Integrating Soil, Leaf, Fruitlet, and Fruit Nutrients, Along with Fruit Quality, to Predict Post-Storage Quality of Staccato Sweet Cherries
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Sample Collection and Analysis
2.3. Statistics and Data Modeling
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Behdani, B.; Fan, Y.; Bloemhof, J.M. Cool chain and temperature-controlled transport: An overview of concepts, challenges, and technologies. Sustain. Food Supply Chain. 2019, 167–183. [Google Scholar]
- Ross, K.; Toivonen, P.; Godfrey, D.; Fukumoto, L. Pre-harvest conditions associated with Staccato sweet cherry fruit quality: Mineral status in leaves and fruitlets and orchard growing factors. Can. J. Plant Sci. 2020, 101, 262–267. [Google Scholar] [CrossRef]
- Nordey, T.; Davrieux, F.; Léchaudel, M. Predictions of fruit shelf life and quality after ripening: Are quality traits measured at harvest reliable indicators? Postharvest Biol. Technol. 2019, 153, 52–60. [Google Scholar] [CrossRef]
- Torres, E.; Recasens, I.; Àvila, G.; Lordan, J.; Alegre, S. Early stage fruit analysis to detect a high risk of bitter pit in ‘Golden Smoothee’. Sci. Hortic. 2017, 219, 98–106. [Google Scholar] [CrossRef]
- Winkler, A.; Knoche, M. Calcium and the physiology of sweet cherries: A. review. Sci. Hortic. 2019, 245, 107–115. [Google Scholar] [CrossRef]
- Meena, R.; Sarolia, D.; Reddy, S.; Kumar, R.; Ram, C.; Meena, A. Diagnosis and Management of Physiological Disorders in Arid Fruit Crops. In Dryland Horticulture; CRC Press: Boca Raton, FL, USA, 2021; pp. 327–337. [Google Scholar]
- Subedi, P.; Walsh, K.B.; Owens, G. Prediction of mango eating quality at harvest using short-wave near infrared spectrometry. Postharvest Biol. Technol. 2007, 43, 326–334. [Google Scholar] [CrossRef]
- Palmer, J.W.; Harker, F.R.; Tustin, D.S.; Johnston, J. Fruit dry matter concentration: A new quality metric for apples. J. Sci. Food Agric. 2010, 90, 2586–2594. [Google Scholar] [CrossRef]
- McGlone, V.A.; Jordan, R.B.; Seelye, R.; Martinsen, P.J. Comparing density and NIR methods for measurement of kiwifruit dry matter and soluble solids content. Postharvest Biol. Technol. 2002, 26, 191–198. [Google Scholar] [CrossRef]
- Toivonen, P.; Batista, A.; Lannard, B. Development of a predictive model for ‘Lapins’ sweet cherry dry matter content using a visible/near-infrared spectrometer and its potential application to other cultivars. Can. J. Plant Sci. 2017, 97, 1030–1035. [Google Scholar] [CrossRef]
- Jivan, C.; Sala, F. Relationship between tree nutritional status and apple quality. Hortic. Sci. 2014, 41, 1–9. [Google Scholar] [CrossRef]
- Lopresti, J.; Goodwin, I.; McGlasson, B.; Holford, P.; Golding, J. Variability in size and soluble solids concentration in peaches and nectarines. Hortic Rev. 2014, 42, 253–312. [Google Scholar]
- Minas, I.S.; Tanou, G.; Molassiotis, A. Environmental and orchard bases of peach fruit quality. Sci. Hortic. 2018, 235, 307–322. [Google Scholar] [CrossRef]
- Teh, S.L.; Coggins, J.L.; Kostick, S.A.; Evans, K.M. Location, year, and tree age impact NIR-based postharvest prediction of dry matter concentration for 58 apple accessions. Postharvest Biol. Technol. 2020, 166, 111125. [Google Scholar] [CrossRef]
- Doryanizadeh, M.; Ghasemnezhad, M.; Sabouri, A. Estimation of postharvest quality of “Red Delicious” apple fruits based on fruit nutrient elements composition. J. Agric. Sci. 2017, 9, 164–173. [Google Scholar] [CrossRef]
- Drouillard, A.; Léchaudel, M.; Génard, M.; Doizy, A.; Grechi, I. Variations in mango fruit quality in response to management factors on a pre-and post-harvest continuum. Exp. Agric. 2023, 59, e21. [Google Scholar] [CrossRef]
- Wang, X.; Bouzembrak, Y.; Lansink, A.O.; Van Der Fels-Klerx, H. Application of machine learning to the monitoring and prediction of food safety: A review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 416–434. [Google Scholar] [CrossRef]
- Sarlaki, E.; Paghaleh, A.S.; Kianmehr, M.H.; Vakilian, K.A. Valorization of lignite wastes into humic acids: Process optimization, energy efficiency and structural features analysis. Renew. Energy 2021, 163, 105–122. [Google Scholar] [CrossRef]
- Yan, M.; Zeng, X.; Zhang, B.; Zhang, H.; Tan, D.; Cai, B.; Qu, S.; Wang, S. Prediction of Apple Fruit Quality by Soil Nutrient Content and Artificial Neural Network. Phyton 2023, 92, 193. [Google Scholar] [CrossRef]
- Environment and Climate Change Canada. Historical Climate Data. Available online: https://climate.weather.gc.ca/climate_normals/index_e.html#1981 (accessed on 28 May 2023).
