M.; Ruviaro, C.F. Economic Feasibility of Adopting a Hydroponics System on Substrate in Small Rural Properties. Clean. Technol. Env. Policy 2023, 25, 2761–2775. [Google Scholar] [CrossRef]
- Udovichenko, A.; Fleck, B.A.; Weis, T.; Zhong, L. Framework for Design and Optimization of a Retrofitted Light Industrial Space with a Renewable Energy-Assisted Hydroponics Facility in a Rural Northern Canadian Community. J. Build. Eng. 2021, 37, 102160. [Google Scholar] [CrossRef]
- Folorunso, E.A.; Schmautz, Z.; Gebauer, R.; Mraz, J. The Economic Viability of Commercial-Scale Hydroponics: Nigeria as a Case Study. Heliyon 2023, 9, e18979. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Mate, M.A.; Martin-Gorriz, B.; Martínez-Alvarez, V.; Soto-García, M.; Maestre-Valero, J.F. Hydroponic System and Desalinated Seawater as an Alternative Farm-Productive Proposal in Water Scarcity Areas: Energy and Greenhouse Gas Emissions Analysis of Lettuce Production in Southeast Spain. J. Clean. Prod. 2018, 172, 1298–1310. [Google Scholar] [CrossRef]
- Cifuentes-Torres, L.; Mendoza-Espinosa, L.G.; Correa-Reyes, G.; Daesslé, L.W. Hydroponics with Wastewater: A Review of Trends and Opportunities. Water Environ. J. 2021, 35, 166–180. [Google Scholar] [CrossRef]
- Parkes, M.G.; Azevedo, D.L.; Domingos, T.; Teixeira, R.F.M. Narratives and Benefits of Agricultural Technology in Urban Buildings: A Review. Atmosphere 2022, 13, 1250. [Google Scholar] [CrossRef]
- Lubna, F.A.; Lewus, D.C.; Shelford, T.J.; Both, A.J. What You May Not Realize about Vertical Farming. Horticulturae 2022, 8, 322. [Google Scholar] [CrossRef]
- Gruda, N.S. Increasing Sustainability of Growing Media Constituents and Stand-Alone Substrates in Soilless Culture Systems. Agronomy 2019, 9, 298. [Google Scholar] [CrossRef]
- Sapkota, S.; Sapkota, S.; Liu, Z. Effects of Nutrient Composition and Lettuce Cultivar on Crop Production in Hydroponic Culture. Horticulturae 2019, 5, 72. [Google Scholar] [CrossRef]
- Schmautz, Z.; Loeu, F.; Liebisch, F.; Graber, A.; Mathis, A.; Bulc, T.G.; Junge, R. Tomato Productivity and Quality in Aquaponics: Comparison of Three Hydroponic Methods. Water 2016, 8, 533. [Google Scholar] [CrossRef]
- Tan, J.; Jiang, H.; Li, Y.; He, R.; Liu, K.; Chen, Y.; He, X.; Liu, X.; Liu, H. Growth, Phytochemicals, and Antioxidant Activity of Kale Grown under Different Nutrient-Solution Depths in Hydroponic. Horticulturae 2023, 9, 53. [Google Scholar] [CrossRef]
- Lateef, A.; Nazir, R.; Jamil, N.; Alam, S.; Shah, R.; Khan, M.N.; Saleem, M. Synthesis and Characterization of Zeolite Based Nano-Composite: An Environment Friendly Slow Release Fertilizer. Microporous Mesoporous Mater. 2016, 232, 174–183. [Google Scholar] [CrossRef]
- Rombel, A.; Krasucka, P.; Oleszczuk, P. Sustainable Biochar-Based Soil Fertilizers and Amendments as a New Trend in Biochar Research. Sci. Total Environ. 2022, 816, 151588. [Google Scholar] [CrossRef]
- Głąb, T.; Gondek, K.; Mierzwa–Hersztek, M. Biological Effects of Biochar and Zeolite Used for Remediation of Soil Contaminated with Toxic Heavy Metals. Sci. Rep. 2021, 11, 6998. [Google Scholar] [CrossRef]
- Singh Yadav, S.P.; Bhandari, S.; Bhatta, D.; Poudel, A.; Bhattarai, S.; Yadav, P.; Ghimire, N.; Paudel, P.; Paudel, P.; Shrestha, J.; et al. Biochar Application: A Sustainable Approach to Improve Soil Health. J. Agric. Food Res. 2023, 11, 100498. [Google Scholar] [CrossRef]
- Barrett, G.E.; Alexander, P.D.; Robinson, J.S.; Bragg, N.C. Achieving Environmentally Sustainable Growing Media for Soilless Plant Cultivation Systems—A Review. Sci. Hortic. 2016, 212, 220–234. [Google Scholar] [CrossRef]
- Machado, R.M.A.; Alves-Pereira, I.; Ferreira, R.; Gruda, N.S. Coir, an Alternative to Peat—Effects on Plant Growth, Phytochemical Accumulation, and Antioxidant Power of Spinach. Horticulturae 2021, 7, 127. [Google Scholar] [CrossRef]
- Munns, R. Plant Adaptations to Salt and Water Stress: Differences and Commonalities. Adv. Bot. Res. 2011, 57, 1–32. [Google Scholar] [CrossRef]
- Nerlich, A.; Dannehl, D. Soilless Cultivation: Dynamically Changing Chemical Properties and Physical Conditions of Organic Substrates Influence the Plant Phenotype of Lettuce. Front. Plant Sci. 2021, 11, 601455. [Google Scholar] [CrossRef] [PubMed]
- Kremenetskaya, I.; Ivanova, L.; Chislov, M.; Zvereva, I.; Vasilieva, T.; Marchevskaya, V.; Semushin, V.; Slukovskaya, M. Physicochemical Transformation of Expanded Vermiculite after Long-Term Use in Hydroponics. Appl. Clay Sci. 2020, 198, 105839. [Google Scholar] [CrossRef]
- EI-Kazzaz, A. Soilless Agriculture a New and Advanced Method for Agriculture Development: An Introduction. Agric. Res. Technol. Open Access J. 2017, 3, 555610. [Google Scholar] [CrossRef]
- Banitalebi, G.; Mosaddeghi, M.R.; Shariatmadari, H. Feasibility of Agricultural Residues and Their Biochars for Plant Growing Media: Physical and Hydraulic Properties. Waste Manag. 2019, 87, 577–589. [Google Scholar] [CrossRef]
- Joseph, S.; Cowie, A.L.; Van Zwieten, L.; Bolan, N.; Budai, A.; Buss, W.; Cayuela, M.L.; Graber, E.R.; Ippolito, J.A.; Kuzyakov, Y.; et al. How Biochar Works, and When It Doesn’t: A Review of Mechanisms Controlling Soil and Plant Responses to Biochar. GCB Bioenergy 2021, 13, 1731–1764. [Google Scholar] [CrossRef]
- Pandey, K.; Singh, K.G.; Singh, A. Multi-Sensors Based Smart Nutrient Reuse Management System for Closed Soilless Culture under Protected Cultivation. Comput. Electron. Agric. 2023, 204, 107495. [Google Scholar] [CrossRef]
- Ojha, T.; Misra, S.; Raghuwanshi, N.S. Wireless Sensor Networks for Agriculture: The State-of-the-Art in Practice and Future Challenges. Comput. Electron. Agric. 2015, 118, 66–84. [Google Scholar] [CrossRef]
- Avgoustaki, D.D.; Xydis, G. How Energy Innovation in Indoor Vertical Farming Can Improve Food Security, Sustainability, and Food Safety? In Advances in Food Security and Sustainability; Elsevier Ltd.: Amsterdam, The Netherlands, 2020; Volume 5, pp. 1–51. [Google Scholar]
- Preite, L.; Solari, F.; Vignali, G. Technologies to Optimize the Water Consumption in Agriculture: A Systematic Review. Sustainability 2023, 15, 5975. [Google Scholar] [CrossRef]
- Liang, Y.; Gao, G. Design and Analysis of Automatic Vegetable Harvesting Machine. In Proceedings of the 2019 2nd World Conference on Mechanical Engineering and Intelligent Manufacturing, WCMEIM 2019, Shanghai, China, 22–24 November 2019; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2019; pp. 287–290. [Google Scholar]
- Tavan, M.; Wee, B.; Brodie, G.; Fuentes, S.; Pang, A.; Gupta, D. Optimizing Sensor-Based Irrigation Management in a Soilless Vertical Farm for Growing Microgreens. Front. Sustain. Food Syst. 2021, 4, 622720. [Google Scholar] [CrossRef]
- Montesano, F.F.; van Iersel, M.W.; Boari, F.; Cantore, V.; D’Amato, G.; Parente, A. Sensor-Based Irrigation Management of Soilless Basil Using a New Smart Irrigation System: Effects of Set-Point on Plant Physiological Responses and Crop Performance. Agric. Water Manag. 2018, 203, 20–29. [Google Scholar] [CrossRef]
- Steidle Neto, A.J.; Zolnier, S.; de Carvalho Lopes, D. Development and Evaluation of an Automated System for Fertigation Control in Soilless Tomato Production. Comput. Electron. Agric. 2014, 103, 17–25. [Google Scholar] [CrossRef]
- Dordas, C. Role of Nutrients in Controlling Plant Diseases in Sustainable Agriculture. A Review. Agron. Sustain. Dev. 2008, 28, 33–46. [Google Scholar] [CrossRef]
- Ikrang, E.G.; Ehiomogue, P.O.; Udoumoh, U.I. Hydroponics in Precision Agriculture: A Review. Int. J. Eng. 2022, 20, 143–148. [Google Scholar]
- Chaiwongsai, J. Automatic Control and Management System for Tropical Hydroponic Cultivatio. In Proceedings of the 2019 IEEE International Symposium on Circuits and Systems, Sapporo, Japan, 26–29 May 2019. [Google Scholar]
- Ferrández-Pastor, F.J.; García-Chamizo, J.M.; Nieto-Hidalgo, M.; Mora-Pascual, J.; Mora-Martínez, J. Developing Ubiquitous Sensor Network Platform Using Internet of Things: Application in Precision Agriculture. Sensors 2016, 16, 1141. [Google Scholar] [CrossRef]
- Sánchez Millán, F.; Ortiz, F.J.; Mestre Ortuño, T.C.; Frutos, A.; Martínez, V. Development of Smart Irrigation Equipment for Soilless Crops Based on the Current Most Representative Water-Demand Sensors. Sensors 2023, 23, 3177. [Google Scholar] [CrossRef] [PubMed]
- Dhanaraju, M.; Chenniappan, P.; Ramalingam, K.; Pazhanivelan, S.; Kaliaperumal, R. Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture. Agriculture 2022, 12, 1745. [Google Scholar] [CrossRef]
- Adeyemi, O.; Grove, I.; Peets, S.; Norton, T. Advanced Monitoring and Management Systems for Improving Sustainability in Precision Irrigation. Sustainability 2017, 9, 353. [Google Scholar] [CrossRef]
- Sobri, N.A.; Ahmad, I.; Maharum, S.M.; Mansor, Z.; Rahman, A.H.A.; Aziz, A.A. Development of Hydroponics System and Data Monitoring Using Internet of Things. In Proceedings of the 2022 IEEE 8th International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA), Melaka, Malaysia, 26–28 September 2022; pp. 345–349. [Google Scholar]
