Development of a Machine Learning Natural Ventilation Rate Model by Studying the Wind Field Inside and Around Multiple-Row Chinese Solar Greenhouses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Greenhouses and Vent Configurations
2.2. Calculation Domain
2.3. Models, Solver, and Materials
2.4. Generation of the Mesh File
Tests of Boundary Layer Thickness and Grid Independence
2.5. Sample Data
2.6. Monitoring of Wind Speed at 2.5 m Height
2.7. Ventilation Model Establishment Using Regression Trees
2.8. Statistics and Machine Learning Toolbox
2.9. Evaluation of the Regression Tree Ventilation Model
3. Results and Discussion
3.1. Ventilation Rate and Airflow Pattern Under the Windward Condition
3.2. Ventilation Rate and Airflow Pattern Under the Leeward Condition
3.3. Analysis of Wind Speed at the Monitoring Location
3.4. Ventilation Model Establishment Using Regression Trees
3.5. Comparison Between the Regression Tree and Theoretical Models (Equation (11))
4. Conclusions
- (i)
- Three-dimensional simulations require a vast amount of computation load. It costs more than 30 h to complete 900 iterations to achieve convergence in each 3D case, using an Intel Core I7 CPU and 16 GB RAM. For that reason, two-dimensional CFD simulations are still often adopted to study the wind flow pattern around a greenhouse. The present study compared 2D and 3D simulations, and the results show that the 2D model is sufficient when there is no obstacle in front of and behind the greenhouse, especially for windward flows. But, if there are other greenhouses nearby, the 3D model should be adopted; otherwise, the error could reach 50% for the ventilation rate prediction.
- (ii)
- Turbulence around buildings makes it difficult to measure the wind speed. So, this paper determined a limited area around the rows of the CSGs ensuring that the wind was in the free stream and provided the recommended distance to place anemometers in a greenhouse.
- (iii)
- A regression tree natural ventilation model was developed using results from 990 two-dimensional CFD samples. This model perfectly deals with the combined effect of wind pressure and thermal gradients. This regression tree natural ventilation model is embedded in a published greenhouse model [6]. The application shows this tree model performs ideally for a 7-day simulation (Appendix A).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Ag | Area of the greenhouse, m2 | qc | Convective energy, W |
cp | Specific heat capacity of the air, J kg−1 K−1 | qliq | Water vapor liquidation energy, W |
cpw | Specific heat capacity of the water vapor, J kg−1 K−1 | qp | Plant energy, W |
e | Ratio error | R | Universal gas constant, m3 Pa K−1 mol−1 |
Fj | Effective area of the air inlet, m2 | sv | Ventilation humidity, kg kg−1 s−1 |
Fp | Effective area of the air outlet, m2 | slea | Air leakage humidity, kg kg−1 s−1 |
fm | Simulated mass flow rate through the vents, kg m−1 s−1 | sp | Plant humidity, kg kg−1 s−1 |
fu | Coefficient of the thermal pressure ventilation rate | T | Indoor air temperature, K |
g | Gravitational acceleration, m s−2 | To | Outdoor air temperature, K |
H | Reference height, m | t | Time, s |
H0 | Aerodynamic roughness length, m | u | Wind speed, m s−1 |
Hv | Height between upper and lower vents, m | uj | Flow coefficient of the air inlet |
h | Indoor absolute humidity, kg kg−1 | up | Flow coefficient of the air outlet |
