Genome-Wide Identification of Heat Shock Transcription Factor Family and Key Members Response Analysis to Heat Stress in Loquat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of HSF Genes in Eriobotrya japonica
2.2. Phylogenetic Tree Construction and Gene Structure Analysis
2.3. Cis-Element Analysis
2.4. Gene Duplication Events
2.5. Expression of EjHSF Genes
3. Results
3.1. Identification and Chromosomal Distribution of EjHSFs
3.2. Synteny Analysis
3.3. Phylogenetic Classification of EjHSFs
3.4. Conserved Motifs and Gene Structure Analysis of EjHSFs
3.5. Analysis of cis-Acting Elements in EjHSF Promoters
3.6. Expression Patterns of EjHSFs in Various Tissues
3.7. Expression Profiles of EjHSF Genes Under Heat Stress
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Su, W.B.; Jing, Y.; Lin, S.K.; Yue, Z.; Yang, X.H.; Xu, J.B.; Wu, J.C.; Zhang, Z.K.; Xia, R.; Zhu, J.J.; et al. Polyploidy underlies co-option and diversification of biosynthetic triterpene pathways in the apple tribe. Proc. Natl. Acad. Sci. USA 2021, 118, e2101767118. [Google Scholar] [CrossRef] [PubMed]
- Pu, Z.Y.; Hu, R.Q.; Xu, X.Y.; Guo, Q.G.; Xia, Y.; Jing, D.L. Expression characterization and function analysis of the EjAGL6 gene in triploid loquat. ABOS 2022, 42, 1263–1272. [Google Scholar]
- Chen, Y.P.; Deng, C.J.; Xu, Q.Z.; Chen, X.P.; Jiang, F.; Zhang, Y.L.; Hu, W.S.; Zheng, S.Q.; Su, W.B.; Jiang, J.M. Integrated analysis of the metabolome, transcriptome and miRNome reveals crucial roles of auxin and heat shock proteins in the heat stress response of loquat fruit. Sci. Hortic. 2022, 294, 110764. [Google Scholar] [CrossRef]
- Jiang, J.M.; Lin, Y.X.; Chen, Y.Y.; Deng, C.J.; Gong, H.W.; Xu, Q.Z.; Zheng, S.Q.; Chen, W. Proteomics approach reveals mechanism underlying susceptibility of loquat fruit to sunburn during color changing period. Food Chem. 2015, 176, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.H.; Hu, G.C.; Han, B. Genome-wide survey and expression profiling of heat shock proteins and heat shock factors revealed overlapped and stress specific response under abiotic stresses in rice. Plant Sci. 2009, 176, 583–590. [Google Scholar] [CrossRef]
- Guo, M.; Lu, J.P.; Zhai, Y.F.; Chai, W.G.; Gong, Z.H.; Lu, M.H. Genome-wide analysis, expression profile of heat shock factor gene family (CaHsfs) and characterisation of CaHsfA2 in pepper (Capsicum annuum L.). BMC Plant Biol. 2015, 15, 151. [Google Scholar] [CrossRef]
- Harrison, C.J.; Bohm, A.A.; Nelson, H.C. Crystal structure of the DNA binding domain of the heat shock transcription factor. Science 1994, 263, 224–227. [Google Scholar] [CrossRef]
- Baniwal, S.K.; Bharti, K.; Chan, K.Y.; Fauth, M.; Ganguli, A.; Kotak, S.; Mishra, S.K.; Nover, L.; Port, M.; Scharf, K.D.; et al. Heat stress response in plants: A complex game with chaperones and more than twenty heat stress transcription factors. J. Biosci. 2004, 29, 471–487. [Google Scholar] [CrossRef]
- Scharf, K.D.; Heider, H.; Höhfeld, I.; Lyck, R.; Schmidt, E.; Nover, L. The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules. Mol. Cell Biol. 1998, 18, 2240–2251. [Google Scholar] [CrossRef]