- Naphtali, J.H.; Misra, S.; Wejin, J.; Agrawal, A.; Oluranti, J. An Intelligent Hydroponic Farm Monitoring System Using IoT. In Data, Engineering and Applications; Sharma, S., Peng, S.-L., Agrawal, J., Shukla, R.K., Le, D.-N., Eds.; Springer Nature: Singapore, 2022; pp. 409–420. [Google Scholar]
- Christofi, A.; Margariti, G.; Salapatas, A.; Papageorgiou, G.; Zervas, P.; Karampiperis, P.; Koukourikos, A.; Tarantilis, P.A.; Kaparakou, E.H.; Misiakos, K.; et al. Determining the Nutrient Content of Hydroponically-Cultivated Microgreens with Immersible Silicon Determining the Nutrient Content of Hydroponically-Cultivated Microgreens with Immersible Silicon Photonic Sensors: A Preliminary Feasibility Study. Sensors 2023, 23, 5937. [Google Scholar] [CrossRef]
- Popkova, E.G. Case Study of Smart Innovation in Agriculture on the Example of a Vertical Farm. In Smart Innovation in Agriculture; Popkova Elena, G., Sergi, B.S., Eds.; Springer Nature: Singapore, 2022; pp. 303–309. ISBN 978-981-16-7633-8. [Google Scholar]
- Kangogo, D.; Dentoni, D.; Bijman, J. Adoption of Climate-smart Agriculture among Smallholder Farmers: Does Farmer Entrepreneurship Matter? Land Use Policy 2021, 109, 105666. [Google Scholar] [CrossRef]
- Kaur, G.; Upadhayaya, P.; Chawla, P. The Study of Sensors in Soil-Less Farming Techniques for Modern Agriculture. In Recent Advances in Intelligent Manufacturing; Harish, K., Jain, P.K., Goel, S., Eds.; Springer Nature: Singapore, 2023; pp. 293–307. [Google Scholar]
- Eridani, D.; Wardhani, O.; Widianto, E.D. Designing and Implementing the Arduino-Based Nutrition Feeding Automation System of a Prototype Scaled Nutrient Film Technique (NFT) Hydroponics Using Total Dissolved Solids (TDS) Sensor. In Proceedings of the 2017 4th International Conference on Information Technology, Computer, and Electrical Engineering (ICITACEE), Semarang, Indonesia, 18–19 October 2017; pp. 170–175. [Google Scholar]
- Kim, H.J.; Kim, W.K.; Roh, M.Y.; Kang, C.I.; Park, J.M.; Sudduth, K.A. Automated Sensing of Hydroponic Macronutrients Using a Computer-Controlled System with an Array of Ion-Selective Electrodes. Comput. Electron. Agric. 2013, 93, 46–54. [Google Scholar] [CrossRef]
- Erfianto, B.; Rakhmatsyah, A.; Ariyanto, E. Micro-Climate Control for Hydroponics in Greenhouses. In Proceedings of the 2020 8th International Conference on Information and Communication Technology (ICoICT), Yogyakarta, Indonesia, 24–26 June 2020; pp. 1–6. [Google Scholar]
- Siddiq, A.; Tariq, M.O.; Zehra, A.; Malik, S. ACHPA: A Sensor Based System for Automatic Environmental Control in Hydroponics. Food Sci. Technol. 2020, 40, 671–680. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, Y.; Li, S.; Ke, Z.; Zhao, H.; Yang, J.; Wang, Y.; Li, D.; Wang, L.; Yang, W.; et al. Investigation on Environment Monitoring System for a Combination of Hydroponics and Aquaculture in Greenhouse. Inf. Process. Agric. 2022, 9, 123–134. [Google Scholar] [CrossRef]
- Ibayashi, H.; Kaneda, Y.; Imahara, J.; Oishi, N.; Kuroda, M.; Mineno, H. A Reliable Wireless Control System for Tomato Hydroponics. Sensors 2016, 16, 644. [Google Scholar] [CrossRef]
- Mishra, P.; Jimmy, L.; Ogunmola, G.A.; Phu, T.V.; Jayanthiladevi, A.; Latchoumi, T.P. Hydroponics Cultivation Using Real Time Iot Measurement System. J. Phys. Conf. Ser. 2020, 1712, 012040. [Google Scholar] [CrossRef]
- Mapari, R.G.; Bhangale, K.B.; Patil, P.; Tiwari, H.; Khot, S.; Rane, S. An IoT Based Automated Hydroponics Farming and Real Time Crop Monitoring. In Proceedings of the 2022 2nd International Conference on Intelligent Technologies (CONIT), Hubli, India, 24–26 June 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Reyes-Yanes, A.; Martinez, P.; Ahmad, R. Real-Time Growth Rate and Fresh Weight Estimation for Little Gem Romaine Lettuce in Aquaponic Grow Beds. Comput. Electron. Agric. 2020, 179, 105827. [Google Scholar] [CrossRef]
- Yolanda, D.; Hindersah, H.; Hadiatna, F.; Triawan, M.A. Implementation of Real-Time Fuzzy Logic Control for NFT-Based Hydroponic System on Internet of Things Environment. In Proceedings of the 2016 6th International Conference on System Engineering and Technology (ICSET), Bandung, Indonesia, 3–4 October 2016; pp. 153–159. [Google Scholar]
- Saiz-Rubio, V.; Rovira-Más, F. From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management. Agronomy 2020, 10, 207. [Google Scholar] [CrossRef]
- Liu, J. Design and Implementation of an Intelligent Environmental-Control System: Perception, Network, and Application with Fused Data Collected from Multiple Sensors in a Greenhouse at Jiangsu, China. Int. J. Distrib. Sens. Netw. 2016, 12, 5056460. [Google Scholar] [CrossRef]
- Pitakphongmetha, J.; Boonnam, N.; Wongkoon, S.; Horanont, T.; Somkiadcharoen, D.; Prapakornpilai, J. Internet of Things for Planting in Smart Farm Hydroponics Style. In Proceedings of the 2016 International Computer Science and Engineering Conference (ICSEC), Chiang Mai, Thailand, 14–17 December 2016; pp. 1–5. [Google Scholar]
- Palande, V.; Zaheer, A.; George, K. Fully Automated Hydroponic System for Indoor Plant Growth. Procedia Comput. Sci. 2018, 129, 482–488. [Google Scholar] [CrossRef]
- Ferrández-Pastor, F.J.; García-Chamizo, J.M.; Nieto-Hidalgo, M.; Mora-Martínez, J. Precision Agriculture Design Method Using a Distributed Computing Architecture on Internet of Things Context. Sensors 2018, 18, 1731. [Google Scholar] [CrossRef] [PubMed]
- Kodali, R.K.; Jain, V.; Karagwal, S. IoT Based Smart Greenhouse. In Proceedings of the 2016 IEEE Region 10 Humanitarian Technology Conference (R10-HTC), Agra, India, 21–23 December 2016; pp. 1–6. [Google Scholar]
- Jiao, J.; Ma, H.; Qiao, Y.; Du, Y.; Kong, W.; Wu, Z. Design of Farm Environmental Monitoring System Based on the Internet of Things. Adv. J. Food Sci. Technol. 2014, 6, 368–373. [Google Scholar] [CrossRef]
- Jayaraman, P.P.; Yavari, A.; Georgakopoulos, D.; Morshed, A.; Zaslavsky, A. Internet of Things Platform for Smart Farming: Experiences and Lessons Learnt. Sensors 2016, 16, 1884. [Google Scholar] [CrossRef] [PubMed]
- Pooja, S.; Uday, D.V.; Nagesh, U.B.; Talekar, S.G. Application of MQTT Protocol for Real Time Weather Monitoring and Precision Farming. In Proceedings of the 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), Mysuru, India, 15–16 December 2017; pp. 1–6. [Google Scholar]
- Crisnapati, P.N.; Wardana, I.N.K.; Aryanto, I.K.A.A.; Hermawan, A. Hommons: Hydroponic Management and Monitoring System for an IOT Based NFT Farm Using Web Technology. In Proceedings of the 2017 5th International Conference on Cyber and IT Service Management (CITSM), Denpasar, Indonesia, 8–10 August 2017; pp. 1–6. [Google Scholar]
- Lamprinos, I.; Charalambides, M. Experimental Assessment of Zigbee as the Communication Technology of a Wireless Sensor Network for Greenhouse Monitoring. Int. J. Adv. Smart Sens. Netw. Syst. 2015, 5, 1–10. [Google Scholar] [CrossRef]
- Chieochan, O.; Saokaew, A.; Boonchieng, E. IOT for Smart Farm: A Case Study of the Lingzhi Mushroom Farm at Maejo University. In Proceedings of the 2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE), NakhonSiThammarat, Thailand, 12–14 July 2017; pp. 1–6. [Google Scholar]
- Akkaş, M.A.; Sokullu, R. An IoT-Based Greenhouse Monitoring System with Micaz Motes. Procedia Comput. Sci. 2017, 113, 603–608. [Google Scholar] [CrossRef]
- Abdul Halim, A.A.; Hassan, M.N.; Zakaria, A.; Kamarudin, L.; Abu Bakar, A. Internet of Things Technology for Greenhouse Monitoring and Management System Based on Wireless Sensor Network. ARPN J. Eng. Appl. Sci. 2016, 11, 13169–13175. [Google Scholar]
- Singh, T.A.; Chandra, J. IOT Based Green House Monitoring System. J. Comput. Sci. 2018, 14, 639–644. [Google Scholar] [CrossRef]
- Cambra, C.; Sendra, S.; Lloret, J.; Lacuesta, R. Smart System for Bicarbonate Control in Irrigation for Hydroponic Precision Farming. Sensors 2018, 18, 1333. [Google Scholar] [CrossRef] [PubMed]
- Yan, M.; Liu, P.; Zhao, R.; Liu, L.; Chen, W.; Yu, X.; Zhang, J. Field Microclimate Monitoring System Based on Wireless Sensor Network. J. Intell. Fuzzy Syst. 2018, 35, 1325–1337. [Google Scholar] [CrossRef]
- Yadav, S.; Kaushik, A.; Sharma, M.; Sharma, S. Disruptive Technologies in Smart Farming: An Expanded View with Sentiment Analysis. AgriEngineering 2022, 4, 424–460. [Google Scholar] [CrossRef]
- Terence, S.; Purushothaman, G. Systematic Review of Internet of Things in Smart Farming. Trans. Emerg. Telecommun. Technol. 2020, 31, e3958. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, Q. Precision Irrigation Scheduling Using ECH2O Moisture Sensors for Lettuce Cultivated in a Soilless Substrate Culture. Water 2018, 10, 549. [Google Scholar] [CrossRef]
- Montesano, F.F.; Van Iersel, M.W.; Parente, A. Timer versus Moisture Sensor-Based Irrigation Control of Soilless Lettuce: Effects on Yield, Quality and Water Use Efficiency. Hortic. Sci. 2016, 43, 67–75. [Google Scholar] [CrossRef]
- Kang, S.; van Iersel, M.W.; Kim, J. Plant Root Growth Affects FDR Soil Moisture Sensor Calibration. Sci. Hortic. 2019, 252, 208–211. [Google Scholar] [CrossRef]