L | Area ventilation rate, m3 s−1 m−2 | u2.5 | Wind speed at 2.5 m height, m s−1 |
L2 | Ventilation rate simulated by the 2D case, m3 s−1 | u* | Friction velocity, m s−1 |
L3 | Ventilation rate simulated by the 3D case, m3 s−1 | v | Greenhouse volume, m3 |
Lw | Wind pressure ventilation rate, m−3 s−1 | yc | Estimated height of the first cell in the boundary layer, m |
LT | Thermal gradients ventilation rate, m−3 s−1 | y+ | A non-dimensional distance |
lg | Length of the greenhouse, m | β | Wind pressure coefficient |
Mw | Molecular weight of the gas, kg mol−1 | μ | Dynamic viscosity, Pa s−1 |
Pop | Operating pressure, Pa | ρ | Air density, kg m−3 |
qv(t) | Ventilation energy, W | κ | von Karman constant, 0.42 |
qlea(t) | Air leakage energy, W |
Appendix A
References
- Wu, G.; Yang, Q.; Zhang, Y.; Fang, H.; Feng, C.; Zheng, H. Energy and optical analysis of photovoltaic thermal integrated with rotary linear curved Fresnel lens inside a Chinese solar greenhouse. Energy 2020, 197, 117215. [Google Scholar] [CrossRef]
- Lei, W.; Lu, H.; Qi, X.; Tai, C.; Fan, X.; Zhang, L. Field measurement of environmental parameters in solar greenhouses and analysis of the application of passive ventilation. Sol Energy 2023, 263, 111851. [Google Scholar] [CrossRef]
- Cheng, X.; Li, D.; Shao, L.; Ren, Z. A virtual sensor simulation system of a flower greenhouse coupled with a new temperature microclimate model using three-dimensional CFD. Comput. Electron. Agric. 2021, 181, 105934. [Google Scholar] [CrossRef]
- Li, T.; Chang, J.; Wei, M.; Shi, G.; Zhang, Y.; Chen, D. Application situation and problem analysis of ventilation facilities in solar greenhouse in Shandong province. Agric. Eng. Technol. 2018, 38, 22–26. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, G.; Fu, Z.; Yang, M.; Liu, X.; Dong, Y.; Li, X. Nonlinear simulation for coupling modeling of air humidity and vent opening in Chinese solar greenhouse based on CFD. Comput. Electron. Agric. 2019, 162, 337–347. [Google Scholar] [CrossRef]
- Liu, R.; Li, M.; Guzmán, J.L.; Rodríguez, F. A fast and practical one-dimensional transient model for greenhouse temperature and humidity. Comput. Electron. Agric. 2021, 186, 106186. [Google Scholar] [CrossRef]
- Mistriotis, A.; Bot, G.P.A.; Picuno, P.; Scarascia-Mugnozza, G. Analysis of the efficiency of greenhouse ventilation using computational fluid dynamics. Agric. For. Meteorol. 1997, 85, 217–228. [Google Scholar] [CrossRef]
- Ould Khaoua, S.A.; Bournet, P.E.; Migeon, C.; Boulard, T.; Chassériaux, G. Analysis of Greenhouse Ventilation Efficiency based on Computational Fluid Dynamics. Biosyst. Eng. 2006, 95, 83–98. [Google Scholar] [CrossRef]
- Katsoulas, N.; Bartzanas, T.; Boulard, T.; Mermier, M.; Kittas, C. Effect of vent openings and insect screens on greenhouse ventilation. Biosyst. Eng. 2006, 93, 427–436. [Google Scholar] [CrossRef]
- Nederhoff, E.M.; van de Vooren, J.; Udink ten Cate, A.J. A practical tracer gas method to determine ventilation in greenhouses. J. Agric. Eng. Res. 1985, 31, 309–319. [Google Scholar] [CrossRef]
- Tong, G.; Che, Z.; Bai, Y.; Yamaguchi, T. Air exchange rate calculation for solar greenhouse using thermal balance method. J. Shenyang Agric. Univ. 2008, 39, 459–462. (In Chinese) [Google Scholar] [CrossRef]
- Van Buggenhout, S.; Ozcan, S.E.; Vranken, E.; Van Malcot, W.; Berckmans, D. Acoustical Ventilation Rate Sensor Concept for Naturally Ventilated Buildings. ASHRAE Trans. 2007, 113, 192–199. [Google Scholar]
