In Vitro Initiation, Regeneration, and Characterization of Plants Derived from Mature Tetraploid Floral Explants of Date Palm (Phoenix dactylifera L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Regeneration of Plants In Vitro
2.2. Acclimatization
2.3. Field Trial
2.4. Ploidy Analysis
2.5. Phenotypic Characterization of Leaves
2.6. Color of Leaflets
2.7. Observation of Stomata
2.8. Data Analysis
3. Results
3.1. Regeneration of Vitro Plants
3.2. Ploidy Analysis
3.3. Phenotypic Characterization of Leaves
3.4. Characteristics of Stomata
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Othmani, A.; Jemni, M.; Leus, L.; Sellemi, A.; Artés, F.; Werbrouck, S.P.O. A ploidy chimera reveals the effects of tetraploidy in date palm. Eur. J. Hortic. Sci. 2020, 85, 137–144. [Google Scholar] [CrossRef]
- Nimavat, N.; Parikh, P. Innovations in Date palm (Phoenix dactylifera L.) micropropagation: Detailed review of in vitro culture methods and plant growth regulator applications. Plant Cell Tissue Organ Cult. (PCTOC) 2024, 159, 6. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Leus, L.; Van Laere, K.; Dewitte, A.; Van Huylenbroeck, J. Flow cytometry for plant breeding. Acta Hortic. 2009, 836, 221–226. [Google Scholar] [CrossRef]
- Galbraith, D.W.; Harkins, K.R.; Maddox, J.M.; Ayres, N.M.; Sharma, D.P.; Firoozabady, E. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 1983, 220, 1049–1051. [Google Scholar] [CrossRef]
- Otto, F.J. DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. Meth. Cell Biol. 1990, 33, 105–110. [Google Scholar] [CrossRef]
- IPGRI. International Plant Genetic Resources Institute (Institut International des Ressources Phytogénétiques). Descripteur du Palmier Dattier (Phoenix dactylifera L.); IPGRI: Rome, Italy, 2005; p. 71. [Google Scholar]
- Robertson, A.R. The CIE 1976 color-difference formulae. Color Res. Appl. 1977, 2, 7–11. [Google Scholar] [CrossRef]
- Hamill, S.D.; Smith, M.K.; Dodd, W.A. In vitro induction of banana autotetraploidy by colchicine treatment of micropropagated diploids. Aust. J. Bot. 1992, 40, 887–896. [Google Scholar] [CrossRef]
- Kriaâ, W.; Sghaier-Hammami, B.; Masmoudi-Allouche, F.; Benjemaa-Masmoudi, R.; Drira, N. The date palm (Phoenix dactylifera L.) micropropagation using completely mature female flowers. Comptes Rendus Biol. 2012, 335, 194–204. [Google Scholar] [CrossRef]
- Liu, M.C. Factors affecting induction, somatic embryogenesis and plant regeneration of callus from cultured immature inflorescences of sugarcane. J. Plant Physiol. 1993, 141, 714–720. [Google Scholar] [CrossRef]
- Zayed, E.M.M.; Zein El Din, A.F.M.; Manaf, H.H.; Abdelbar, O.H. Floral reversion of mature inflorescence of date palm in vitro. Ann. Agric. Sci. 2016, 61, 125–133. [Google Scholar] [CrossRef]
- George, E.F.; Hall, M.A.; De Klerk, G.J. Plant Propagation by Tissue Culture, 3rd ed.; Springer: Basingstoke, UK, 2007; pp. 227–238. [Google Scholar] [CrossRef]
- Loutfi, K.; Chlyah, H. Vegetative multiplication of date palms from in vitro cultured inflorescences: Effect of some growth regulator combinations and organogenetic potential of various cultivars. Agronomie 1998, 18, 573–580. [Google Scholar] [CrossRef]
- Greshoff, P.M.; Doy, C.H. Development and differentiation of haploid Lycopersicon esculentum (tomato). Planta 1972, 107, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Khierallah, H.S.M.; Bader, S.M.; Al-Khafaji, M.A. NAA-induced direct organogenesis from female immature inflorescence explants of date palm. Date Palm Biotechnol. Protoc. 2017, 1637, 17–25. [Google Scholar] [CrossRef]
- Mazri, M.A.; Meziani, R. An improved method for micropropagation and regeneration of date palm (Phoenix dactylifera L.). J. Plant Biochem. Biotechnol. 2013, 22, 176–184. [Google Scholar] [CrossRef]