- Dutta, M.; Gupta, D.; Sahu, S.; Limkar, S.; Singh, P.; Mishra, A.; Kumar, M.; Mutlu, R. Evaluation of Growth Responses of Lettuce and Energy Efficiency of the Substrate and Smart Hydroponics Cropping System. Sensors 2023, 23, 1875. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, X.; Xu, K.; Su, X.; Sun, J. Compensation Methods for PH Direct Measurement in Soilless Culture Substrates Using the All-Solid-Stated PH Sensor. IEEE Sens. J. 2021, 21, 26856–26867. [Google Scholar] [CrossRef]
- Yegül, U. Development of an Embedded Software and Control Kit to Be Used in Soilless Agriculture Production Systems. Sensors 2023, 23, 3706. [Google Scholar] [CrossRef] [PubMed]
- Shimpi, M.; Thorat, V.; Gavade, S.; Pawar, S.; Rajule, N. Smart Greenhouse Automation and Monitoring System. In Proceedings of the 2022 6th International Conference on Computing, Communication, Control and Automation (ICCUBEA), Pune, India, 26–27 August 2022; pp. 1–6. [Google Scholar]
- Lata, S.; Verma, H.K.; Roy, N.R.; Sagar, K. Development of Greenhouse-Application-Specific Wireless Sensor Node and Graphical User Interface. Int. J. Inf. Technol. 2023, 15, 211–218. [Google Scholar] [CrossRef]
- Hilal, Y.Y.; Khessro, M.K.; van Dam, J.; Mahdi, K. Automatic Water Control System and Environment Sensors in a Greenhouse. Water 2022, 14, 1166. [Google Scholar] [CrossRef]
- Vagisha; Rajesh, E.; Basheer, S.; Baskar, K. Hydroponics Soilless Smart Farming in Improving Productivity of Crop Using Intelligent Smart Systems. In Proceedings of the 2023 3rd International Conference on Innovative Practices in Technology and Management, ICIPTM 2023, Uttar Pradesh, India, 22–24 February 2023; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2023. [Google Scholar]
- Dhanasekar, S.; Abarna, V.K.; Gayathri, V.; Valarmathi, G.; Madhumita, D.; Jeevitha, R. An Efficient Smart Agriculture System Based on The Internet of Things Using Aeroponics Method. In Proceedings of the 2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 17–18 March 2023; Volume 1, pp. 1386–1391. [Google Scholar]
- Stevens, J.D.; Murray, D.; Diepeveen, D.; Toohey, D. Adaptalight: An Inexpensive PAR Sensor System for Daylight Harvesting in a Micro Indoor Smart Hydroponic System. Horticulturae 2022, 8, 105. [Google Scholar] [CrossRef]
- El Kasmi, N.; Lorhlam, B.; Fezghari, O.A.; Salih-Alj, Y. Hydroponic System in a Controlled Atmosphere and Substrate: Case Study in Morocco. In Proceedings of the 2022 IEEE International Conference on Mechatronics and Automation (ICMA), Guilin, China, 7–10 August 2022; pp. 274–279. [Google Scholar]
- Ullah, A.; Aktar, S.; Sutar, N.; Kabir, R.; Hossain, A. Cost Effective Smart Hydroponic Monitoring and Controlling System Using IoT. Intell. Control Autom. 2019, 10, 142–154. [Google Scholar] [CrossRef]
- Marques, G.; Aleixo, D.; Pitarma, R. Enhanced Hydroponic Agriculture Environmental Monitoring: An Internet of Things Approach. In Computational Science—ICCS 2019; Rodrigues João, M.F., Cardoso, P.J.S., Monteiro, J., Lam, R., Krzhizhanovskaya, V.V., Lees, M.H., Dongarra, J.J., Sloot, P.M.A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 658–669. [Google Scholar]
- Bakhtar, N.; Chhabria, V.; Chougle, I.; Vidhrani, H.; Hande, R. IoT based Hydroponic Farm. In Proceedings of the 2018 International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India, 13–14 December 2018; pp. 205–209. [Google Scholar] [CrossRef]
- Ramakrishnam Raju, S.V.S.; Dappuri, B.; Ravi Kiran Varma, P.; Yachamaneni, M.; Verghese, D.M.G.; Mishra, M.K. Design and Implementation of Smart Hydroponics Farming Using IoT-Based AI Controller with Mobile Application System. J. Nanomater. 2022, 2022, 4435591. [Google Scholar] [CrossRef]
- Andrianto, H.; Suhardi; Faizal, A. Development of Smart Greenhouse System for Hydroponic Agriculture. In Proceedings of the 2020 International Conference on Information Technology Systems and Innovation (ICITSI), Bandung, Indonesia, 19–23 October 2020; pp. 335–340. [Google Scholar]
- Dhal, S.B.; Mahanta, S.; Gumero, J.; O’Sullivan, N.; Soetan, M.; Louis, J.; Gadepally, K.C.; Mahanta, S.; Lusher, J.; Kalafatis, S. An IoT-Based Data-Driven Real-Time Monitoring System for Control of Heavy Metals to Ensure Optimal Lettuce Growth in Hydroponic Set-Ups. Sensors 2023, 23, 451. [Google Scholar] [CrossRef]
- Mamatha, V.; Kavitha, J.C. Machine Learning Based Crop Growth Management in Greenhouse Environment Using Hydroponics Farming Techniques. Meas. Sens. 2023, 25, 100665. [Google Scholar] [CrossRef]
- Niswar, M. Design and Implementation of an Automated Indoor Hydroponic Farming System Based on the Internet of Things. Int. J. Comput. Digit. Syst. 2023, 14, 189–196. [Google Scholar]
- Alotaibi, H.; Karsou, W.; Khan, S.; Tohmeh, S.; Bashar, A. Bustani: A Microcontroller-Based Automated Hydroponic Vertical Farming Solution. In Proceedings of the 2023 IEEE International Conference on Agrosystem Engineering, Technology & Applications (AGRETA), Shah Alam, Malaysia, 9 September 2023; pp. 56–61. [Google Scholar]
- Venkatraman, M.; Surendran, R. Design and Implementation of Smart Hydroponics Farming for Growing Lettuce Plantation under Nutrient Film Technology. In Proceedings of the 2023 2nd International Conference on Applied Artificial Intelligence and Computing (ICAAIC), Salem, India, 4–6 May 2023; pp. 1514–1521. [Google Scholar]
- Danush, G.; Sri, R.; Karthikeyan, A. Smart Hydroponics System for Soilless Farming Based on Internet of Things. In Smart Technologies in Data Science and Communication; Ogudo Kingsley, A., Saha, S.K., Bhattacharyya, D., Eds.; Springer Nature: Singapore, 2023; pp. 271–280. [Google Scholar]
- Thilakarathne, N.N.; Abu Bakar, M.S.; Abas, P.E.; Yassin, H. Towards Making the Fields Talks: A Real-Time Cloud Enabled IoT Crop Management Platform for Smart Agriculture. Front. Plant Sci. 2023, 13, 1030168. [Google Scholar] [CrossRef]
- Albert, M.C.; Hans, H.; Karteja, H.; Widianto, M.H. Development of Hydroponic IoT-Based Monitoring System and Automatic Nutrition Control Using KNN. In Proceedings of the 2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE), Jakarta, Indonesia, 16 February 2023; pp. 974–979. [Google Scholar]
- Otieno, M. An Extensive Survey of Smart Agriculture Technologies: Current Security Posture. World J. Adv. Res. Rev. 2023, 18, 1207–1231. [Google Scholar] [CrossRef]
- Rettore de Araujo Zanella, A.; da Silva, E.; Pessoa Albini, L.C. Security Challenges to Smart Agriculture: Current State, Key Issues, and Future Directions. Array 2020, 8, 100048. [Google Scholar] [CrossRef]
- Demestichas, K.; Peppes, N.; Alexakis, T. Survey on Security Threats in Agricultural Iot and Smart Farming. Sensors 2020, 20, 6458. [Google Scholar] [CrossRef] [PubMed]
- Wang, P. On Defining Artificial Intelligence. J. Artif. Gen. Intell. 2019, 10, 1–37. [Google Scholar] [CrossRef]
- Soori, M.; Arezoo, B.; Dastres, R. Artificial Intelligence, Machine Learning and Deep Learning in Advanced Robotics, a Review. Cogn. Robot. 2023, 3, 54–70. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Khan, I.H.; Suman, R. Understanding the Potential Applications of Artificial Intelligence in Agriculture Sector. Adv. Agrochem. 2023, 2, 15–30. [Google Scholar] [CrossRef]
- Chang, C.-L.; Chung, S.-C.; Fu, W.-L.; Huang, C.-C. Artificial Intelligence Approaches to Predict Growth, Harvest Day, and Quality of Lettuce (Lactuca Sativa L.) in a IoT-Enabled Greenhouse System. Biosyst. Eng. 2021, 212, 77–105. [Google Scholar] [CrossRef]
- Torres-Tello, J.; Ko, S.-B. Interpretability of Artificial Intelligence Models That Use Data Fusion to Predict Yield in Aeroponics. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 3331–3342. [Google Scholar] [CrossRef]
- Wu, L.; Zhou, H.; Ma, X.; Fan, J.; Zhang, F. Daily Reference Evapotranspiration Prediction Based on Hybridized Extreme Learning Machine Model with Bio-Inspired Optimization Algorithms: Application in Contrasting Climates of China. J. Hydrol. 2019, 577, 123960. [Google Scholar] [CrossRef]
- Verma, M.S.; Gawade, S.D. A Machine Learning Approach for Prediction System and Analysis of Nutrients Uptake for Better Crop Growth in the Hydroponics System. In Proceedings of the 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), Coimbatore, India, 25–27 March 2021; pp. 150–156. [Google Scholar]
- Dhal, S.B.; Bagavathiannan, M.; Braga-Neto, U.; Kalafatis, S. Nutrient Optimization for Plant Growth in Aquaponic Irrigation Using Machine Learning for Small Training Datasets. Artif. Intell. Agric. 2022, 6, 68–76. [Google Scholar] [CrossRef]
- Rai, A.S.D.; Pawar, R.; Pandey, A.; Rajeshwari, C.S.; Gwal, A.K. Smart Artificial Intelligent-Based Controller for Hydroponic: New Technique for Soilless Plantation. In Machine Learning for Predictive Analysis; Joshi, A., Khosravy, M., Gupta, N., Eds.; Springer: Singapore, 2021; pp. 217–227. [Google Scholar]
- Ojo, M.O.; Zahid, A. Deep Learning in Controlled Environment Agriculture: A Review of Recent Advancements, Challenges and Prospects. Sensors 2022, 22, 7965. [Google Scholar] [CrossRef]
- Jaiswal, H.; Radha, K.; Singuluri, R.; Sampson, S.A. IoT and Machine Learning Based Approach for Fully Automated Greenhouse. In Proceedings of the 2019 IEEE Bombay Section Signature Conference (IBSSC), Mumbai, India, 26–28 July 2019; pp. 1–6. [Google Scholar]