- Boulard, T.; Roy, J.C.; Lamrani, M.A.; Haxaire, R. Characterising and Modelling the Air Flow and Temperature Profiles in a Closed Greenhouse in Diurnal Conditions. IFAC Proc. Vol. 1997, 30, 37–42. [Google Scholar] [CrossRef]
- Boulard, T.; Wang, S. Experimental and numerical studies on the heterogeneity of crop transpiration in a plastic tunnel. Comput. Electron. Agric. 2002, 34, 173–190. [Google Scholar] [CrossRef]
- Majdoubi, H.; Boulard, T.; Fatnassi, H.; Bouirden, L. Airflow and microclimate patterns in a one-hectare Canary type greenhouse: An experimental and CFD assisted study. Agric. For. Meteorol. 2009, 149, 1050–1062. [Google Scholar] [CrossRef]
- Boulard, T.; Roy, J.C.; Fatnassi, H.; Kichah, A.; Lee, I.-B. Computer fluid dynamics prediction of climate and fungal spore transfer in a rose greenhouse. Comput. Electron. Agric. 2010, 74, 280–292. [Google Scholar] [CrossRef]
- Kichah, A.; Bournet, P.-E.; Migeon, C.; Boulard, T. Measurement and CFD simulation of microclimate characteristics and transpiration of an Impatiens pot plant crop in a greenhouse. Biosyst. Eng. 2012, 112, 22–34. [Google Scholar] [CrossRef]
- Chen, J.; Xu, F.; Tan, D.; Shen, Z.; Zhang, L.; Ai, Q. A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model. Appl. Energy 2015, 141, 106–118. [Google Scholar] [CrossRef]
- Boulard, T.; Roy, J.C.; Pouillard, J.B.; Fatnassi, H.; Grisey, A. Modelling of micrometeorology, canopy transpiration and photosynthesis in a closed greenhouse using computational fluid dynamics. Biosyst. Eng. 2017, 158, 110–133. [Google Scholar] [CrossRef]
- Liu, R.; Liu, J.; Liu, H.; Yang, X.; Bienvenido Bárcena, J.F.; Li, M. A 3-D simulation of leaf condensation on cucumber canopy in a solar greenhouse. Biosyst. Eng. 2021, 210, 310–329. [Google Scholar] [CrossRef]
- Molina-Aiz, F.D.; Fatnassi, H.; Boulard, T.; Roy, J.C.; Valera, D.L. Comparison of finite element and finite volume methods for simulation of natural ventilation in greenhouses. Comput. Electron. Agric. 2010, 72, 69–86. [Google Scholar] [CrossRef]
- Rocha, G.A.O.; Pichimata, M.A.; Villagran, E. Research on the Microclimate of Protected Agriculture Structures Using Numerical Simulation Tools: A Technical and Bibliometric Analysis as a Contribution to the Sustainability of Under-Cover Cropping in Tropical and Subtropical Countries. Sustainability 2021, 13, 10433. [Google Scholar] [CrossRef]
- Bournet, P.-E.; Boulard, T. Effect of ventilator configuration on the distributed climate of greenhouses: A review of experimental and CFD studies. Comput. Electron. Agric. 2010, 74, 195–217. [Google Scholar] [CrossRef]
- Villagrán, E.A.; Baeza Romero, E.J.; Bojacá, C.R. Transient CFD analysis of the natural ventilation of three types of greenhouses used for agricultural production in a tropical mountain climate. Biosyst. Eng. 2019, 188, 288–304. [Google Scholar] [CrossRef]
- Benni, S.; Tassinari, P.; Bonora, F.; Barbaresi, A.; Torreggiani, D. Efficacy of greenhouse natural ventilation: Environmental monitoring and CFD simulations of a study case. Energy Build. 2016, 125, 276–286. [Google Scholar] [CrossRef]
- Wang, X.; Luo, J.; Li, X. CFD Based Study of Heterogeneous Microclimate in a Typical Chinese Greenhouse in Central China. J. Integr. Agric. 2013, 12, 914–923. [Google Scholar] [CrossRef]