- Shim, D.; Hwang, J.U.; Lee, J.; Lee, S.; Choi, Y.; An, G.; Martinoia, E.; Lee, Y. Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice. Plant Cell 2009, 21, 4031–4043. [Google Scholar] [CrossRef]
- Yun, L.; Zhang, Y.; Li, S.; Yang, J.Y.; Wang, C.Y.; Zheng, L.J.; Ji, L.; Yang, J.H.; Song, L.H.; Shi, Y.; et al. Phylogenetic and expression analyses of HSF gene families in wheat (Triticum aestivum L.) and characterization of TaHSFB4-2B under abiotic stress. Front. Plant Sci. 2022, 13, 1047400. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.Z.; Jia, T.; Tang, T.; Anwar, M.; Ali, A.; Hassan, M.J.; Zhang, Y.; Tang, Q.; Peng, Y. A heat shock transcription factor TrHSFB2a of white clover negatively regulates drought, heat and salt stress tolerance in transgenic Arabidopsis. Int. J. Mol. Sci. 2022, 23, 12769. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Wei, R.; Xu, M.; Yao, W.J.; Jiang, J.H.; Ma, X.J.; Qu, G.Z.; Jiang, T.B. Genome-wide analysis of HSF family and overexpression of PsnHSF21 confers salt tolerance in Populus simonii × P. nigra. Front. Plant Sci. 2023, 14, 1160102. [Google Scholar] [CrossRef] [PubMed]
- Toribio, R.; Navarro, A.; Castellano, M.M. HOP stabilizes the HSFA1a and plays a main role in the onset of thermomorphogenesis. Plant Cell Environ. 2024, 47, 4449–4463. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.J.; Yang, C.; Xi, J.; Wang, Y.T.; Guo, J.; Liu, Q.W.; Liu, Y.S.; Ma, Y.; Zhang, J.; Ma, F.W.; et al. The MdHSC70-MdWRKY75 module mediates basal apple thermotolerance by regulating the expression of heat shock factor genes. Plant Cell 2024, 36, 3631–3635. [Google Scholar] [CrossRef]
- Liu, X.N.; Chen, H.Y.; Li, S.C.; Lecourieux, D.; Duan, W.; Fan, P.G.; Liang, Z.C.; Wang, L.J. Natural variations of HSFA2 enhance thermotolerance in grapevine. Hortic. Res. 2023, 10, uhac250. [Google Scholar] [CrossRef]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res 2021, 49, D412–D419. [Google Scholar] [CrossRef]
- Kanwar, M.; Chaudhary, C.; Anand, K.A.; Singh, S.; Garg, M.; Mishra, S.K.; Sirohi, P.; Chauhan, H. An insight into Pisum sativum HSF gene family-genome-wide identification, phylogenetic, expression, and analysis of transactivation potential of pea heat shock transcription factor. Plant Physiol. Biochem. 2023, 202, 107971. [Google Scholar] [CrossRef]
- Garg, V.K.; Avashthi, H.; Tiwari, A.; Jain, P.A.; Ramkete, P.W.; Kayastha, A.M.; Singh, V.K. MFPPI—Multi FASTA ProtParam interface. Bioinformation 2016, 12, 74–77. [Google Scholar] [CrossRef]
- Yu, C.S.; Cheng, C.W.; Su, W.C.; Chang, K.C.; Huang, S.W.; Hwang, J.K.; Lu, C.H. CELLO2GO: A web server for protein subCELlular LOcalization prediction with functional gene ontology annotation. PLoS ONE 2014, 9, e99368. [Google Scholar] [CrossRef]
- Busch, W.; Wunderlich, M.; Schöffl, F. Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. Plant J. 2005, 41, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.K.; Wu, J.; Ji, Q.; Wang, C.; Luo, L.; Yuan, Y.; Wang, Y.H.; Wang, J. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis. J. Genet. Genom. 