- Chen, W.-H.; You, F. Semiclosed Greenhouse Climate Control Under Uncertainty via Machine Learning and Data-Driven Robust Model Predictive Control. IEEE Trans. Control Syst. Technol. 2022, 30, 1186–1197. [Google Scholar] [CrossRef]
- Fuentes-Peñailillo, F.; Carrasco, G.; Pérez, R.; Burgos, I.; Ewertz, F. Automating Seedling Counts in Horticulture Using Computer Vision and AI. Horticulturae 2023, 9, 1134. [Google Scholar] [CrossRef]
- Petropoulou, A.S.; van Marrewijk, B.; de Zwart, F.; Elings, A.; Bijlaard, M.; van Daalen, T.; Jansen, G.; Hemming, S. Lettuce Production in Intelligent Greenhouses—3D Imaging and Computer Vision for Plant Spacing Decisions. Sensors 2023, 23, 2929. [Google Scholar] [CrossRef]
- Khan, F.A.; Ibrahim, A.A.; M Zeki, A. Environmental Monitoring and Disease Detection of Plants in Smart Greenhouse Using Internet of Things. J. Phys. Commun. 2020, 4, 055008. [Google Scholar] [CrossRef]
- Fonteijn, H.; Afonso, M.; Lensink, D.; Mooij, M.; Faber, N.; Vroegop, A.; Polder, G.; Wehrens, R. Automatic Phenotyping of Tomatoes in Production Greenhouses Using Robotics and Computer Vision: From Theory to Practice. Agronomy 2021, 11, 1599. [Google Scholar] [CrossRef]
- Al Rasyid, M.U.H.; Sukaridhoto, S.; Iskandar, M.; Rifa’i, A. Integration of IoT and Chatbot for Aquaculture with Natural Language Processing. TELKOMNIKA Telecommun. Comput. Electron. Control 2020, 18, 640–648. [Google Scholar]
- Saad, M.H.M.; Hamdan, N.M.; Sarker, M.R. State of the Art of Urban Smart Vertical Farming Automation System: Advanced Topologies, Issues and Recommendations. Electronics 2021, 10, 1422. [Google Scholar] [CrossRef]
- Anitha, M.L.; Jnaneshwari, A.; Harshitha, S.R.; Bhanu Nagesha, M. IoT Based Automated Hydroponic System Using Light Intensity for Lettuce Growth. In Proceedings of the 2022 Fourth International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT), Mandya, India, 26–27 December 2022; pp. 1–5. [Google Scholar]
- Farooqui, N.A.; Mishra, A.K.; Mehra, R. IOT Based Automated Greenhouse Using Machine Learning Approach. Int. J. Intell. Syst. Appl. Eng. 2022, 10, 226–231. [Google Scholar]
- Gao, J.; Zhang, F.; Zhang, J.; Yuan, T.; Yin, J.; Guo, H.; Yang, C. Development and Evaluation of a Pneumatic Finger-like End-Effector for Cherry Tomato Harvesting Robot in Greenhouse. Comput. Electron. Agric. 2022, 197, 106879. [Google Scholar] [CrossRef]
- Wang, B.; Ding, Y.; Wang, C.; Li, D.; Wang, H.; Bie, Z.; Huang, Y.; Xu, S. G-ROBOT: An Intelligent Greenhouse Seedling Height Inspection Robot. J. Robot. 2022, 2022, 9355234. [Google Scholar] [CrossRef]
- Wu, C.; Tang, X.; Xu, X. System Design, Analysis, and Control of an Intelligent Vehicle for Transportation in Greenhouse. Agriculture 2023, 13, 1020. [Google Scholar] [CrossRef]
- Su, L.; Liu, R.; Liu, K.; Li, K.; Liu, L.; Shi, Y. Greenhouse Tomato Picking Robot Chassis. Agriculture 2023, 13, 532. [Google Scholar] [CrossRef]
- Choi, T.; Park, J.; Kim, J.-J.; Shin, Y.-S.; Seo, H. Work Efficiency Analysis of Multiple Heterogeneous Robots for Harvesting Crops in Smart Greenhouses. Agronomy 2022, 12, 2844. [Google Scholar] [CrossRef]
- Long, Z.; Xiang, Y.; Lei, X.; Li, Y.; Hu, Z.; Dai, X. Integrated Indoor Positioning System of Greenhouse Robot Based on UWB/IMU/ODOM/LIDAR. Sensors 2022, 22, 4819. [Google Scholar] [CrossRef] [PubMed]
- Bersani, C.; Ruggiero, C.; Sacile, R.; Soussi, A.; Zero, E. Internet of Things Approaches for Monitoring and Control of Smart Greenhouses in Industry 4.0. Energies 2022, 15, 3834. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, V.; Kumar, S.; Jaiswal, S.P.; Bhadoria, V.S. IoT Enabled System to Monitor and Control Greenhouse. Mater. Today Proc. 2022, 49, 3137–3141. [Google Scholar] [CrossRef]
- Ullah, I.; Fayaz, M.; Aman, M.; Kim, D. An Optimization Scheme for IoT Based Smart Greenhouse Climate Control with Efficient Energy Consumption. Computing 2022, 104, 433–457. [Google Scholar] [CrossRef]
- Benyezza, H.; Bouhedda, M.; Kara, R.; Rebouh, S. Smart Platform Based on IoT and WSN for Monitoring and Control of a Greenhouse in the Context of Precision Agriculture. Internet Things 2023, 23, 100830. [Google Scholar] [CrossRef]
- Maraveas, C. Incorporating Artificial Intelligence Technology in Smart Greenhouses: Current State of the Art. Appl. Sci. 2023, 13, 14. [Google Scholar] [CrossRef]
- Fernando, S.D.; Gamage, A.; De Silva, D.H. Machine Learning to Aid in the Process of Disease Detection and Management in Soilless Farming. In Proceedings of the 2022 IEEE 7th International conference for Convergence in Technology (I2CT), Mumbai, India, 7–9 April 2022; pp. 1–5. [Google Scholar]
- Fernando, S.; Nethmi, R.; Silva, A.; Perera, A.; De Silva, R.; Abeygunawardhana, P.W.K. AI Based Greenhouse Farming Support System with Robotic Monitoring. In Proceedings of the 2020 IEEE REGION 10 CONFERENCE (TENCON), Osaka, Japan, 16–19 November 2020; pp. 1368–1373. [Google Scholar]
- Talaviya, T.; Shah, D.; Patel, N.; Yagnik, H.; Shah, M. Implementation of Artificial Intelligence in Agriculture for Optimisation of Irrigation and Application of Pesticides and Herbicides. Artif. Intell. Agric. 2020, 4, 58–73. [Google Scholar] [CrossRef]
- Sammons, P.J.; Furukawa, T.; Bulgin, A. Autonomous Pesticide Spraying Robot for Use in a Greenhouse. In Proceedings of the Australian Conference on Robotics and Automation, Sydney, Australia, 5–7 December 2005; Volume 1, pp. 1–9. [Google Scholar]
- Wakchaure, M.; Patle, B.K.; Mahindrakar, A.K. Application of AI Techniques and Robotics in Agriculture: A Review. Artif. Intell. Life Sci. 2023, 3, 100057. [Google Scholar] [CrossRef]
- Garrity, J. Harnessing the Internet of Things for Global Development. SSRN Electron. J. 2015. [Google Scholar] [CrossRef]
- Kendall, H.; Clark, B.; Li, W.; Jin, S.; Jones, G.D.; Chen, J.; Taylor, J.; Li, Z.; Frewer, L.J. Precision Agriculture Technology Adoption: A Qualitative Study of Small-Scale Commercial “Family Farms” Located in the North China Plain. Precis. Agric. 2022, 23, 319–351. [Google Scholar] [CrossRef]
- Maloku, D. Adoption of Precision Farming Technologies: Usa and Eu Situation. SEA Pract. Appl. Sci. 2020, 8, 7–14. [Google Scholar]
- European Economic and Social Committee. Boosting the Use of Artificial Intelligence in Europe’s Micro, Small and Medium-Sized Enterprises; Publications Office of the European Union: Luxembourg, 2021. [Google Scholar] [CrossRef]
- Karnawat, M.; Trivedi, S.K.; Nagar, D.; Nagar, R. Future of AI in Agriculture. Biot. Res. Today 2020, 2, 927–929. [Google Scholar]
- Aytenfsu, S.A.; Beyene, A.M.; Getaneh, T.H. Controlling the Interior of Greenhouses Using Elman Recurrent Neural Network. In Proceedings of the 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), London, UK, 27–28 July 2020; pp. 32–39. [Google Scholar]
- Sankaranarayanan, S. Applications of Artificial Intelligence for Smart Agriculture. In AI-Based Services for Smart Cities and Urban. Infrastructure; IGI Global: Hershey, PA, USA, 2021; pp. 277–288. [Google Scholar]
- Panpatte, S.; Ganeshkumar, C. Artificial Intelligence in Agriculture Sector: Case Study of Blue River Technology. In Proceedings of the Second International Conference on Information Management and Machine Intelligence; Goyal, D., Gupta, A.K., Piuri, V., Ganzha, M., Paprzycki, M., Eds.; Springer Singapore: Singapore, 2021; pp. 147–153. [Google Scholar]
- Daoliang, L.; Chang, L. Recent Advances and Future Outlook for Artificial Intelligence in Aquaculture. Smart Agric. 2020, 2, 1–20. [Google Scholar] [CrossRef]
- Sharma, S.; Verma, K.; Hardaha, P. Implementation of Artificial Intelligence in Agriculture. J. Comput. Cogn. Eng. 2022, 2, 155–162. [Google Scholar] [CrossRef]
- Bu, F.; Wang, X. A Smart Agriculture IoT System Based on Deep Reinforcement Learning. Future Gener. Comput. Syst. 2019, 99, 500–507. [Google Scholar] [CrossRef]
- Hemming, S.; de Zwart, F.; Elings, A.; Righini, I.; Petropoulou, A. Remote Control of Greenhouse Vegetable Production with Artificial Intelligence—Greenhouse Climate, Irrigation, and Crop Production. Sensors 2019, 19, 1807. [Google Scholar] [CrossRef]
- Wongchai, A.; Shukla, S.K.; Ahmed, M.A.; Sakthi, U.; Jagdish, M.; Kumar, R. Artificial Intelligence—Enabled Soft Sensor and Internet of Things for Sustainable Agriculture Using Ensemble Deep Learning Architecture. Comput. Electr. Eng. 2022, 102, 108128. [Google Scholar] [CrossRef]
- Sachithra, V.; Subhashini, L.D.C.S. How Artificial Intelligence Uses to Achieve the Agriculture Sustainability: Systematic Review. Artif. Intell. Agric. 2023, 8, 46–59. [Google Scholar] [CrossRef]
- Jain, A.; Patel, H.; Nagalapatti, L.; Gupta, N.; Mehta, S.; Guttula, S.; Mujumdar, S.; Afzal, S.; Sharma Mittal, R.; Munigala, V. Overview and Importance of Data Quality for Machine Learning Tasks. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, New York, NY, USA, 6–10 July 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 3561–3562. [Google Scholar]
- Budach, L.; Feuerpfeil, M.; Ihde, N.; Nathansen, A.; Noack, N.; Patzlaff, H.; Naumann, F.; Harmouch, H. The Effects of Data Quality on Machine Learning Performance. arXiv 2022, arXiv:2207.14529. [Google Scholar]
- Whang, S.E.; Roh, Y.; Song, H.; Lee, J.-G. Data Collection and Quality Challenges in Deep Learning: A Data-Centric AI Perspective. VLDB J. 2023, 32, 791–813. [Google Scholar] [CrossRef]