- He, X.; Wang, J.; Guo, S.; Zhang, J.; Wei, B.; Sun, J.; Shu, S. Ventilation optimization of solar greenhouse with removable back walls based on CFD. Comput. Electron. Agric. 2018, 149, 16–25. [Google Scholar] [CrossRef]
- Bournet, P.E.; Rojano, F. Advances of Computational Fluid Dynamics (CFD) applications in agricultural building modelling: Research, applications and challenges. Comput. Electron. Agric. 2022, 201, 107277. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Zou, Z.; Wang, S. CFD and weighted entropy based simulation and optimisation of Chinese Solar Greenhouse temperature distribution. Biosyst. Eng. 2016, 142, 12–26. [Google Scholar] [CrossRef]
- Villagrán, E.A.; Bojacá, C.R. Effects of surrounding objects on the thermal performance of passively ventilated greenhouses. J. Agric. Eng. 2019, 856, 20–27. Available online: http://hdl.handle.net/20.500.12010/8700 (accessed on 12 November 2023). [CrossRef]
- Kim, R.-w.; Hong, S.-w.; Norton, T.; Amon, T.; Youssef, A.; Berckmans, D.; Lee, I.-b. Computational fluid dynamics for non-experts: Development of a user-friendly CFD simulator (HNVR-SYS) for natural ventilation design applications. Biosyst. Eng. 2020, 193, 232–246. [Google Scholar] [CrossRef]
- Kim, R.-w.; Kim, J.-g.; Lee, I.-b.; Yeo, U.-h.; Lee, S.-y.; Decano-Valentin, C. Development of three-dimensional visualisation technology of the aerodynamic environment in a greenhouse using CFD and VR technology, part 1: Development of VR a database using CFD. Biosyst. Eng. 2021, 207, 33–58. [Google Scholar] [CrossRef]
- Rezaei Melal, S.; Aminian, M.; Mohammadhossein Shekarian, S. A machine learning method based on stacking heterogeneous ensemble learning for prediction of indoor humidity of greenhouse. J. Agric. Food Res. 2024, 16, 101107. [Google Scholar] [CrossRef]
- Badji, A.; Benseddik, A.; Bensaha, H.; Boukhelifa, A.; Bouhoun, S.; Nettari, C.; Kherrafi, M.A.; Lalmi, D. Experimental assessment of a greenhouse with and without PCM thermal storage energy and prediction their thermal behavior using machine learning algorithms. J. Energy Storage 2023, 71, 108133. [Google Scholar] [CrossRef]
- Fehér, T. Using Regression Trees in Predictive Modelling. Prod. Syst. Inf. Eng. 2006, 4, 115–124. [Google Scholar]
- Kim, R.-w.; Lee, I.-b.; Kwon, K.-s. Evaluation of wind pressure acting on multi-span greenhouses using CFD technique, Part 1: Development of the CFD model. Biosyst. Eng. 2017, 164, 235–256. [Google Scholar] [CrossRef]
- Ansys. Ansys Fluent User’s Guide; Ansys, Inc.: Canonsburg, PA, USA, 2010. [Google Scholar]
- Piscia, D.; Montero, J.I.; Baeza, E.; Bailey, B.J. A CFD greenhouse night-time condensation model. Biosyst. Eng. 2012, 111, 141–154. [Google Scholar] [CrossRef]
- Toparlar, Y.; Blocken, B.; Maiheu, B.; van Heijst, G. CFD simulation of the near-neutral atmospheric boundary layer: New temperature inlet profile consistent with wall functions. J. Wind Eng. Ind. Aerodyn. 2019, 191, 91–102. [Google Scholar] [CrossRef]
- Haxaire, R. Caractérisation et Modélisation des Écoulements d’air Dans Une Serre. Ph.D. Thesis, Université de Nice, Nice, France, 1999. [Google Scholar]
- Hoxey, R.P.; Richardson, G.M. Measurements of wind loads on full scale plastic greenhouse. J. Wind Eng. Ind. Aerodyn. 1983, 16, 57–83. [Google Scholar] [CrossRef]
- Shalizi, C. Statistics 36-350: Data Mining. Lecture 10: Regression Trees. 2006. Available online: https://www.stat.cmu.edu/~cshalizi/350-2006/ (accessed on 26 February 2024).
