Determining Optimal Mutation Induction of Philodendron billietiae Using Gamma Radiation and In Vitro Tissue Culture Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studying the Appropriate Medium for Shoot Induction from Shoot Tips of Philodendron billietiae
2.2. Examining Suitable Media for Root Induction in Philodendron billietiae Shoots
2.3. Inducing Mutations Using Acute Gamma Irradiation
2.4. Statistical Analysis
3. Results
3.1. Determination of the Appropriate Medium for Shoot Induction of Philodendron billietiae
3.2. Determination of Suitable Media for Root Induction in Philodendron billietiae Shoots
3.3. Inducing Mutations Using Acute Gamma Irradiation
4. Discussion
4.1. Shoot Induction of Philodendron billietiae
4.2. Root Induction in Philodendron billietiae Shoots
4.3. Inducing Mutations Using Acute Gamma Irradiation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mayo, S.J.; Bogner, J.; Boyce, P.C. The Genera of Araceae; Royal Botanical Gardens, Kew, The European Union by Continental Printing: Brussels, Belgium, 1997. [Google Scholar]
- Chen, J.; McConnell, D.B.; Norman, D.J.; Henny, R.J. The foliage plant industry. In Horticultural Reviews; Janick, J., Ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2005; pp. 45–110. [Google Scholar]
- Klanrit, P.; Kitwetcharoen, H.; Thanonkeo, P.; Thanonkeo, S. In vitro propagation of Philodendron erubescens ‘pink princess’ and ex vitro acclimatization of the plantlets. Horticulturae 2023, 9, 688. [Google Scholar] [CrossRef]
- Bown, D. Aroids: Plants of the Arum Family; Timber Press: Portland, OR, USA, 2000. [Google Scholar]
- Sreekumar, S.; Mukunthakumar, S.; Seeni, S. Morphogenetic response of six Philodendron cultivars in vitro. Indian J. Exp. Biol. 2001, 39, 1280–1287. [Google Scholar] [PubMed]
- Maikaeo, L.; Puripunyavanich, V.; Limtiyayotin, M.; Orpong, P.; Kongpeng, C. Micropropagation and gamma irradiation mutagenesis in Philodendron billietiae. Thai J. Agric. Sci. 2024, 57, 11–19. [Google Scholar]
- Pallavi, B.; Nivas, S.K.; D’Souza, L.; Ganapathi, T.R.; Hegde, S. Gamma rays induced variations in seed germination, growth and phenotypic characteristics of Zinnia elegans var. Dreamland. Adv. Hortic. Sci. 2017, 31, 267–273. [Google Scholar]
- El-Khateeb, M.A.; Abdel-Ati, K.E.A.; Khalifa, M.A.S. Effect of gamma irradiation on growth characteristics, morphological variations, pigments and molecular aspects of Philodendron scandens plant. Middle East J. Agric. Res. 2016, 5, 6–13. [Google Scholar]
- Rashid, K.; Daran, A.B.M.; Nezhadahmadi, A.; Zainoldin, K.H.; Azhar, S.; Efzueni, S. the effect of using gamma rays on morphological characteristics of ginger (Zingiber officinale) plants. Life Sci. J. 2013, 10, 1538–1544. [Google Scholar]
- Bharath, R.A.; Prathmesh, S.P.; Sarsu, F.; Suprasanna, P. Induced mutagenesis using gamma rays: Biological features and applications in crop improvement. OBM Genet. 2024, 8, 233. [Google Scholar] [CrossRef]
- Riviello-Flores, M.d.l.L.; Cadena-Iñiguez, J.; Ruiz-Posadas, L.d.M.; Arévalo-Galarza, M.d.L.; Castillo-Juárez, I.; Soto Hernández, M.; Castillo-Martínez, C.R. Use of gamma radiation for the genetic improvement of underutilized plant varieties. Plants 2022, 11, 1161. [Google Scholar] [CrossRef]