- Whig, P. Leveraging AI for Sustainable Agriculture: Opportunities and Challenges. Trans. Latest Trends Artif. Intell. 2023, 4. [Google Scholar]
- Uddin, M.; Chowdhury, A.; Kabir, M.A. Legal and Ethical Aspects of Deploying Artificial Intelligence in Climate-Smart Agriculture. AI Soc. 2022, 1–14. [Google Scholar] [CrossRef]
- Dara, R.; Yang, Q.; Joy, R.; Flor, B.; Whitfield, S.; Mehdi, S.; Fard, H.; Kaur, J. Recommendations for Ethical and Responsible Use of Artificial Intelligence in Digital Agriculture. Front. Artif. Intell. 2022, 5. [Google Scholar] [CrossRef]
- Ryan, M. The Social and Ethical Impacts of Artificial Intelligence in Agriculture: Mapping the Agricultural AI Literature. AI Soc. 2022. [Google Scholar] [CrossRef]
- Rudrakar, S.; Rughani, P. IoT Based Agriculture (Ag-IoT): A Detailed Study on Architecture, Security and Forensics. Inf. Process. Agric. 2023. [Google Scholar] [CrossRef]
- Tzachor, A.; Devare, M.; King, B.; Avin, S.; Éigeartaigh, Ó.S. Responsible Artificial Intelligence in Agriculture Requires Systemic Understanding of Risks and Externalities. Nat. Mach. Intell. 2022, 4, 104–109. [Google Scholar] [CrossRef]
- Racovita, M. Industry Briefing: Cybersecurity for the Internet of Things and Artificial Intelligence in the AgriTech Sector; Industry Briefing PETRAS National Centre of Excellence for IoT Systems Cybersecurity: London, UK, 2021. [Google Scholar]
- Siregar, R.R.A.; Seminar, K.B.; Wahjuni, S.; Santosa, E. Vertical Farming Perspectives in Support of Precision Agriculture Using Artificial Intelligence: A Review. Computers 2022, 11, 135. [Google Scholar] [CrossRef]
- Bolandnazar, E.; Rohani, A.; Taki, M. Energy Consumption Forecasting in Agriculture by Artificial Intelligence and Mathematical Models. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 42, 1618–1632. [Google Scholar] [CrossRef]
- Rodríguez, D.; Reca, J.; Martinez, J.; López-Luque, R.; Urrestarazu, M. Development of a New Control Algorithm for Automatic Irrigation Scheduling in Soilless Culture. Appl. Math. Inf. Sci. 2015, 9, 47–56. [Google Scholar] [CrossRef]
- Gayam, K.K.; Jain, A.; Gehlot, A.; Singh, R.; Akram, S.V.; Singh, A.; Anand, D.; Noya, I.D. Imperative Role of Automation and Wireless Technologies in Aquaponics Farming. Wirel. Commun. Mob. Comput. 2022, 2022, 8290255. [Google Scholar] [CrossRef]
- Tunalı, U.; Tüzel, I.H.; Tüzel, Y.; Şenol, Y. Estimation of Actual Crop Evapotranspiration Using Artificial Neural Networks in Tomato Grown in Closed Soilless Culture System. Agric. Water Manag. 2023, 284, 108331. [Google Scholar] [CrossRef]
- Moradi, A. Evaluation of the FAO Proposed Models for Reference Crop Evapotranspiration (ETo) Estimation in Hajiabad Watershed of Hormozgan Province. Watershed Manag. Res. J. 2023, 36, 121–133. [Google Scholar]
- Hua, D.; Hao, X.; Zhang, Y.; Qin, J. Uncertainty Assessment of Potential Evapotranspiration in Arid Areas, as Estimated by the Penman-Monteith Method. J. Arid. Land. 2020, 12, 166–180. [Google Scholar] [CrossRef]
- Ndulue, E.; Ranjan, R.S. Performance of the FAO Penman-Monteith Equation under Limiting Conditions and Fourteen Reference Evapotranspiration Models in Southern Manitoba. Theor. Appl. Clim. 2021, 143, 1285–1298. [Google Scholar] [CrossRef]
- Song, X.; Lu, F.; Xiao, W.; Zhu, K.; Zhou, Y.; Xie, Z. Performance of 12 Reference Evapotranspiration Estimation Methods Compared with the Penman–Monteith Method and the Potential Influences in Northeast China. Meteorol. Appl. 2019, 26, 83–96. [Google Scholar] [CrossRef]
- Paredes, P.; Pereira, L.S.; Almorox, J.; Darouich, H. Reference Grass Evapotranspiration with Reduced Data Sets: Parameterization of the FAO Penman-Monteith Temperature Approach and the Hargeaves-Samani Equation Using Local Climatic Variables. Agric. Water Manag. 2020, 240, 106210. [Google Scholar] [CrossRef]
- Djaman, K.; O’Neill, M.; Diop, L.; Bodian, A.; Allen, S.; Koudahe, K.; Lombard, K. Evaluation of the Penman-Monteith and Other 34 Reference Evapotranspiration Equations under Limited Data in a Semiarid Dry Climate. Theor. Appl. Clim. 2019, 137, 729–743. [Google Scholar] [CrossRef]
- Moratiel, R.; Bravo, R.; Saa, A.; Tarquis, A.M.; Almorox, J. Estimation of Evapotranspiration by the Food and Agricultural Organization of the United Nations (FAO) Penman–Monteith Temperature (PMT) and Hargreaves–Samani (HS) Models under Temporal and Spatial Criteria—A Case Study in Duero Basin (Spain). Nat. Hazards Earth Syst. Sci. 2020, 20, 859–875. [Google Scholar] [CrossRef]
- Cui, N.; He, Z.; Jiang, S.; Wang, M.; Yu, X.; Zhao, L.; Qiu, R.; Gong, D.; Wang, Y.; Feng, Y. Inter-Comparison of the Penman-Monteith Type Model in Modeling the Evapotranspiration and Its Components in an Orchard Plantation of Southwest China. Agric. Water Manag. 2023, 289, 108541. [Google Scholar] [CrossRef]
- Kim, H.J.; Chandrasekara, S.; Kwon, H.H.; Lima, C.; Kim, T. woong A Novel Multi-Scale Parameter Estimation Approach to the Hargreaves-Samani Equation for Estimation of Penman-Monteith Reference Evapotranspiration. Agric. Water Manag. 2023, 275, 108038. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, T.; Wei, X. Estimating Grapevine Transpiration in Greenhouse with Three Different Methods in a Penman–Monteith Model in Northeast China. Irrig. Sci. 2022, 40, 13–27. [Google Scholar] [CrossRef]
- Kocian, A.; Carmassi, G.; Cela, F.; Chessa, S.; Milazzo, P.; Incrocci, L. IoT Based Dynamic Bayesian Prediction of Crop Evapotranspiration in Soilless Cultivations. Comput. Electron. Agric. 2023, 205, 107608. [Google Scholar] [CrossRef]
- Baille, M.; Baille, A.; Laury, J.C. A Simplified Model for Predicting Evapotranspiration Rate of Nine Ornamental Species vs. Climate Factors and Leaf Area. Sci. Hortic. 1994, 59, 217–232. [Google Scholar] [CrossRef]
- Popkova, E.G. Vertical Farms Based on Hydroponics, Deep Learning, and AI as Smart Innovation in Agriculture. In Smart Innovation in Agriculture; Popkova, E.G., Sergi, B.S., Eds.; Springer Nature: Singapore, 2022; pp. 257–262. ISBN 978-981-16-7633-8. [Google Scholar]
- Hassan, A.U.; Jibrin Musa, M.; Salihu, Y.O.; Oremeyi, A.A.; Ashafa, F. Artificial Intelligence Based Soilless Agriculture System Using Automatic Hydroponics Architecture. In Intelligent Systems and Machine Learning; Nandan Mohanty, S., Garcia Diaz, V., Satish Kumar, G.A.E., Eds.; Springer Nature: Cham, Switzerland, 2023; pp. 117–130. [Google Scholar]
- Patil, S.P.; Mathews, L.M.; Kumar, A.; Motgi, S.B.; Sinha, U. AI-Driven Hydroponic Systems for Lemon Basil. In Proceedings of the 2023 International Conference on Network, Multimedia and Information Technology (NMITCON), Bengaluru, India, 1–2 September 2023; pp. 1–6. [Google Scholar]
- Elvanidi, A.; Katsoulas, N.; Ferentinos, K.P.; Bartzanas, T.; Kittas, C. Hyperspectral Machine Vision as a Tool for Water Stress Severity Assessment in Soilless Tomato Crop. Biosyst. Eng. 2018, 165, 25–35. [Google Scholar] [CrossRef]
- Kanhekar, V.; Deshbhratar, T.; Matey, Y.; Kalbande, K.; Deshmukh, A. Hydroponic Farming Using IoT. In Proceedings of the 2022 International Conference on Edge Computing and Applications (ICECAA), Namakkal, India, 13–15 October 2022; pp. 583–586. [Google Scholar]
- Maraveas, C.; Piromalis, D.; Arvanitis, K.G.; Bartzanas, T.; Loukatos, D. Applications of IoT for Optimized Greenhouse Environment and Resources Management. Comput. Electron. Agric. 2022, 198, 106993. [Google Scholar] [CrossRef]
- Lakshmiprabha, K.E.; Govindaraju, C. Hydroponic-Based Smart Irrigation System Using Internet of Things. Int. J. Commun. Syst. 2023, 36, e4071. [Google Scholar] [CrossRef]
- Ang, H.N.; Lim, M.W.; Chua, W.S. Design of a Water Quality Monitoring System Utilizing IOT Platform for Hydroponics Application. AIP Conf. Proc. 2022, 2610, 040007. [Google Scholar] [CrossRef]
- Patil, A.S.; Tama, B.A.; Park, Y.; Rhee, K.-H. A Framework for Blockchain Based Secure Smart Green House Farming. In Advances in Computer Science and Ubiquitous Computing; Park, J.J., Loia, V., Yi, G., Sung, Y., Eds.; Springer: Singapore, 2018; pp. 1162–1167. [Google Scholar]
- Frikha, T.; Ktari, J.; Zalila, B.; Ghorbel, O.; Amor, N. Ben Integrating Blockchain and Deep Learning for Intelligent Greenhouse Control and Traceability. Alex. Eng. J. 2023, 79, 259–273. [Google Scholar] [CrossRef]
- Torky, M.; Hassanein, A.E. Integrating Blockchain and the Internet of Things in Precision Agriculture: Analysis, Opportunities, and Challenges. Comput. Electron. Agric. 2020, 178, 105476. [Google Scholar] [CrossRef]
- Bunge, A.C.; Wood, A.; Halloran, A.; Gordon, L.J. A Systematic Scoping Review of the Sustainability of Vertical Farming, Plant-Based Alternatives, Food Delivery Services and Blockchain in Food Systems. Nat. Food 2022, 3, 933–941. [Google Scholar] [CrossRef] [PubMed]
- Jamil, F.; Ibrahim, M.; Ullah, I.; Kim, S.; Kahng, H.K.; Kim, D.H. Optimal Smart Contract for Autonomous Greenhouse Environment Based on IoT Blockchain Network in Agriculture. Comput. Electron. Agric. 2022, 192, 106573. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Kotilainen, T.; Carmona-García, G.; Leip, A.; Tuomisto, H.L. Vertical Farming: A Trade-off between Land Area Need for Crops and for Renewable Energy Production. J. Clean. Prod. 2022, 379, 134507. [Google Scholar] [CrossRef]