2008, 35, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Z.; Yang, J.L.; Chen, Y.L.; Mao, X.L.; Wang, Z.C.; Li, C.H. Identification and expression analysis of the heat shock transcription factor (HSF) gene family in Populus trichocarpa. Plant Omics 2013, 6, 415. [Google Scholar]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME suite. Nucleic Acids Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Wang, Y.P.; Tang, H.B.; Debarry, J.D.; Tan, X.; Li, J.P.; Wang, X.Y.; Lee, T.H.; Jin, H.Z.; Marler, B.; Guo, H.; et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Ren, Y.Y.; Ma, R.; Xie, M.H.; Fan, Y.; Feng, L.; Chen, L.; Yang, H.; Wei, X.B.; Wang, X.T.; Liu, K.H.; et al. Genome-wide identification, phylogenetic and expression pattern analysis of HSF family genes in the Rye (Secale cereale L.). BMC Plant Biol. 2023, 23, 441. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Z.B.; Guo, C.; Zhao, X.B.; Li, Z.Y.; Mou, Y.F.; Sun, Q.X.; Wang, J.; Yuan, C.L.; Li, C.J.; et al. Hsf transcription factor gene family in peanut (Arachis hypogaea L.): Genome-wide characterization and expression analysis under drought and salt stresses. Front. Plant Sci. 2023, 14, 1214732. [Google Scholar] [CrossRef]
- Tan, B.; Yan, L.; Li, H.N.; Lian, X.D.; Cheng, J.; Wang, W.; Zheng, X.B.; Wang, X.B.; Li, J.D.; Ye, X.; et al. Genome-wide identification of HSF family in peach and functional analysis of PpHSF5 involvement in root and aerial organ development. PeerJ 2021, 9, e10961. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.L.; Liu, Y.H.; Chai, M.N.; Chen, H.H.; Aslam, M.; Niu, X.P.; Qin, Y.; Cai, H.Y. Genome-wide identification, classification, and expression analysis of the HSF gene family in pineapple (Ananas comosus). PeerJ 2021, 9, e11329. [Google Scholar] [CrossRef] [PubMed]
- Li, P.S.; Yu, T.F.; He, G.H.; Chen, M.; Zhou, Y.B.; Chai, S.C.; Xu, Z.S.; Ma, Y.Z. Genome-wide analysis of the Hsf family in soybean and functional identification of GmHsf-34 involvement in drought and heat stresses. BMC Genom. 2014, 15, 1009. [Google Scholar] [CrossRef] [PubMed]
- Todd, A.E.; Orengo, C.A.; Thornton, J.M. Evolution of function in protein superfamilies, from a structural perspective. J. Mol. Biol. 2001, 307, 1113–1143. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.P.; Wu, Z.; Xiang, J.; Cao, X.; Xu, S.J.; Zhang, Y.Y.; Zhang, D.H.; Teng, N.J. A LlWRKY33-LlHSFA4-LlCAT2 module confers resistance to Botrytis cinerea in lily. Hortic. Res. 2023, 11, uhad254. [Google Scholar] [CrossRef]
- Xie, D.L.; Huang, H.M.; Zhou, C.Y.; Liu, C.X.; Kanwar, M.K.; Qi, Z.Y.; Zhou, J. HsfA1a confers pollen thermotolerance through upregulating antioxidant capacity, protein repair, and degradation in Solanum lycopersicum L. Hortic. Res. 2022, 9, uhac163. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, G.Z.; Ye, Y.C.; Shang, L.X.; Hong, S.D.; Ma, Q.Q.; Zhao, Y.; Gu, C.H. Genome-wide identification and expression analysis of HSF transcription factors in alfalfa (Medicago sativa) under abiotic stress. Plants 2022, 11, 2763. [Google Scholar] [CrossRef]
- Fu, J.X.; Huang, S.Y.; Qian, J.Y.; Qing, H.S.; Wan, Z.Y.; Cheng, H.F.; Zhang, C. Genome-wide identification of Petunia HSF genes and potential function of PhHSF19 in benzenoid/phenylpropanoid biosynthesis. Int. J. Mol. Sci. 2022, 23, 2974. [Google Scholar] [CrossRef]