- The MathWorks, Inc. MATLAB Version: 9.11.0 (R2021b). 2021. Available online: https://www.mathworks.com (accessed on 1 June 2023).
- NY/T 1451-2018; Code for Ventilation Design of Greenhouse. Ministry of Agriculture of the PRC: Beijing, China, 2018; pp. 7–8. (In Chinese)
- Tong, G.; Christopher, D.M.; Zhang, G. New insights on span selection for Chinese solar greenhouses using CFD analyses. Comput. Electron. Agric. 2018, 149, 3–15. [Google Scholar] [CrossRef]
Width (m) | Ridge Height (m) | Length (m) | Depth (m) | Vent Type | Vent Opening Area (m2) | |
---|---|---|---|---|---|---|
Lower Vent | Upper Vent | |||||
7 | 3.6 | 50 | 0.5 | Rolling Film | 10 | 10 |
20 | ||||||
30 | ||||||
20 | 10 | |||||
20 | ||||||
30 | ||||||
30 | 10 | |||||
20 | ||||||
30 |
Material | Density (kg m−3) | Specific Heat (J kg−1 K−1) | Thermal Conductivity (W m−1 K−1) | Viscosity (kg m−1 s−1) |
---|---|---|---|---|
Air | Incompressible ideal gas | 1006 | 0.024 | 1.7894 × 10−5 |
Mesh | Windward Mesh | Leeward Mesh |
---|---|---|
2D | 36,722 | 36,726 |
3D | 16,807,531 | 16,776,673 |
Boundary | Boundary Condition | |
---|---|---|
Momentum | Thermal | |
Wall | No-slip wall | Fixed temperature |
South roof | No-slip wall | Fixed temperature |
North roof | No-slip wall | Fixed temperature |
Ground | No-slip wall | Fixed temperature |
External top, both sides | Symmetry | |
Inlet of the external domain | Velocity at inlet: Wind profile, Equations (2)–(4); Temperature 300 K | |
Outlet of the external domain | Pressure at outlet; Temperature 300 K |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, R.; Shi, Y.; Bournet, P.-E.; Liu, K. Development of a Machine Learning Natural Ventilation Rate Model by Studying the Wind Field Inside and Around Multiple-Row Chinese Solar Greenhouses. Horticulturae 2024, 10, 1226. https://doi.org/10.3390/horticulturae10111226
Liu R, Shi Y, Bournet P-E, Liu K. Development of a Machine Learning Natural Ventilation Rate Model by Studying the Wind Field Inside and Around Multiple-Row Chinese Solar Greenhouses. Horticulturae. 2024; 10(11):1226. https://doi.org/10.3390/horticulturae10111226
Chicago/Turabian StyleLiu, Ran, Yunyan Shi, Pierre-Emmanuel Bournet, and Kaige Liu. 2024. "Development of a Machine Learning Natural Ventilation Rate Model by Studying the Wind Field Inside and Around Multiple-Row Chinese Solar Greenhouses" Horticulturae 10, no. 11: 1226. https://doi.org/10.3390/horticulturae10111226
APA StyleLiu, R., Shi, Y., Bournet, P. -E., & Liu, K. (2024). Development of a Machine Learning Natural Ventilation Rate Model by Studying the Wind Field Inside and Around Multiple-Row Chinese Solar Greenhouses. Horticulturae, 10(11), 1226. https://doi.org/10.3390/horticulturae10111226