Effect of Red and Blue Light on the Growth and Antioxidant Activity of Alfalfa Sprouts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and LED Equipment
2.2. Seed Germination and Light Treatments
2.3. Determination of Hypocotyl Length
2.4. Determination of Fresh Weight Content
2.5. Determination of Dry Weight Content
2.6. Determination of Moisture Content
2.7. Determination of Physiological Parameters
2.7.1. Soluble Sugar
2.7.2. Soluble Protein
2.7.3. Nitrate
2.7.4. Total Phenolic Compounds
2.7.5. Total Antioxidant Activity
2.8. Statistical Analyses
3. Results and Discussion
3.1. Morphology of Alfalfa Sprouts Treated with Different Light Qualities
3.2. Effect of Different Light-Quality Treatments on the Fresh Weight, Dry Weight, and Water Content of Alfalfa Sprouts
3.3. Effect of Different Light Quality Treatments on the Soluble Sugar Content of Alfalfa Sprouts
3.4. Effect of Different Light-Quality Treatments on the Soluble Protein Content of Alfalfa Sprouts
3.5. Effect of Different Light-Quality Treatments on Nitrate Content of Alfalfa Sprouts
3.6. Effect of Different Light-Quality Treatments on the Total Phenolic Content of Alfalfa Sprouts
3.7. Effect of Different Light-Quality Treatments on the Total Antioxidant Activity of Alfalfa Sprouts
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Fan, X.T.; Thayer, D.W.; Sokorai, K.J.B. Changes in growth and antioxidant status of alfalfa sprouts during sprouting as affected by gamma irradiation of seeds. J. Food Prot. 2004, 67, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Lee, S.I.; Kim, J.A.; Park, S.C.; Jeong, M. Sound waves increases the ascorbic acid content of alfalfa sprouts by affecting the expression of ascorbic acid biosynthesis-related genes. Plant Biotechnol. Rep. 2017, 11, 355–364. [Google Scholar] [CrossRef]
- Aloo, S.O.; Ofosu, F.K.; Kilonzi, S.M.; Shabbir, U.; Oh, D.H. Edible Plant Sprouts: Health Benefits, Trends, and Opportunities for Novel Exploration. Nutrients 2021, 13, 2882. [Google Scholar] [CrossRef]
- Wang, L.; Sun, C.; Luan, H.Y.; Semiroumi, D.T. Investigating the effectiveness of LED lighting in the production of rich sprouts for food purposes. Heliyon 2023, 9, e14964. [Google Scholar] [CrossRef]
- Liu, W.; Yang, Q. Development Status of Plant Photobiology with LED Monochromatic Light and Plant Factory. Sci. Technol. Rev. 2014, 32, 25–28. [Google Scholar]
- Gao, Q.; Liao, Q.H.; Li, Q.M.; Yang, Q.C.; Wang, F.; Li, J.M. Effects of LED Red and Blue Light Component on Growth and Photosynthetic Characteristics of Coriander in Plant Factory. Horticulturae 2022, 8, 1165. [Google Scholar] [CrossRef]
- Urairi, C.; Shimizu, H.; Nakashima, H.; Miyasaka, J.; Ohdoi, K. Optimization of Light-Dark Cycles of Lactuca sativa L. in Plant Factory. Environ. Control Biol. 2017, 55, 85–91. [Google Scholar] [CrossRef]
- Lu, N. Light environment and plant growth in plant factories. In Proceedings of the International Conference on Smart and Innovative Agriculture (ICoSIA), Yogyakarta, Indonesia, 4–5 November 2020. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Bian, Z.H.; Yuan, X.X.; Chen, X.; Lu, C.G. A review on the effects of light-emitting diode (LED) light on the nutrients of sprouts and microgreens. Trends Food Sci. Technol. 2020, 99, 203–216. [Google Scholar] [CrossRef]
- Jin, P.; Yao, D.; Xu, F.; Wang, H.Q.; Zheng, Y.H. Effect of light on quality and bioactive compounds in postharvest broccoli florets. Food Chem. 2015, 172, 705–709. [Google Scholar] [CrossRef]