- Paris, B.; Vandorou, F.; Balafoutis, A.T.; Vaiopoulos, K.; Kyriakarakos, G.; Manolakos, D.; Papadakis, G. Energy Use in Greenhouses in the EU: A Review Recommending Energy Efficiency Measures and Renewable Energy Sources Adoption. Appl. Sci. 2022, 12, 5150. [Google Scholar] [CrossRef]
- Bouadila, S.; Baddadi, S.; Ben Ali, R.; Ayed, R.; Skouri, S. Deploying Low-Carbon Energy Technologies in Soilless Vertical Agricultural Greenhouses in Tunisia. Therm. Sci. Eng. Prog. 2023, 42, 101896. [Google Scholar] [CrossRef]
- Arulvel, S.; Devadas, T.J.; Rufuss, D.D.W.; Prabakar, M.A. Renewable Energy Sources for Modern Agricultural Trends. In Cloud IoT Systems for Smart Agricultural Engineering; CRC Press: Boca Raton, FL, USA, 2022; pp. 223–242. [Google Scholar]
- Jiang, S.; Wang, S.; Yi, Z.; Zhang, M.; Lv, X. Autonomous Navigation System of Greenhouse Mobile Robot Based on 3D Lidar and 2D Lidar SLAM. Front. Plant Sci. 2022, 13. [Google Scholar] [CrossRef]
- Bagagiolo, G.; Matranga, G.; Cavallo, E.; Pampuro, N. Greenhouse Robots: Ultimate Solutions to Improve Automation in Protected Cropping Systems—A Review. Sustainability 2022, 14, 6436. [Google Scholar] [CrossRef]
- Jayasekara, C.; Banneka, S.; Pasindu, G.; Udawaththa, Y.; Wellalage, S.; Abeygunawardhane, P.K.W. Automated Crop Harvesting, Growth Monitoring and Disease Detection System for Vertical Farming Greenhouse. In Proceedings of the 2021 3rd International Conference on Advancements in Computing (ICAC), Colombo, Sri Lanka, 9–11 December 2021; pp. 228–233. [Google Scholar]
- Shrivastava, A.; Nayak, C.K.; Dilip, R.; Samal, S.R.; Rout, S.; Ashfaque, S.M. Automatic Robotic System Design and Development for Vertical Hydroponic Farming Using IoT and Big Data Analysis. Mater. Today Proc. 2023, 80, 3546–3553. [Google Scholar] [CrossRef]
- Walter, A.; Finger, R.; Huber, R.; Buchmann, N. Smart Farming Is Key to Developing Sustainable Agriculture. Proc. Natl. Acad. Sci. USA 2017, 114, 6148–6150. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, C.A.G.; Kateris, D.; Bochtis, D. ICT Innovations and Smart Farming. In Information and Communication Technologies in Modern Agricultural Development; Salampasis, M., Bournaris, T., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–19. [Google Scholar]
- López, M.; Damsgaard, S.B.; Rodríguez, I.; Mogensen, P. Connecting Rural Areas: An Empirical Assessment of 5G Terrestrial-LEO Satellite Multi-Connectivity. In Proceedings of the 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring), Florence, Italy, 20–23 June 2023; pp. 1–5. [Google Scholar]
- Roussaki, I.; Doolin, K.; Skarmeta, A.; Routis, G.; Lopez-Morales, J.A.; Claffey, E.; Mora, M.; Martinez, J.A. Building an Interoperable Space for Smart Agriculture. Digit. Commun. Netw. 2023, 9, 183–193. [Google Scholar] [CrossRef]
- Khatoon, P.S.; Ahmed, M. Importance of Semantic Interoperability in Smart Agriculture Systems. Trans. Emerg. Telecommun. Technol. 2022, 33, e4448. [Google Scholar] [CrossRef]
- Jawad, H.M.; Nordin, R.; Gharghan, S.K.; Jawad, A.M.; Ismail, M. Energy-Efficient Wireless Sensor Networks for Precision Agriculture: A Review. Sensors 2017, 17, 1781. [Google Scholar] [CrossRef] [PubMed]
- Meral, M.E.; Dinçer, F. A Review of the Factors Affecting Operation and Efficiency of Photovoltaic Based Electricity Generation Systems. Renew. Sustain. Energy Rev. 2011, 15, 2176–2184. [Google Scholar] [CrossRef]
- Okafor, N.U.; Alghorani, Y.; Delaney, D.T. Improving Data Quality of Low-Cost IoT Sensors in Environmental Monitoring Networks Using Data Fusion and Machine Learning Approach. ICT Express 2020, 6, 220–228. [Google Scholar] [CrossRef]
- Wiseman, L.; Sanderson, J.; Zhang, A.; Jakku, E. Farmers and Their Data: An Examination of Farmers’ Reluctance to Share Their Data through the Lens of the Laws Impacting Smart Farming. NJAS-Wagening. J. Life Sci. 2019, 90–91, 100301. [Google Scholar] [CrossRef]
- Yoon, C.; Lim, D.; Park, C. Factors Affecting Adoption of Smart Farms: The Case of Korea. Comput. Hum. Behav. 2020, 108, 106309. [Google Scholar] [CrossRef]
- Othman, Y.; Bataineh, K.; Al-Ajlouni, M.; Alsmairat, N.; Ayad, J.; Shiyab, S.; Al-Qarallah, B.; St Hilaire, R. Soilless Agriculture, Highlighting Their Advantages, Potential Drawbacks, and Key Areas of Impact. Soilless Culture: Management of Growing Substrate, Water, Nutrient, Salinity, Microorganism and Product Quality. Fresenius Env. Bull. 2019, 28, 3249–3260. [Google Scholar]
- Vega-Ibáñez, R.; Ortega-FarÃías, S.; Fuentes-Peñailillo, F.; Gutter, K.; Albornoz, J. Estimation of Midday Stem Water Potential in Grapevine Leaves (‘Cabernet Sauvignon’) Using Spectral Reflectance Indices. In Proceedings of the Acta Horticulturae International Society for Horticultural Science (ISHS), Leuven, Belgium, 6 February 2022; pp. 325–330. [Google Scholar]
- Gallardo, M.; Elia, A.; Thompson, R.B. Decision Support Systems and Models for Aiding Irrigation and Nutrient Management of Vegetable Crops. Agric. Water Manag. 2020, 240, 106209. [Google Scholar] [CrossRef]
- Kumari, S.; Pradhan, P.; Yadav, R.; Kumar, S. Hydroponic Techniques: A Soilless Cultivation in Agriculture. J. Pharmacogn. Phytochem. 2018, 7, 1886–1891. [Google Scholar]
- Cho, W.J.; Kim, H.J.; Jung, D.H.; Kim, D.W.; Ahn, T.I.; Son, J.E. On-Site Ion Monitoring System for Precision Hydroponic Nutrient Management. Comput. Electron. Agric. 2018, 146, 51–58. [Google Scholar] [CrossRef]
- Rouphael, Y.; Raimondi, G.; Caputo, R.; Pascale, S. De Fertigation Strategies for Improving Water Use Efficiency and Limiting Nutrient Loss in Soilless Hippeastrum Production. HortScience 2016, 51, 684–689. [Google Scholar] [CrossRef]
- Cámara-Zapata, J.M.; Brotons-Martínez, J.M.; Simón-Grao, S.; Martinez-Nicolás, J.J.; García-Sánchez, F. Cost–Benefit Analysis of Tomato in Soilless Culture Systems with Saline Water under Greenhouse Conditions. J. Sci. Food Agric. 2019, 99, 5842–5851. [Google Scholar] [CrossRef] [PubMed]
- Ghanayem, A.A.; Almohamed, S.; Al Assaf, A.; Majdalawi, M. Socioeconomic Analysis of Soil-Less Farming System-An Comparative Evidence from Jordan, The Middle East. Int. J. Food Agric. Econ. 2022, 10, 205–223. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, H. Data Security and Privacy Protection Issues in Cloud Computing. In Proceedings of the 2012 International Conference on Computer Science and Electronics Engineering, Hangzhou, China, 23–25 March 2012; Volume 1, pp. 647–651. [Google Scholar]
- Wang, F.; Harindintwali, J.D.; Yuan, Z.; Wang, M.; Wang, F.; Li, S.; Yin, Z.; Huang, L.; Fu, Y.; Li, L.; et al. Technologies and Perspectives for Achieving Carbon Neutrality. Innovation 2021, 2, 100180. [Google Scholar] [CrossRef]
- Manos, D.-P.; Xydis, G. A Multi-Criteria Linear Model on Carbon Footprint in Vertical Farms and Its Relation to Energy Demand and Operational Costs. Environ. Sci. Pollut. Res. 2022, 29, 79331–79342. [Google Scholar] [CrossRef]
- Golzar, F.; Heeren, N.; Hellweg, S.; Roshandel, R. Optimisation of Energy-Efficient Greenhouses Based on an Integrated Energy Demand-Yield Production Model. Biosyst. Eng. 2021, 202, 1–15. [Google Scholar] [CrossRef]
- Maraveas, C.; Karavas, C.-S.; Loukatos, D.; Bartzanas, T.; Arvanitis, K.G.; Symeonaki, E. Agricultural Greenhouses: Resource Management Technologies and Perspectives for Zero Greenhouse Gas Emissions. Agriculture 2023, 13, 1464. [Google Scholar] [CrossRef]
- Cuce, E.; Harjunowibowo, D.; Cuce, P.M. Renewable and Sustainable Energy Saving Strategies for Greenhouse Systems: A Comprehensive Review. Renew. Sustain. Energy Rev. 2016, 64, 34–59. [Google Scholar] [CrossRef]
- Muhammad, A.I.; Shitu, A.; Danhassan, U.A.; Kabir, M.H.; Tadda, M.A.; Lawal, A.M. Greenhouse Requirements for Soilless Crop Production: Challenges and Prospects for Plant Factories. In Next-Generation Greenhouses for Food Security; Shamshiri, R.R., Ed.; IntechOpen: Rijeka, Croatia, 2021; ISBN 978-1-83968-076-2. [Google Scholar]
- Karanisa, T.; Achour, Y.; Ouammi, A.; Sayadi, S. Smart Greenhouses as the Path towards Precision Agriculture in the Food-Energy and Water Nexus: Case Study of Qatar. Environ. Syst. Decis. 2022, 42, 521–546. [Google Scholar] [CrossRef]
- Formolli, M.; Kleiven, T.; Lobaccaro, G. Assessing Solar Energy Accessibility at High Latitudes: A Systematic Review of Urban Spatial Domains, Metrics, and Parameters. Renew. Sustain. Energy Rev. 2023, 177, 113231. [Google Scholar] [CrossRef]
- Ahamed, M.S.; Guo, H.; Tanino, K. Energy Saving Techniques for Reducing the Heating Cost of Conventional Greenhouses. Biosyst. Eng. 2019, 178, 9–33. [Google Scholar] [CrossRef]
- Firdaus, N.; Samat, H.A.; Mohamad, N. Maintenance for Energy Efficiency: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2019, 530. [Google Scholar] [CrossRef]
- Richa, A.; Touil, S.; Fizir, M.; Martinez, V. Recent Advances and Perspectives in the Treatment of Hydroponic Wastewater: A Review. Rev. Env. Sci. Biotechnol. 2020, 19, 945–966. [Google Scholar] [CrossRef]