- Sawangmee, W.; Taychasinpitak, T.; Jompuk, P.; Kikuchi, S. Effects of gamma-ray irradiation in plant morphology of interspecific hybrids between Torenia fournieri and Torenia baillonii. Kasetsart J. (Nat. Sci.) 2011, 45, 803–810. [Google Scholar]
- Anitha, G.; Shiragur, M.; Patil, B.C.; Nishani, S.; Seetharamu, G.K.; Ramanagouda, S.H.; Mahantesha, B.N.N. Mutation studies in chrysanthemum cultivar Poornima white. J. Pharmacogn. Phytochem. 2021, 10, 1235–1239. [Google Scholar]
- Billorea, V.; Mirajkarb, S.J.; Suprasannab, P.; Jainc, M. Gamma irradiation induced effects on in vitro shoot cultures and influence of monochromatic light regimes on irradiated shoot cultures of Dendrobium sonia orchid. Biotechnol. Rep. 2019, 24, e00343. [Google Scholar] [CrossRef] [PubMed]
- Sherpa, R.; Devadas, R.; Bolbhat, S.N.; Nikam, T.D.; Penna, S. Gamma Radiation Induced In-Vitro Mutagenesis and Isolation of Mutants for Early Flowering and Phytomorphological Variations in Dendrobium ‘Emma White’. Plants 2022, 11, 3168. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, L.; Zhan, X.; Liu, L.; Feng, F.; Guo, Z.; Wang, D.; Chen, H. Biological effects of gamma-ray radiation on tulip (Tulipa gesneriana L.). PeerJ 2022, 10, e12792. [Google Scholar] [CrossRef] [PubMed]
- Rifnas, L.M.; Vidanapathirana1, N.P.; Silva, T.D.; Dahanayake, N.; Subasinghe, S.; Weerasinghe1, S.S.; Madushani, W.G.C.; Nelka, S.A.P. Impact of Cobalt-60 gamma irradiation on growth, development, and morphology of Acalypha hispida (Cat’s tail plant). J. Univ. Ruhuna 2023, 11, 42–52. [Google Scholar] [CrossRef]
- Santosa, E.; Pramono, S.; Mine, Y.; Sugiyama, N. Gamma irradiation on growth and development of Amorphophallus muelleri blume. J. Agron. Indones. 2014, 42, 118–123. [Google Scholar]
- Kim, S.H.; Kim, S.W.; Ahn, J.; Ryu, J.; Kwon, S.; Kang, B.; Kim, J. Frequency, spectrum, and stability of leaf mutants induced by diverse γ-ray treatments in two cymbidium hybrids. Plants 2020, 9, 546. [Google Scholar] [CrossRef]
- Hapsari, L.; Trimanto, T.; Isnaini, Y.; Widiarsih, S. Morphological characterization and gamma irradiation effect on plant growth of Curcuma heyneana val & zijp. AIP Conf. Proc. 2021, 2353, 030012. [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Sosnowski, J.; Truba, M.; Vasileva, V. The impact of auxin and cytokinin on the growth and development of selected crops. Agriculture 2023, 13, 724. [Google Scholar] [CrossRef]
- Houssa, C.; Jaqmard, A.; Bernier, G. Activation of replication origin as a possible target for cytokinins in shoot meristems of Sinapis. Planta 1990, 181, 324–326. [Google Scholar] [CrossRef]
- Raspor, M.; Motyka, V.; Kaleri, A.R.; Ninković, S.; Tubić, L.; Cingel, A.; Ćosić, T. Integrating the roles for cytokinin and auxin in de novo shoot organogenesis: From hormone uptake to signaling outputs. Int. J. Mol. Sci. 2021, 22, 8554. [Google Scholar] [CrossRef] [PubMed]
- Kurepa, J.; Smalle, J.A. Auxin/cytokinin antagonistic control of the shoot/root growth ratio and its relevance for adaptation to drought and nutrient deficiency stresses. Int. J. Mol. Sci. 2022, 23, 1933. [Google Scholar] [CrossRef]
- Pokimica, N.; Ćosić, T.; Uzelac, B.; Ninkovi’c, S.; Raspor, M. Dissecting the roles of the cytokinin signaling network: The case of de novo shoot apical meristem formation. Biomolecules 2024, 14, 381. [Google Scholar] [CrossRef] [PubMed]