- Abdelghaffar, A.M.; Soliman, S.S.; Ismail, T.A.; Alzohairy, A.M.; Latef, A.A.H.A.; Alharbi, K.; Al-Khayri, J.M.; Aljuwayzi, N.I.M.; El-Moneim, D.A.; Hassanin, A.A. In vitro propagation of three date palm (Phoenix dactylifera L.) varieties using immature female inflorescences. Plants 2023, 12, 644. [Google Scholar] [CrossRef]
- Loschiavo, F.; Pitto, L.; Giuliano, G.; Torti, G.; Nuti-Ronchi, V.; Marazziti, D.; Terzi, M. DNA methylation of embryogenic carrot cell cultures and its variations as caused by mutation, differentiation, hormones and hypomethylating drugs. Theor. Appl. Genet. 1989, 77, 325–331. [Google Scholar] [CrossRef]
- Joshi, P.; Dhawan, V. Assessment of genetic fidelity of micropropagated Swertia chirayita plantlets by ISSR marker assay. Biol. Plant. 2007, 51, 22–26. [Google Scholar] [CrossRef]
- Salma, U.; Kundu, S.; Mandal, N. Artificial polyploidy in medicinal plants: Advancement in the last two decades and impending prospects. J. Crop Sci. Biotechnol. 2017, 20, 9–19. [Google Scholar] [CrossRef]
- Sattler, M.C.; Carvalho, C.R.; Clarindo, W.R. The polyploidy and its key role in plant breeding. Planta 2016, 243, 281–296. [Google Scholar] [CrossRef]
- Eng, W.H.; Ho, W.S. Polyploidization using colchicine in horticultural plants: A review. Sci. Hortic. 2019, 246, 604–617. [Google Scholar] [CrossRef]
- Schoenfelder, K.P.; Fox, D.T. The expanding implications of polyploidy. J. Cell Biol. 2015, 209, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Zhang, F.; Zhang, Z.H.; Fu, J.F.; Wang, F.; Zhang, B.; Ma, Y. Differences in salt tolerance between diploid and autotetraploid apple seedlings exposed to salt stress. Sci. Hortic. 2015, 190, 24–30. [Google Scholar] [CrossRef]
- Li, W.L.; Berlyn, G.P.; Ashton, P.M.S. Polyploids and their structural and physiological characteristics relative to water deficit in Betula papyrifera (Betulaceae). Am. J. Bot. 1996, 83, 15–20. [Google Scholar] [CrossRef]
- Yang, X.; Ye, C.Y.; Cheng, Z.M.; Tschaplinski, T.J.; Wullschleger, S.D.; Yin, W.; Xia, X.; Tuskan, G.A. Genomic aspects of research involving polyploid plants. Plant Cell Tissue Organ Cult. 2014, 120, 105–111. [Google Scholar] [CrossRef]
- Van Laere, K.; França, S.C.; Vansteenkiste, H.; Van Huylenbroeck, J.; Steppe, K.; Van Labeke, M.C. Influence of ploidy level on morphology, growth and drought susceptibility in Spathiphyllum wallisii. Acta Physiol. Plant. 2011, 33, 1149–1156. [Google Scholar] [CrossRef]
- Adabiyah, R.; Ratnadewi, D.; Ermayanti, T.M.; Al Hafiizh, E.; Susanti, E.M. Morphological and Anatomical Comparison between Tetraploid Stevia rebaudiana (Bertoni) Bertoni and its Parental Diploid. HAYATI J. Biosci. 2023, 30, 321–335. [Google Scholar] [CrossRef]
- Li, W.D.; Biswas, D.K.; Xu, H.; Xu, C.Q.; Wang, X.Z.; Liu, J.K.; Jiang, G.M. Photosynthetic responses to chromosome doubling in relation to leaf anatomy in Lonicera japonica subjected to water stress. Funct. Plant Biol. 2009, 36, 783–792. [Google Scholar] [CrossRef]
- Hu, Y.; Sun, D.; Hu, H.; Zuo, X.; Xia, T.; Xie, J. A comparative study on morphological and fruit quality traits of diploid and polyploid carambola (Averrhoa carambola L.) genotypes. Sci. Hortic. 2021, 277, 109843. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, X.; Geng, Z.; Wang, Y.; Liu, L.; Wang, T.; Yu, J.; Li, M.; Zhao, X. Autopolyploidy enhances agronomic traits and active ingredients in ‘Huaibai’, a top-grade medicinal chrysanthemum. Plant Cell Tiss. Organ. Cult. 2022, 151, 433–442. [Google Scholar] [CrossRef]
- Hepworth, C.; Doheny-Adams, T.; Hunt, L.; Cameron, D.D.; Gray, J.E. Manipulating stomatal density enhances drought tolerance without deleterious effect on nutrient uptake. New Phytol. 2015, 208, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Hughes, J.; Hepworth, C.; Dutton, C.; Dunn, J.A.; Hunt, L.; Stephens, J.; Waugh, R.; Cameron, D.D.; Gray, J.E. Reducing stomatal density in barley improves drought tolerance without impacting on yield. Plant Physiol. 2017, 174, 776–787. [Google Scholar] [CrossRef] [PubMed]