- Putra, P.A.; Yuliando, H. Soilless Culture System to Support Water Use Efficiency and Product Quality: A Review. Agric. Agric. Sci. Procedia 2015, 3, 283–288. [Google Scholar] [CrossRef]
- Cucurachi, S.; Scherer, L.; Guinée, J.; Tukker, A. Life Cycle Assessment of Food Systems. One Earth 2019, 1, 292–297. [Google Scholar] [CrossRef]
- Toboso-Chavero, S.; Madrid-López, C.; Villalba, G.; Gabarrell Durany, X.; Hückstädt, A.B.; Finkbeiner, M.; Lehmann, A. Environmental and Social Life Cycle Assessment of Growing Media for Urban Rooftop Farming. Int. J. Life Cycle Assess. 2021, 26, 2085–2102. [Google Scholar] [CrossRef]
- Bonaguro, J.E.; Coletto, L.; Sambo, P.; Nicoletto, C.; Zanin, G. LCA Analysis of the Benefits Deriving from Sustainable Production Practices Applied to Cyclamen and Zonal Geranium. Preprints 2020. [Google Scholar] [CrossRef]
- Perrin, A.; Basset-Mens, C.; Gabrielle, B. Life Cycle Assessment of Vegetable Products: A Review Focusing on Cropping Systems Diversity and the Estimation of Field Emissions. Int. J. Life Cycle Assess. 2014, 19, 1247–1263. [Google Scholar] [CrossRef]
- Ilari, A.; Toscano, G.; Boakye-Yiadom, K.A.; Duca, D.; Foppa Pedretti, E. Life Cycle Assessment of Protected Strawberry Productions in Central Italy. Sustainability 2021, 13, 4879. [Google Scholar] [CrossRef]
- Maaoui, M.; Boukchina, R.; Hajjaji, N. Environmental Life Cycle Assessment of Mediterranean Tomato: Case Study of a Tunisian Soilless Geothermal Multi-Tunnel Greenhouse. Env. Dev. Sustain. 2021, 23, 1242–1263. [Google Scholar] [CrossRef]
- Smith, M.J. Getting Value from Artificial Intelligence in Agriculture. Anim. Prod. Sci. 2020, 60, 46–54. [Google Scholar] [CrossRef]
- Sharma, R. Artificial Intelligence in Agriculture: A Review. In Proceedings of the 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 6–8 May 2021; pp. 937–942. [Google Scholar]
- Eli-Chukwu, N.C. Applications of Artificial Intelligence in Agriculture: A Review. Eng. Technol. Appl. Sci. Res. 2019, 9, 4377–4383. [Google Scholar] [CrossRef]
- Sarkar, U.; Bannerjee, G.; Das, S.; Ghosh, I. Artificial Intelligence in Agriculture: A Literature Survey. Int. J. Sci. Res. Comput. Sci. Appl. Manag. Stud. 2018, 7. [Google Scholar]
- Klerkx, L.; Rose, D. Dealing with the Game-Changing Technologies of Agriculture 4.0: How Do We Manage Diversity and Responsibility in Food System Transition Pathways? Glob. Food Sec. 2020, 24, 100347. [Google Scholar] [CrossRef]
- Kos, D.; Kloppenburg, S. Digital Technologies, Hyper-Transparency and Smallholder Farmer Inclusion in Global Value Chains. Curr. Opin. Env. Sustain. 2019, 41, 56–63. [Google Scholar] [CrossRef]
- Regan, Á. ‘Smart Farming’ in Ireland: A Risk Perception Study with Key Governance Actors. NJAS-Wagening. J. Life Sci. 2019, 90–91, 100292. [Google Scholar] [CrossRef]
- DeLonge, M.S.; Robbins, T.; Basche, A.D.; Haynes-Maslow, L. The State of Sustainable Agriculture and Agroecology Research and Impacts: A Survey of U.S. Scientists. J. Agric. Food Syst. Community Dev. 2020, 9, 159–184. [Google Scholar] [CrossRef]
- König, B.; Janker, J.; Reinhardt, T.; Villarroel, M.; Junge, R. Analysis of Aquaponics as an Emerging Technological Innovation System. J. Clean. Prod. 2018, 180, 232–243. [Google Scholar] [CrossRef]
- Gardezi, M.; Joshi, B.; Rizzo, D.M.; Ryan, M.; Prutzer, E.; Brugler, S.; Dadkhah, A. Artificial Intelligence in Farming: Challenges and Opportunities for Building Trust. Agron. J. 2023, 1–12. [Google Scholar] [CrossRef]
- Goh, H.-H.; Vinuesa, R. Regulating Artificial-intelligence Applications to achieve the Sustainable Development Goals. Discov. Sustain. 2021, 2, 52. [Google Scholar] [CrossRef]
- Fields, J.S.; Owen, J.; Lamm, A.; Altland, J.E.; Jackson, B.E.; Zheng, Y.; Oki, L.; Fontenot, K.; Samtani, J.; Campbell, B. Soilless Substrate Science: A North American Needs Assessment to Steer Soilless Substrate Research into the Future. In Proceedings of the Acta Horticulturae, Leuven, Belgium, 20 August 2021; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2021; pp. 313–318. [Google Scholar]
- Türkten, H.; Ceyhan, V. Environmental Efficiency in Greenhouse Tomato Production Using Soilless Farming Technology. J. Clean. Prod. 2023, 398, 136482. [Google Scholar] [CrossRef]
- Qian, C.; Murphy, S.I.; Orsi, R.H.; Wiedmann, M. How Can AI Help Improve Food Safety? Annu. Rev. Food Sci. Technol. 2023, 14, 517–538. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, Z.; Chen, Y.; Luan, F. Heterogeneous Effects of Robots on Employment in Agriculture, Industry, and Services Sectors. Technol. Soc. 2023, 75, 102371. [Google Scholar] [CrossRef]
- Mizik, T. How Can Precision Farming Work on a Small Scale? A Systematic Literature Review. Precis. Agric. 2023, 24, 384–406. [Google Scholar] [CrossRef]
- Marinello, F.; Zou, X.; Liu, Z.; Zhu, X.; Zhang, W.; Qian, Y.; Li, Y.; Karunathilake, E.M.B.M.; Le, A.T.; Heo, S.; et al. The Path to Smart Farming: Innovations and Opportunities in Precision. Agriculture 2023, 13, 1593. [Google Scholar] [CrossRef]
- Barnes, A.P.; Soto, I.; Eory, V.; Beck, B.; Balafoutis, A.; Sánchez, B.; Vangeyte, J.; Fountas, S.; van der Wal, T.; Gómez-Barbero, M. Exploring the Adoption of Precision Agricultural Technologies: A Cross Regional Study of EU Farmers. Land Use Policy 2019, 80, 163–174. [Google Scholar] [CrossRef]
- Ugur, M.; Mitra, A. Technology Adoption and Employment in Less Developed Countries: A Mixed-Method Systematic Review. World Dev. 2017, 96, 1–18. [Google Scholar] [CrossRef]
- Medici, M.; Pedersen, S.M.; Carli, G.; Tagliaventi, M.R. Environmental Benefits of Precision Agriculture Adoption. Econ. Agro-Aliment. 2020, 21, 637–656. [Google Scholar] [CrossRef]
- Banerjee, A.; Paul, K.; Varshney, A.; Nandru, R.; Badhwar, R.; Sapre, A.; Dasgupta, S. Chapter 8—Soilless Indoor Smart Agriculture as an Emerging Enabler Technology for Food and Nutrition Security amidst Climate Change. In Plant Nutrition and Food Security in the Era of Climate Change; Kumar, V., Srivastava, A.K., Suprasanna, P., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 179–225. ISBN 978-0-12-822916-3. [Google Scholar]
- Mitchell, S.; Weersink, A.; Bannon, N. Adoption Barriers for Precision Agriculture Technologies in Canadian Crop Production. Can. J. Plant Sci. 2021, 101, 412–416. [Google Scholar] [CrossRef]
- Lazo, R.P.; Gonzabay, J.Q. Economic Analysis of Hydroponic Lettuce under Floating Root System in Semi-Arid Climate. Granja 2020, 31, 121–133. [Google Scholar] [CrossRef]
- D’Ostuni, M.; Zaffi, L.; Appolloni, E.; Orsini, F. Understanding the Complexities of Building-Integrated Agriculture. Can Food Shape the Future Built Environment? Futures 2022, 144, 103061. [Google Scholar] [CrossRef]
- Setiowati, S.; Wardhani, R.N.; Riandini; Siregar, E.B.A.; Saputra, R.; Sabrina, R.A. Fertigation Control System on Smart Aeroponics Using Sugeno’s Fuzzy Logic Method. In Proceedings of the 2022 8th International Conference on Science and Technology (ICST), Montreal, QC, Canada, 2–4 August 2022; Volume 1, pp. 1–6. [Google Scholar]
- Garzón, J.; Montes, L.; Garzón, J.; Lampropoulos, G. Systematic Review of Technology in Aeroponics: Introducing the Technology Adoption and Integration in Sustainable Agriculture Model. Agronomy 2023, 13, 2517. [Google Scholar] [CrossRef]
- van Os, E.A.; Gieling, T.H.; Lieth, J.H. Chapter 13—Technical Equipment in Soilless Production Systems. In Soilless Culture: Theory and Practice; Raviv, M., Lieth, J.H., Bar-Tal, A., Eds.; Elsevier: Boston, MA, USA, 2019; pp. 587–635. ISBN 978-0-444-63696-6. [Google Scholar]
- Di Gioia, F.; Rosskopf, E.N. Organic Hydroponics: A US Reality Challenging the Traditional Concept of “Organic” and “Soilless” Cultivation. In Proceedings of the Acta Horticulturae International Society for Horticultural Science (ISHS), Leuven, Belgium, 9 September 2021; pp. 275–282. [Google Scholar]
- Fruscella, L.; Kotzen, B.; Milliken, S. Organic Aquaponics in the European Union: Towards Sustainable Farming Practices in the Framework of the New EU Regulation. Rev. Aquac. 2021, 13, 1661–1682. [Google Scholar] [CrossRef]
- Wang, L.; Iddio, E. Energy Performance Evaluation and Modeling for an Indoor Farming Facility. Sustain. Energy Technol. Assess. 2022, 52, 102240. [Google Scholar] [CrossRef]
- Hedau, N.K.; Tuti, M.D.; Stanley, J.; Mina, B.L.; Agrawal, P.K.; Bisht, J.K.; Bhatt, J.C. Energy-Use Efficiency and Economic Analysis of Vegetable Cropping Sequences under Greenhouse Condition. Energy Effic. 2014, 7, 507–515. [Google Scholar] [CrossRef]
- Weidner, T.; Yang, A.; Hamm, M.W. Energy Optimisation of Plant Factories and Greenhouses for Different Climatic Conditions. Energy Convers. Manag. 2021, 243, 114336. [Google Scholar] [CrossRef]
- Zhang, M.; Yan, T.; Wang, W.; Jia, X.; Wang, J.; Klemeš, J.J. Energy-Saving Design and Control Strategy towards Modern Sustainable Greenhouse: A Review. Renew. Sustain. Energy Rev. 2022, 164, 112602. [Google Scholar] [CrossRef]
- Sambo, P.; Nicoletto, C.; Giro, A.; Pii, Y.; Valentinuzzi, F.; Mimmo, T.; Lugli, P.; Orzes, G.; Mazzetto, F.; Astolfi, S.; et al. Hydroponic Solutions for Soilless Production Systems: Issues and Opportunities in a Smart Agriculture Perspective. Front. Plant Sci. 2019, 10, 923. [Google Scholar] [CrossRef] [PubMed]