- Han, B.H.; Park, B.M. In vitro micropropagation of Philodendron cannifolium. J. Plant Biotechnol. 2008, 35, 203–208. [Google Scholar] [CrossRef]
- Chen, F.C.; Wang, C.Y.; Fang, J.Y. Micropropagation of self-heading Philodendron via direct shoot regeneration. Sci. Hortic. 2012, 141, 23–29. [Google Scholar] [CrossRef]
- Alawaadh, A.A.; Dewir, Y.H.; Alwihibi, M.S.; Aldubai, A.A.; El-Hendawy, S.; Naidoo, Y. Micropropagation of lacy tree philodendron (Philodendron bipinnatifidum Schott ex Endl.). Hortscience 2020, 55, 294–299. [Google Scholar] [CrossRef]
- Koriesh, E.M.; Al-Manie, F.A. Growth and root formation of Phillodenderon oxycardium grown in vitro as affected by benzyl adenine and indoleacetic acid. Egyptian J. Hort. 2000, 27, 1–11. [Google Scholar]
- Hassan, H.M.S.; Ali, M.A.M.; Soliman, D.A. Efeect of low cost gelling agents and some growth regulators on micropropagation of Philodendron selloum. J. Plant Prod. Mansoura Univ. 2016, 7, 169–176. [Google Scholar]
- Surve, S.V. Micropropagation studies in Philodendron (Philodendron bipinnatifidum). Int. J. Sci. Res. Sci. Technol. 2022, 9, 126–134. [Google Scholar]
- Akramian, M.; Khaleghi, A.R.; Salehi-Arjmand, H. Optimization of plant growth regulators for in vitro mass propagation of Philodendron cv. Birkin through shoot tip culture. Greenh. Plant Prod. J. 2024, 1, 55–62. [Google Scholar] [CrossRef]
- Van Yen, D.; Li, J. Effect of growth regulators on in vitro micropropagation of Stahlianthus thorelii Gagnep. Agriculture 2022, 12, 1766. [Google Scholar] [CrossRef]
- Klaocheed, S.; Jehsu, W.; Choojun, W.; Thammasiri, K.; Prasertsongskun, S.; Rittirat, S. Induction of direct shoot organogenesis from shoot tip explants of an ornamental aquatic plant, Cryptocoryne wendtii. Walailak. J. Sci. Technol. 2020, 17, 293–302. [Google Scholar] [CrossRef]
- Palee, J. In vitro shoot cultures of Tupistra albiflora K. Larsen. Walailak. J. Sci. Technol. 2020, 17, 405–411. [Google Scholar] [CrossRef]
- Chae, S.C. Influence of auxin concentration on in vitro rooting of Chrysanthemum morifolium Ramat. Biosci. Biotech. Res. Asia 2016, 13, 833–837. [Google Scholar] [CrossRef]
- Kovacs, E.; Keresztes, A. Effect of gamma and UV-B/C radiation on plant cell. Micron 2002, 33, 199–210. [Google Scholar] [CrossRef]
- Kikuchi, O.I.; Mastro, N.L.D.; Wiendl, F.M. Preservative solution for gamma irradiated chrysanthemum cut flowers. Radiat. Phys. Chem. 1995, 46, 1309–1311. [Google Scholar] [CrossRef]
- Shikazono, N.; Yukihiko, Y.; Satoshi, K.; Chihiro, S.; Hiroshi, W.; Shigemitsu, T.; Atsushi, T. Mutation rate and novel tt mutants of Arabidopsis thaliana induced by carbon ions. Genetics 2003, 163, 1449–1455. [Google Scholar] [CrossRef]
- Evan, H.J. Effects of radiation on meristematic cells. Rad Bot. 1965, 5, 171–182. [Google Scholar] [CrossRef]
- Kovalchuk, I.; Molinier, J.; Yao, Y.; Arkhipov, A.; Kovalchuk, O. Transcriptome analysis reveals fundamental differences in plant response to acute and chronic exposure to ionizing radiation. Mutat. Res. 2007, 642, 101–113. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Shimizu, A.; Degi, K.; Morishita, T. Effects of dose and dose rate of gamma ray irradiation on mutation induction and nuclear DNA content in chrysanthemum. Breed. Sci. 2008, 58, 331–335. [Google Scholar] [CrossRef]