- Caine, R.S.; Yin, X.; Sloan, J.; Harrison, E.L.; Mohammed, U.; Fulton, T.; Biswal, A.K.; Dionora, J.; Chater, C.C.; Coe, R.A.; et al. Rice with reduced stomatal density conserves water and has improved drought tolerance under future climate conditions. New Phytol. 2019, 221, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Dunn, J.; Hunt, L.; Afsharinafar, M.; Al Meselmani, M.; Mitchell, A.; Howells, R.; Wallington, E.; Fleming, A.J.; Gray, J.E. Reduced stomatal density in bread wheat leads to increased water-use efficiency. J. Exp. Bot. 2019, 70, 4737–4748. [Google Scholar] [CrossRef] [PubMed]
- Uddin, N.; Muhammad, N.; Ali, N.; Nisar, M.; Liu, M. Genomic constitution and relationships of Ziziphus species collected from Malakand Division, Pakistan. Physiol. Mol. Biol. Plants 2022, 28, 1939–1953. [Google Scholar] [CrossRef]
- Zhang, F.; Xue, H.; Lu, X.J.; Zhang, B.; Wang, F.; Ma, Y.; Zhang, Z.H. Autotetraploidization enhances drought stress tolerance in two apple cultivars. Trees 2015, 29, 1773–1780. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Shi, C.; Zhang, X.; Duan, K.; Luo, J. Morphological, cytological and fertility consequences of a spontaneous tetraploid of the diploid pear (Pyrus pyrifolia Nakai) cultivar ‘Cuiguan’. Sci. Hortic. 2015, 189, 59–65. [Google Scholar] [CrossRef]
Morphological Parameters of Leaves | Diploid Vitro Plants | Tetraploid Vitro Plants |
---|---|---|
Length of the leaf (m) | 2.57 ± 0.18 a | 1.86 ± 0.13 b |
Thickness of the rachis (cm) | 2.69 ± 0.20 b | 3.25 ± 0.29 a |
Width of the leaf at the base of the petiole (cm) | 9.97 ± 0.43 b | 13.44 ± 1.00 a |
Average number of spines | 33.88 ± 3.27 a | 15.66 ± 1.58 b |
Max. thickness of spines (cm) | 0.75 ± 0.03 b | 0.95 ± 0.06 a |
Max. length of spines (cm) | 20.96 ± 1.51 a | 16.97 ± 1.34 b |
Number of leaflets (pinnae) | 93.44 ± 7.91 a | 81.88 ± 1.00 b |
Max. width of leaflets in the middle of the leaf (cm) | 2.52 ± 0.05 b | 3.52 ± 0.18 a |
Max. length of the leaflets in the middle of the leaf (cm) | 40.81 ± 0.75 b | 48.85 ± 2.05 a |
Length of the apical pinnae (cm) | 26.78 ± 1.04 b | 38.92 ± 1.08 a |
Width of the apical leaflet (cm) | 2.04 ± 0.04 b | 3.17 ± 0.51 a |
Leaflet Origin | L | a | b |
---|---|---|---|
diploid | 46.61 ± 1.73 a | −11.28 ± 0.65 a | 14.83 ± 1.25 a |
tetraploid | 47.92 ± 1.72 a | −10.35 ± 1.12 b | 18.15 ± 1.45 b |
Leaves | Stomata | ||
---|---|---|---|
Length (µm) | Width (µm) | Number (mm2) | |
Diploid vitroplant | 61.11 ± 0.13 b | 28.40 ± 0.13 b | 154.6 ± 6.13 a |
Tetraploid vitroplant | 74.40 ± 0.16 a | 33.60 ± 0.17 a | 119.00 ± 1.16 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Othmani, A.; Sellemi, A.; Jemni, M.; Kadri, K.; Leus, L.; Werbrouck, S.P.O. In Vitro Initiation, Regeneration, and Characterization of Plants Derived from Mature Tetraploid Floral Explants of Date Palm (Phoenix dactylifera L.). Horticulturae 2024, 10, 1206. https://doi.org/10.3390/horticulturae10111206
Othmani A, Sellemi A, Jemni M, Kadri K, Leus L, Werbrouck SPO. In Vitro Initiation, Regeneration, and Characterization of Plants Derived from Mature Tetraploid Floral Explants of Date Palm (Phoenix dactylifera L.). Horticulturae. 2024; 10(11):1206. https://doi.org/10.3390/horticulturae10111206
Chicago/Turabian StyleOthmani, Ahmed, Amel Sellemi, Monia Jemni, Karim Kadri, Leen Leus, and Stefaan P. O. Werbrouck. 2024. "In Vitro Initiation, Regeneration, and Characterization of Plants Derived from Mature Tetraploid Floral Explants of Date Palm (Phoenix dactylifera L.)" Horticulturae 10, no. 11: 1206. https://doi.org/10.3390/horticulturae10111206
APA StyleOthmani, A., Sellemi, A., Jemni, M., Kadri, K., Leus, L., & Werbrouck, S. P. O. (2024). In Vitro Initiation, Regeneration, and Characterization of Plants Derived from Mature Tetraploid Floral Explants of Date Palm (Phoenix dactylifera L.). Horticulturae, 10(11), 1206. https://doi.org/10.3390/horticulturae10111206