- Savvas, D.; Giannothanasis, E.; Ntanasi, T.; Karavidas, I.; Drakatos, S.; Panagiotakis, I.; Neocleous, D.; Ntatsi, G. Improvement and Validation of a Decision Support System to Maintain Optimal Nutrient Levels in Crops Grown in Closed-Loop Soilless Systems. Agric. Water Manag. 2023, 285, 108373. [Google Scholar] [CrossRef]
- Langenfeld, N.J.; Pinto, D.F.; Faust, J.E.; Heins, R.; Bugbee, B. Principles of Nutrient and Water Management for Indoor Agriculture. Sustainability 2022, 14, 10204. [Google Scholar] [CrossRef]
- Ares, G.; Chheang, S.L.; Jaeger, S.R. Buying Vertically Farmed Produce: Comparison of People with Lower and Higher Stated Purchase Likelihood. J. Sens. Stud. 2023, 38, e12832. [Google Scholar] [CrossRef]
- Broad, G.M.; Marschall, W.; Ezzeddine, M. Perceptions of High-Tech Controlled Environment Agriculture among Local Food Consumers: Using Interviews to Explore Sense-Making and Connections to Good Food. Agric. Hum. Values 2022, 39, 417–433. [Google Scholar] [CrossRef]
- Caputo, S. History, Techniques and Technologies of Soil-Less Cultivation. In Small Scale Soil-less Urban Agriculture in Europe; Caputo, S., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 45–86. ISBN 978-3-030-99962-9. [Google Scholar]
- Knight, J.; Weir, S.; Woldehanna, T. The Role of Education in Facilitating Risk-Taking and Innovation in Agriculture. J. Dev. Stud. 2003, 39, 1–22. [Google Scholar] [CrossRef]
- Takahashi, K.; Muraoka, R.; Otsuka, K. Technology Adoption, Impact, and Extension in Developing Countries’ Agriculture: A Review of the Recent Literature. Agric. Econ. 2020, 51, 31–45. [Google Scholar] [CrossRef]
- Giri, S.; Daw, T.M.; Hazra, S.; Troell, M.; Samanta, S.; Basu, O.; Marcinko, C.L.J.; Chanda, A. Economic Incentives Drive the Conversion of Agriculture to Aquaculture in the Indian Sundarbans: Livelihood and Environmental Implications of Different Aquaculture Types. Ambio 2022, 51, 1963–1977. [Google Scholar] [CrossRef]
- Goodman, W.; Minner, J. Will the Urban Agricultural Revolution Be Vertical and Soilless? A Case Study of Controlled Environment Agriculture in New York City. Land Use Policy 2019, 83, 160–173. [Google Scholar] [CrossRef]
- Lanre Tajudeen, A.; Solomon Taiwo, O. Soilless Farming—A Key Player in the Realisation of “Zero Hunger” of the Sustainable Development Goals in Nigeria. Int. J. Ecol. Sci. Environ. Eng. 2018, 5, 1–7. [Google Scholar]
- Randolph, O.; Asiabanpour, B. Automation of an Off-Grid Vertical Farming System to Optimize Power Consumption. In Advances in Parallel & Distributed Processing, and Applications; Arabnia, H.R., Deligiannidis, L., Grimaila, M.R., Hodson, D.D., Joe, K., Sekijima, M., Tinetti, F.G., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 1015–1022. [Google Scholar]
- Muller, A.; Ferré, M.; Engel, S.; Gattinger, A.; Holzkämper, A.; Huber, R.; Müller, M.; Six, J. Can Soil-Less Crop Production Be a Sustainable Option for Soil Conservation and Future Agriculture? Land Use Policy 2017, 69, 102–105. [Google Scholar] [CrossRef]
Advanced Hydroponic Technology | Main Advantages | Main Disadvantages | References |
---|---|---|---|
AI-Based Monitoring Systems | High precision in nutrient and pH detection, yield optimization | High cost, technical skills required for operation | [41,43,44] |
Precision Agriculture Techniques | Efficient resource use, improved crop quality | High initial investment, complexity in implementation | [45,46] |
Advanced Moisture and Nutrient Sensors | Real-time monitoring, improved irrigation efficiency | Installation and maintenance cost, potential technical failures | [47] |
Automated Climate Control Systems | Precise environmental control, improved crop quality and yield | High energy consumption, operational costs | [42,48] |
Full-Spectrum LED Lighting | Energy efficiency, improved plant growth | High initial cost, potential for plant stress if not managed correctly | [49,50] |
Mobile Apps for Crop Management | Remote access for monitoring and control, ease of use | Connectivity dependency, feature limitations depending on the app | [51] |
Substrate Materials | Main Advantages | Main Disadvantages | References |
---|---|---|---|
Coir | Renewable, excellent water retention, good aeration | Potential for high salt content, inconsistent quality | [72,73] |
Perlite | Lightweight, good drainage, sterile | Expensive, non-renewable, can float and cause uneven water distribution | [74] |
Rockwool | Excellent water retention, sterile, easy to use | Non-biodegradable, manufacturing process has environmental impacts | [75] |
Vermiculite | High water retention, good nutrient-holding capacity | Expensive, non-renewable, potential for compaction over time | [76] |
Expanded Clay Pebbles | Reusable, good drainage, lightweight | High initial cost, potential for algae growth | [77] |
Biochar | Renewable, improves soil structure, high nutrient retention | Variable quality, potential for high pH levels | [78,79] |
Rice Hulls | Renewable, biodegradable, good aeration | Potential for pest issues, decomposes over time | [73,74] |
Real-Time Monitoring Systems | Advantages | Disadvantages | References |
---|---|---|---|
Soil Moisture Sensors | Efficient water use prevents overwatering | Initial setup cost, maintenance | [130,131,132] |
Nutrient Sensors | Optimizes nutrient delivery, reduces waste | High cost, calibration required | [80] |
pH Sensors | Maintains optimal pH levels, improves nutrient absorption | Calibration needed, potential for errors | [110,133,134,135] |
Temperature Sensors | Optimizes climate control, improves yield | Energy consumption, cost | [133,135,136,137,138,139] |
Light Sensors | Efficient light use, improves photosynthesis | Initial cost, limited to certain crops | [137,140,141] |
Humidity Sensors | Prevents mold, optimizes water use | Calibration required, maintenance | [133,137,138] |
CO2 Sensors | Optimizes plant growth, improves yield | High cost, complexity, high maintenance cost | [133,142] |
AI Applications in Soilless Systems | Advantages | Disadvantages | Key Use-Cases | References |
---|---|---|---|---|
Predictive Analytics | Optimizes yield, reduces waste | High setup cost, data quality issues | Yield prediction, disease detection, evapotranspiration rate prediction | [43,162,163,164] |
Machine Learning Algorithms | Adaptive, improves over time | Complexity, requires expertise | Nutrient management, climate control | [165,166,167,168,169,170] |
Computer Vision | Real-time monitoring, high accuracy | Hardware cost, limited to certain crops | Disease detection, growth monitoring | [171,172,173,174] |
Natural Language Processing (NLP) | User-friendly interfaces, easy monitoring | Limited capabilities, language barriers | User interaction, data interpretation | [175] |
Robotics and Automation | Labor-saving, high-energy efficiency | High initial investment, maintenance | Harvesting, planting, pruning | [176,177,178,179,180,181,182,183,184] |
IoT Integration | Centralized control, real-time data, energy use efficiency | Security risks, connectivity issues | Sensor data aggregation, remote control | [185,186,187,188] |
Limitations and Barriers | Impact on Adoption | Possible Solutions | Areas Affected | References |
---|---|---|---|---|
High Initial Cost | Barrier to entry for small-scale farmers | Government subsidies, financing options | Infrastructure, technology | [273,274,316,317] |
Technical Complexity | Steep learning curve, specialized skills required | Training programs, user-friendly technology | System management, data analysis | [317,318,319,320] |
Regulatory Uncertainty | Compliance risks, lack of standardization | Development of industry standards, regulatory frameworks | Food safety, environmental impact | [303,321,322] |
Energy Consumption | Sustainability concerns, operational costs | Renewable energy sources, energy-efficient systems | Climate control, lighting | [323,324,325,326] |
Water Quality | Risk of contamination, nutrient imbalances | Water treatment systems, real-time monitoring | Nutrient delivery, plant health | [243,327,328,329] |
Social Acceptance | Consumer skepticism, market adoption | Public awareness campaigns, transparent labeling | Market penetration, consumer trust | [330,331,332] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuentes-Peñailillo, F.; Gutter, K.; Vega, R.; Silva, G.C. New Generation Sustainable Technologies for Soilless Vegetable Production. Horticulturae 2024, 10, 49. https://doi.org/10.3390/horticulturae10010049
Fuentes-Peñailillo F, Gutter K, Vega R, Silva GC. New Generation Sustainable Technologies for Soilless Vegetable Production. Horticulturae. 2024; 10(1):49. https://doi.org/10.3390/horticulturae10010049
Chicago/Turabian StyleFuentes-Peñailillo, Fernando, Karen Gutter, Ricardo Vega, and Gilda Carrasco Silva. 2024. "New Generation Sustainable Technologies for Soilless Vegetable Production" Horticulturae 10, no. 1: 49. https://doi.org/10.3390/horticulturae10010049
APA StyleFuentes-Peñailillo, F., Gutter, K., Vega, R., & Silva, G. C. (2024). New Generation Sustainable Technologies for Soilless Vegetable Production. Horticulturae, 10(1), 49. https://doi.org/10.3390/horticulturae10010049