- Li, C.H.; Li, Y.H.; Zhou, Z.; Huang, Y.D.; Tu, Z.Z.; Zhuo, X.; Tian, D.Y.; Liu, Y.B.; Di, H.L.; Lin, Z.; et al. Genome-wide identification and comprehensive analysis heat shock transcription factor (Hsf) members in asparagus (Asparagus officinalis) at the seeding stage under abiotic stresses. Sci. Rep. 2023, 13, 18103. [Google Scholar] [CrossRef]
- Mou, S.L.; He, W.H.; Jiang, H.T.; Meng, Q.Q.; Zhang, T.T.; Liu, Z.Q.; Qiu, A.L.; He, S.L. Transcription factor CaHDZ15 promotes pepper basal thermotolerance by activating HEAT SHOCK FACTORA6a. Plant Physiol. 2024, 195, 812–831. [Google Scholar] [CrossRef]
- Yokotani, N.; Ichikawa, T.; Kondou, Y.; Matsui, M.; Hirochika, H.; Iwabuchi, M.; Oda, K. Expression of rice heat stress transcription factor OsHsfA2e enhances tolerance to environmental stresses in transgenic Arabidopsis. Planta 2008, 227, 957–967. [Google Scholar] [CrossRef] [PubMed]
- Xin, H.B.; Zhang, H.; Chen, L.; Li, X.X.; Lian, Q.L.; Yuan, X.; Hu, X.Y.; Cao, L.; He, X.L.; Yi, M.F. Cloning and characterization of HsfA2 from Lily (Lilium longiflorum). Plant Cell Rep. 2010, 29, 875–885. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y.; Huang, W.L.; Liu, J.; Yang, Z.M.; Huang, B.R. Molecular regulation and physiological functions of a novel FaHsfA2c cloned from tall fescue conferring plant tolerance to heat stress. Plant Biotechnol. J. 2017, 15, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.H.; Ran, J.; Zou, J.; Zhou, X.Y.; Liu, A.L.; Zhang, X.W.; Peng, Y.; Tang, N.; Luo, G.Y.; Chen, X.B. Heat shock factor OsHsfB2b negatively regulates drought and salt tolerance in rice. Plant Cell Rep. 2013, 32, 1795–1806. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Wang, C.T.; Yang, B.; Cheng, H.Y.; Wang, Z.; Mijiti, A.; Ren, C.; Qu, G.H.; Zhang, H.; Ma, L. CarHSFB2, a Class B Heat Shock Transcription Factor, Is Involved in Different Developmental Processes and Various Stress Responses in Chickpea (Cicer arietinum L.). Plant Mol. Biol. Rep. 2016, 34, 1–14. [Google Scholar] [CrossRef]
- Fragkostefanakis, S.; Simm, S.; El-Shershaby, A.; Hu, Y.; Bublak, D.; Mesihovic, A.; Darm, K.; Mishra, S.K.; Tschiersch, B.; Theres, K.; et al. The repressor and co-activator HsfB1 regulates the major heat stress transcription factors in tomato. Plant Cell Environ. 2019, 42, 874–890. [Google Scholar] [CrossRef]
GeneID | GeneName | Chr | Start | End | pI | Mw/kDa | Protein Length/aa | Subcellular Location |
---|---|---|---|---|---|---|---|---|
Ej00038938 | EjHSF-A1a | chr05 | 15,417,691 | 15,423,371 | 5.53 | 73,313.98 | 659 | Nuclear |
Ej00005590 | EjHSF-A1b | chr10 | 5,669,409 | 5,673,397 | 5.12 | 59,636.99 | 534 | Nuclear |
Ej00081356 | EjHSF-A2a | chr14 | 39,162,493 | 39,164,514 | 5.36 | 44,862.03 | 402 | Nuclear |
Ej00011860 | EjHSF-A2b | chr08 | 6,128,697 | 6,130,531 | 4.85 | 45,921.50 | 411 | Nuclear |
Ej00044128 | EjHSF-A3a | chr15 | 46,335,175 | 46,337,696 | 5.05 | 73,528.70 | 654 | Cytoplasmic |
Ej00008404 | EjHSF-A3b | chr12 | 40,198,212 | 40,200,771 | 5.01 | 61,348.73 | 553 | Nuclear |
Ej00050337 | EjHSF-A4a | chr09 | 837,765 | 841,420 | 5.50 | 49,328.06 | 434 | Nuclear |
Ej00001403 | EjHSF-A4b | chr17 | 9,213,388 | 9,217,290 | 5.23 | 49,924.67 | 440 | Nuclear |