- Xu, Y. Seven dimensions of light in regulating plant growth. In Proceedings of the 8th International Symposium on Light in Horticulture, East Lansing, MI, USA, 22–26 May 2016; Volume 1134, pp. 445–452. [Google Scholar] [CrossRef]
- Kuniga, T. Modification of the Light Environment Influences the Production of Horticultural Crops. JARQ-Jpn. Agric. Res. Q. 2020, 54, 285–291. [Google Scholar] [CrossRef]
- Shafiq, I.; Hussain, S.; Raza, M.A.; Iqbal, N.; Ahsan Asghar, M.; Raza, A.; Fan, Y.F.; Mumtaz, M.; Shoaib, M.; Ansar, M.; et al. Crop photosynthetic response to light quality and light intensity. J. Integr. Agric. 2021, 20, 4–23. [Google Scholar] [CrossRef]
- Vastakaite-Kairiene, V.; Kelly, N.; Runkle, E.S. Regulation of the Photon Spectrum on Growth and Nutritional Attributes of Baby-Leaf Lettuce at Harvest and during Postharvest Storage. Plants 2021, 10, 549. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.Y.; Chen, H.L.; Zhao, Y.H.; Cheng, X.Z.; Wang, L.X.; Guo, X.B. Effect of light quality on polyphenol biosynthesis in three varieties of mung bean sprouts with different color seed coats. Plant Cell Rep. 2023, 42, 253–268. [Google Scholar] [CrossRef]
- Trivellini, A.; Toscano, S.; Romano, D.; Ferrante, A. The Role of Blue and Red Light in the Orchestration of Secondary Metabolites, Nutrient Transport and Plant Quality. Plants 2023, 12, 2026. [Google Scholar] [CrossRef]
- Wei, Y.M.; Wang, S.W.; Yu, D.S. The Role of Light Quality in Regulating Early Seedling Development. Plants 2023, 12, 2746. [Google Scholar] [CrossRef]
- Bergstrand, K.J.; Mortensen, L.M.; Suthaparan, A.; Gislerod, H.R. Acclimatisation of greenhouse crops to differing light quality. Sci. Hortic. 2016, 204, 1–7. [Google Scholar] [CrossRef]
- Song, J.; Liu, H.; Song, S.; Zhang, Y.; Hao, Y.; Su, W.; Sun, G.; Chen, R. Advances in regulation of light quality on flowering time and sex differentiation in plant. Plant Physiol. J. 2017, 53, 1938–1946. [Google Scholar]
- Zha, L.Y.; Liu, W.K. Effects of light quality, light intensity, and photoperiod on growth and yield of cherry radish grown under red plus blue LEDs. Hortic. Environ. Biotechnol. 2018, 59, 511–518. [Google Scholar] [CrossRef]
- Cho, H.Y.; Kadowaki, M.; Che, J.; Takahashi, S.; Horiuchi, N.; Ogiwara, I. Influence of light quality on flowering characteristics, potential for year-round fruit production and fruit quality of blueberry in a plant factory. Fruits 2019, 74, 3–10. [Google Scholar] [CrossRef]
- Qian, H.M.; Liu, T.Y.; Deng, M.D.; Miao, H.Y.; Cai, C.X.; Shen, W.S.; Wang, Q.M. Effects of light quality on main health-promoting compounds and antioxidant capacity of Chinese kale sprouts. Food Chem. 2016, 196, 1232–1238. [Google Scholar] [CrossRef]
- Ruiz-Nieto, J.E.; Hernández-Ruiz, J.; Sanzón-Gómez, D.; Isiordia-Lachica, P.C.; Zárate-Castrejón, J.L.; Mireles-Arriaga, A.I. Functional Lentil Sprouts Produced under Different Led Light Wavelengths Conditions. Legume Res. 2022, 45, 1059–1062. [Google Scholar] [CrossRef]
- Fiutak, G.; Michalczyk, M.; Filipczak-Fiutak, M.; Fiedor, L.; Surówka, K. The impact of LED lighting on the yield, morphological structure and some bioactive components in alfalfa (Medicago sativa L.) sprouts. Food Chem. 2019, 285, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.N.; Li, H.; Zhang, T.; Wang, S.X.; Liu, L.; Dong, X.Y.; Cong, L.L.; Song, H.; Wang, A.H.; Yang, G.F.; et al. Comprehensive transcriptomic and metabolomic profiling reveals the differences between alfalfa sprouts germinated with or without light exposure. Front. Plant Sci. 2022, 13, 943740. [Google Scholar] [CrossRef]