- Abdullah, S.; Kamaruddin, N.Y.; Harun, A.R. The Effect of gamma radiation on plant morphological characteristics of Zingiber officinale Roscoe. Int. J. Adv. Sci. Eng. Inf. Technol. 2018, 8, 2085–2091. [Google Scholar] [CrossRef]
- Wongpiyasatid, A.; Thinnok, T.; Taychasinpitak, T.; Jompuk, P.; Chusreeaeom, K.; Lamseejan, S. Effects of acute gamma irradiation on adventitious plantlet regeneration and mutation from leaf cuttings of African violet (Saintpaulia ionantha). Kasetsart J. (Nat. Sci.) 2007, 41, 633–640. [Google Scholar]
BA (mg L−1) | NAA (mg L−1) | Shoot Generation Percentage (%) | Number of Shoots per Explant ± SE | Number of Leaves per Shoot ± SE |
---|---|---|---|---|
0 | 0 | 0 | 0.00 ± 0.00 e | 0.00 ± 0.00 e |
0.5 | 0 | 40 | 0.30 ± 0.15 de | 0.30 ± 0.15 de |
1.0 | 0 | 70 | 0.90 ± 0.17 bcd | 1.10 ± 0.19 cd |
1.5 | 0 | 100 | 3.00 ± 0.06 a | 3.37 ± 0.02 a |
2.0 | 0 | 70 | 0.70 ± 0.15 cd | 0.70 ± 0.15 cd |
0.5 | 0.5 | 70 | 0.90 ± 0.18 bcd | 1.50 ± 0.23 bc |
1.0 | 0.5 | 80 | 0.80 ± 0.13 bcd | 1.00 ± 0.16 cd |
1.5 | 0.5 | 100 | 2.00 ± 0.05 ab | 2.82 ± 0.02 ab |
2.0 | 0.5 | 80 | 1.70 ± 0.19 abc | 1.32 ± 0.18 bc |
NAA (mg L−1) | Percentage of Root Regeneration (%) | Number of Roots per Plant ± SE | Root Length (cm) ± SE |
---|---|---|---|
0 | 70 | 0.80 ± 0.19 c | 3.39 ± 0.22 a |
0.5 | 100 | 5.70 ± 0.11 a | 2.53 ± 0.05 ab |
1.0 | 100 | 3.70 ± 0.16 ab | 2.41 ± 0.09 ab |
1.5 | 80 | 3.00 ± 0.30 bc | 1.60 ± 0.07 b |
2.0 | 80 | 2.50 ± 0.25 bc | 1.45 ± 0.06 b |
Gamma Radiation (Gray) | Survival Rates Percentage (%) ± SE |
---|---|
0 | 100.00 ± 0.00 a |
10 | 96.67 ± 3.33 a |
20 | 86.67 ± 5.44 a |
30 | 26.67 ± 8.31 b |
40 | 6.67 ± 4.44 c |
50 | 0.00 ± 0.00 c |
Gamma Radiation (Gray) | New Shoot Number ± SE | Leaf Width (cm) ± SE | Leaf Length (cm) ± SE |
---|---|---|---|
0 | 3.11 ± 0.03 a | 0.85 ± 0.01 a | 1.17 ± 0.05 a |
10 | 2.73 ± 0.05 ab | 0.64 ± 0.02 a | 0.81 ± 0.02 ab |
20 | 2.05 ± 0.07 ab | 0.56 ± 0.02 ab | 0.67 ± 0.03 b |
30 | 1.73 ± 0.16 b | 0.35 ± 0.06 bc | 0.54 ± 0.08 bc |
40 | 0.35 ± 0.18 c | 0.27 ± 0.09 c | 0.31 ± 0.10 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khamrit, R.; Jongrungklang, N. Determining Optimal Mutation Induction of Philodendron billietiae Using Gamma Radiation and In Vitro Tissue Culture Techniques. Horticulturae 2024, 10, 1164. https://doi.org/10.3390/horticulturae10111164
Khamrit R, Jongrungklang N. Determining Optimal Mutation Induction of Philodendron billietiae Using Gamma Radiation and In Vitro Tissue Culture Techniques. Horticulturae. 2024; 10(11):1164. https://doi.org/10.3390/horticulturae10111164
Chicago/Turabian StyleKhamrit, Rattana, and Nakorn Jongrungklang. 2024. "Determining Optimal Mutation Induction of Philodendron billietiae Using Gamma Radiation and In Vitro Tissue Culture Techniques" Horticulturae 10, no. 11: 1164. https://doi.org/10.3390/horticulturae10111164
APA StyleKhamrit, R., & Jongrungklang, N. (2024). Determining Optimal Mutation Induction of Philodendron billietiae Using Gamma Radiation and In Vitro Tissue Culture Techniques. Horticulturae, 10(11), 1164. https://doi.org/10.3390/horticulturae10111164