Ej00028977 | EjHSF-A4c | chr05 | 7,022,296 | 7,024,714 | 5.23 | 47,357.55 | 420 | Nuclear |
Ej00000248 | EjHSF-A4d | utg0_pilon | 3,628,917 | 3,630,868 | 5.86 | 47,689.09 | 423 | Nuclear |
Ej00014341 | EjHSF-A5a | chr11 | 39,174,040 | 39,177,497 | 5.29 | 53,735.29 | 485 | Nuclear |
Ej00040219 | EjHSF-A6a | chr16 | 18,736,545 | 18,738,152 | 4.85 | 40,867.55 | 355 | Nuclear |
Ej00083177 | EjHSF-A7a | chr03 | 36,894,500 | 36,896,975 | 5.70 | 47,676.50 | 418 | Cytoplasmic |
Ej00044555 | EjHSF-A7b | chr04 | 6,817,911 | 6,820,245 | 5.94 | 45,551.86 | 400 | Nuclear |
Ej00062710 | EjHSF-A8a | chr13 | 1,248,507 | 1,251,313 | 4.90 | 46,788.41 | 412 | Nuclear |
Ej00056238 | EjHSF-A8b | chr16 | 1,718,798 | 1,721,539 | 4.76 | 47,005.87 | 414 | Nuclear |
Ej00045930 | EjHSF-A9a | chr14 | 25,583,993 | 25,586,505 | 4.87 | 53,371.73 | 479 | Nuclear |
Ej00017485 | EjHSF-A9b | chr02 | 313,403 | 315,310 | 5.22 | 54,382.91 | 484 | Nuclear |
Ej00027446 | EjHSF-B1a | chr15 | 30,589,331 | 30,592,234 | 6.35 | 32,374.30 | 294 | Nuclear |
Ej00019640 | EjHSF-B1b | chr02 | 15,089,357 | 15,105,668 | 5.48 | 36,813.31 | 331 | Nuclear |
Ej00094962 | EjHSF-B2a | chr04 | 29,569,081 | 29,570,621 | 4.69 | 36,024.64 | 334 | Nuclear |
Ej00006997 | EjHSF-B2b | chr07 | 36,221,462 | 36,222,856 | 6.39 | 34,474.80 | 307 | Nuclear |
Ej00050877 | EjHSF-B2c | chr01 | 34,673,165 | 34,674,594 | 8.84 | 33,814.23 | 297 | Nuclear |
Ej00023119 | EjHSF-B3a | chr14 | 7,081,222 | 7,084,794 | 7.56 | 27,874.44 | 243 | Nuclear |
Ej00004040 | EjHSF-B3b | chr12 | 30,632,183 | 30,636,337 | 8.46 | 27,793.39 | 243 | Nuclear |
Ej00081580 | EjHSF-B4a | chr14 | 37,493,345 | 37,495,029 | 7.81 | 43,447.70 | 384 | Nuclear |
Ej00045578 | EjHSF-B4b | chr08 | 9,403,046 | 9,404,710 | 7.13 | 43,143.32 | 381 | Nuclear |
Ej00066400 | EjHSF-B5a | chr05 | 5,238,626 | 5,240,893 | 8.86 | 21,733.83 | 190 | Nuclear |
Ej00047075 | EjHSF-C1a | chr14 | 27,775,187 | 27,776,352 | 5.45 | 37,333.45 | 334 | Nuclear |
Ej00017302 | EjHSF-C1b | chr02 | 2,833,348 | 2,834,528 | 6.14 | 37,977.44 | 337 | Nuclear |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, C.; Chen, Y.; Wei, W.; Chen, X.; Jiang, J. Genome-Wide Identification of Heat Shock Transcription Factor Family and Key Members Response Analysis to Heat Stress in Loquat. Horticulturae 2024, 10, 1195. https://doi.org/10.3390/horticulturae10111195
Deng C, Chen Y, Wei W, Chen X, Jiang J. Genome-Wide Identification of Heat Shock Transcription Factor Family and Key Members Response Analysis to Heat Stress in Loquat. Horticulturae. 2024; 10(11):1195. https://doi.org/10.3390/horticulturae10111195
Chicago/Turabian StyleDeng, Chaojun, Yongping Chen, Weilin Wei, Xiuping Chen, and Jimou Jiang. 2024. "Genome-Wide Identification of Heat Shock Transcription Factor Family and Key Members Response Analysis to Heat Stress in Loquat" Horticulturae 10, no. 11: 1195. https://doi.org/10.3390/horticulturae10111195
APA StyleDeng, C., Chen, Y., Wei, W., Chen, X., & Jiang, J. (2024). Genome-Wide Identification of Heat Shock Transcription Factor Family and Key Members Response Analysis to Heat Stress in Loquat. Horticulturae, 10(11), 1195. https://doi.org/10.3390/horticulturae10111195