- He, R.; Gao, M.F.; Shi, R.; Song, S.W.; Zhang, Y.T.; Su, W.; Liu, H.C. The Combination of Selenium and LED Light Quality Affects Growth and Nutritional Properties of Broccoli Sprouts. Molecules 2020, 25, 4788. [Google Scholar] [CrossRef] [PubMed]
- He, X.Y.; He, R.; Li, Y.M.; Liu, K.Z.; Tan, J.H.; Chen, Y.K.; Liu, X.J.; Liu, H.C. Effect of Ratios of Red and White Light on the Growth and Quality of Pak Choi. Agronomy 2022, 12, 2322. [Google Scholar] [CrossRef]
- Samuoliene, G.; Sirtautas, R.; Brazaityte, A.; Duchovskis, P. LED lighting and seasonality effects antioxidant properties of baby leaf lettuce. Food Chem. 2012, 134, 1494–1499. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Zamora, L.; Castillejo, N.; Gómez, P.A.; Artés-Hernández, F. Amelioration Effect of LED Lighting in the Bioactive Compounds Synthesis during Carrot Sprouting. Agronomy 2021, 11, 304. [Google Scholar] [CrossRef]
- Pay, M.L.; Kim, D.W.; Somers, D.E.; Kim, J.K.; Foo, M. Modelling of plant circadian clock for characterizing hypocotyl growth under different light quality conditions. In Silico Plants 2022, 4, diac001. [Google Scholar] [CrossRef]
- Le, L.Q.; Gong, X.X.; An, Q.; Xiang, D.B.; Zou, L.; Peng, L.X.; Wu, X.Y.; Tan, M.L.; Nie, Z.L.; Wu, Q.; et al. Quinoa sprouts as potential vegetable source: Nutrient composition and functional contents of different quinoa sprout varieties. Food Chem. 2021, 357, 129752. [Google Scholar] [CrossRef]
- Jiangtao, Z. Research on the Role of the Soluble Sugar in the Regulation of Physiological Metabolism in Higher Plant. J. Anhui Agric. Sci. 2006, 34, 6423. [Google Scholar]
- You, T.; Barnett, S.M. Effect of light quality on production of extracellular polysaccharides and growth rate of Porphyridium cruentum. Biochem. Eng. J. 2004, 19, 251–258. [Google Scholar] [CrossRef]
- Dong, F.; Wang, C.Z.; Sun, X.D.; Bao, Z.L.; Dong, C.; Sun, C.H.; Ren, Y.Q.; Liu, S.Q. Sugar metabolic changes in protein expression associated with different light quality combinations in tomato fruit. Plant Growth Regul. 2019, 88, 267–282. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Ji, J.Z.; Song, S.W.; Su, W.; Liu, H.C. Growth, Nutritional Quality and Health-Promoting Compounds in Chinese Kale Grown under Different Ratios of Red:Blue LED Lights. Agronomy 2020, 10, 1248. [Google Scholar] [CrossRef]
- Mastropasqua, L.; Dipierro, N.; Paciolla, C. Effects of Darkness and Light Spectra on Nutrients and Pigments in Radish, Soybean, Mung Bean and Pumpkin Sprouts. Antioxidants 2020, 9, 558. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.Q.; Guo, X.L.; Li, J.Y.; Zhang, Y.H.; Yang, Y.M.; Zheng, W.A.; Xue, X.Z. Effects of light-emitting diode spectral combinations on growth and quality of pea sprouts under long photoperiod. Front. Plant Sci. 2022, 13, 978462. [Google Scholar] [CrossRef]
- Zhou, W.L.; Liu, W.K.; Yang, Q.C. Reducing nitrate content in lettuce by pre-harvest continuous light delivered by red and blue light-emitting diodes. J. Plant Nutr. 2013, 36, 481–490. [Google Scholar] [CrossRef]
- Colla, G.; Kim, H.J.; Kyriacou, M.C.; Rouphael, Y. Nitrate in fruits and vegetables. Sci. Hortic. 2018, 237, 221–238. [Google Scholar] [CrossRef]
- Liu, H.K.; Chen, Y.Y.; Hu, T.T.; Zhang, S.J.; Zhang, Y.H.; Zhao, T.Y.; Yu, H.E.; Kang, Y.F. The influence of light-emitting diodes on the phenolic compounds and antioxidant activities in pea sprouts. J. Funct. Foods 2016, 25, 459–465. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, H.; Shen, Y.; Gao, Z.; Zhang, Z. Effects of phenolic-acids on growth and enzyme activity of maize-seedlings. J. Henan Agric. Univ. 2017, 51, 301–307. [Google Scholar]
- Chang, J.; Yang, R.; Wang, P.; Gu, Z. Effects of Light Spectrums on Growth and Phenolics Accumulation of Wheat Seedlings for Food. J. Chin. Cereals Oils Assoc. 2021, 36, 13–20. [Google Scholar]
- Zhang, S.C.; Ma, J.Q.; Zou, H.Y.; Zhang, L.; Li, S.H.; Wang, Y.P. The combination of blue and red LED light improves growth and phenolic acid contents in Salvia miltiorrhiza Bunge. Ind. Crops Prod. 2020, 158, 112959. [Google Scholar] [CrossRef]
- Tsurunaga, Y.; Takahashi, T.; Katsube, T.; Kudo, A.; Kuramitsu, O.; Ishiwata, M.; Matsumoto, S. Effects of UV-B irradiation on the levels of anthocyanin, rutin and radical scavenging activity of buckwheat sprouts. Food Chem. 2013, 141, 552–556. [Google Scholar] [CrossRef] [PubMed]
- Bandoniene, D.; Murkovic, M.; Pfannhauser, W.; Venskutonis, P.R.; Gruzdiene, D. Detection and activity evaluation of radical scavenging compounds by using DPPH free radical and on-line HPLC-DPPH methods. Eur. Food Res. Technol. 2002, 214, 143–147. [Google Scholar] [CrossRef]
Light Quality | Light Quality Ratio | Color Temperature (K) | CIE1976 | λmax (nm) |
---|---|---|---|---|
Dark | — | — | — | — |
Red | 100%Red | — | u′ = 0.5552, | 660 |
v′ = 0.5153 | ||||
3R1B | 75%Red25%Blue | — | u′ = 0.2945, | 450 |
v′ = 0.4170 | 660 | |||
2R2B | 50%Red50%Blue | — | u′ = 0.2605, | 450 |
v′ = 0.1634 | 660 | |||
1R3B | 25%Red75%Blue | — | u′ = 0.2209, | 450 |
v′ = 0.1198 | 660 | |||
Blue | 100%Blue | — | u′ = 0.1975, | 450 |
v′ = 0.0869 | ||||
White | 100%White | 2385 | u′ = 0.2945, | 450 |
v′ = 0.4170 | 620 |
Light Quality | Hypocotyl Length (mm) | Fresh Weight (g) | Dry Weight (g) | Moisture Content (%) |
---|---|---|---|---|
Dark | 45.5035 ± 5.1324 a | 0.1968 ± 0.0203 c | 0.0104 ± 0.0013 a | 94.73 ± 0.2873 e |
Red | 37.5497 ± 3.4732 b | 0.2184 ± 0.0102 ab | 0.0099 ± 0.0009 a | 95.46 ± 0.2223 a |
3R1B | 36.9157 ± 3.8812 bc | 0.2130 ± 0.0161 abc | 0.0098 ± 0.0012 a | 95.41 ± 0.2045 ab |
2R2B | 34.6500 ± 3.1438 d | 0.2156 ± 0.0192 abc | 0.0105 ± 0.0009 a | 95.13 ± 0.2187 bcd |
1R3B | 34.5455 ± 3.5863 d | 0.1958 ± 0.0133 c | 0.0096 ± 0.00204 a | 95.10 ± 0.1352 cd |
Blue | 35.1050 ± 3.5105 cd | 0.1986 ± 0.0075 bc | 0.0101 ± 0.0002 a | 94.90 ± 0.2394 de |
White | 35.6890 ± 4.1732 bcd | 0.2202 ± 0.0100 a | 0.0102 ± 0.0006 a | 95.37 ± 0.1635 abc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, K.; Peng, Y.; Wang, M.; Li, W.; Li, Y.; Chen, J. Effect of Red and Blue Light on the Growth and Antioxidant Activity of Alfalfa Sprouts. Horticulturae 2024, 10, 76. https://doi.org/10.3390/horticulturae10010076
Sun K, Peng Y, Wang M, Li W, Li Y, Chen J. Effect of Red and Blue Light on the Growth and Antioxidant Activity of Alfalfa Sprouts. Horticulturae. 2024; 10(1):76. https://doi.org/10.3390/horticulturae10010076
Chicago/Turabian StyleSun, Kelong, Ying Peng, Mengyuan Wang, Weihu Li, Yang Li, and Jianjun Chen. 2024. "Effect of Red and Blue Light on the Growth and Antioxidant Activity of Alfalfa Sprouts" Horticulturae 10, no. 1: 76. https://doi.org/10.3390/horticulturae10010076
APA StyleSun, K., Peng, Y., Wang, M., Li, W., Li, Y., & Chen, J. (2024). Effect of Red and Blue Light on the Growth and Antioxidant Activity of Alfalfa Sprouts. Horticulturae, 10(1), 76. https://doi.org/10.3390/horticulturae10010076