- Houghton, E.; Bevandick, K.; Neilsen, D.; Hannam, K.; Nelson, L. Effects of postharvest deficit irrigation on sweet cherry (Prunus avium) in five Okanagan Valley, Canada, orchards: II. Phenology, cold hardiness, fruit yield, and quality. Can. J. Plant Sci. 2023, 103, 184–200. [Google Scholar] [CrossRef]
- Massah, J.; Asefpour Vakilian, K.; Torktaz, S. Supervised machine learning algorithms can predict penetration resistance in mineral-fertilized soils. Commun. Soil Sci. Plant Anal. 2019, 50, 2169–2177. [Google Scholar] [CrossRef]
- Massah, J.; Vakilian, K.A. An intelligent portable biosensor for fast and accurate nitrate determination using cyclic voltammetry. Biosyst. Eng. 2019, 177, 49–58. [Google Scholar] [CrossRef]
- Larada, J.I.; Pojas, G.J.; Ferrer, L.V.V. Postharvest classification of banana (Musa acuminata) using tier-based machine learning. Postharvest Biol. Technol. 2018, 145, 93–100. [Google Scholar]
- Robnik-Šikonja, M.; Kononenko, I. Theoretical and empirical analysis of ReliefF and RReliefF. Mach Learn. 2003, 53, 23–69. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Javidan, S.M.; Banakar, A.; Vakilian, K.A.; Ampatzidis, Y. Diagnosis of grape leaf diseases using automatic K-means clustering and machine learning. Smart Agri. Technol. 2023, 3, 100081. [Google Scholar] [CrossRef]
- Javidan, S.M.; Banakar, A.; Vakilian, K.A.; Ampatzidis, Y. Tomato leaf diseases classification using image processing and weighted ensemble learning. Agron. J. 2024, 116, 1029–1049. [Google Scholar] [CrossRef]
- Torres-Olivar, V.; Villegas-Torres, O.G.; Domínguez-Patiño, M.L.; Sotelo-Nava, H.; Rodríguez-Martínez, A.; Melgoza-Alemán, R.M.; Valdez-Aguilar, L.A.; Alia-Tejacal, I. Role of nitrogen and nutrients in crop nutrition. J. Agric. Sci. Technol. B 2014, 4, 29. [Google Scholar]
- Uçgun, K. Effects of nitrogen and potassium fertilization on nutrient content and quality attributes of sweet cherry fruits. Not. Bot. Horti. Agrobo. 2019, 47, 114–118. [Google Scholar] [CrossRef]
- Swarts, N.; Mertes, E.; Close, D. Role of nitrogen fertigation in sweet cherry fruit quality and consumer perception of quality: At-and postharvest. Acta Hortic. 2017, 1161, 503–510. [Google Scholar] [CrossRef]
- Famiani, F.; Battistelli, A.; Moscatello, S.; Cruz-Castillo, J.G.; Walker, R.P. The organic acids that are accumulated in the flesh of fruits: Occurrence, metabolism and factors affecting their contents-a review. Rev. Chapingo Ser. Hortic. 2015, 21, 97–128. [Google Scholar] [CrossRef]
- Fallahi, E.; Righetti, T.L.; Proebsting, E.L. Pruning and nitrogen effects on elemental partitioning and fruit maturity in ‘Bing’sweet cherry. J. Plant Nutr. 1993, 16, 753–763. [Google Scholar] [CrossRef]
- Correia, S.; Queirós, F.; Ferreira, H.; Morais, M.C.; Afonso, S.; Silva, A.P.; Gonçalves, B. Foliar application of calcium and growth regulators modulate sweet cherry (Prunus avium L.) tree performance. Plants 2020, 9, 410. [Google Scholar] [CrossRef] [PubMed]
- Hepler, P.K. Calcium: A central regulator of plant growth and development. Plant Cell 2005, 17, 2142–2155. [Google Scholar] [CrossRef] [PubMed]
- Saure, M.C. Calcium translocation to fleshy fruit: Its mechanism and endogenous control. Sci. Hortic. 2005, 105, 65–89. [Google Scholar] [CrossRef]
- Kafle, G.K.; Khot, L.R.; Zhou, J.; Bahlol, H.Y.; Si, Y. Towards precision spray applications to prevent rain-induced sweet cherry cracking: Understanding calcium washout due to rain and fruit cracking susceptibility. Sci. Hortic. 2016, 203, 152–157. [Google Scholar] [CrossRef]
- Dar, M.; Wani, J.; Raina, S.; Bhat, M.; Malik, M. Relationship of leaf nutrient content with fruit yield and quality of pear. J. Environ. Biol. 2015, 36, 649. [Google Scholar]
- Quiroz, M.P.; Blanco, V.; Zoffoli, J.P.; Ayala, M. Study of Mineral Composition and Quality of Fruit Using Vascular Restrictions in Branches of Sweet Cherry. Plants 2023, 12, 1922. [Google Scholar] [CrossRef]
- Tang, R.-J.; Luan, S. Regulation of calcium and magnesium homeostasis in plants: From transporters to signaling network. Curr. Opin. Plant. Biol. 2017, 39, 97–105. [Google Scholar] [CrossRef]
- Chen, Z.C.; Peng, W.T.; Li, J.; Liao, H. Functional dissection and transport mechanism of magnesium in plants. Semin. Cell Dev. Biol. 2018, 74, 142–152. [Google Scholar] [CrossRef]
- Wang, Z.; Hassan, M.U.; Nadeem, F.; Wu, L.; Zhang, F.; Li, X. Magnesium fertilization improves crop yield in most production systems: A meta-analysis. Front Plant Sci. 2020, 10, 1727. [Google Scholar] [CrossRef]
- Liu, X.; Hu, C.; Liu, X.; Riaz, M.; Liu, Y.; Dong, Z.; Tan, Q.; Sun, X.; Wu, S.; Tan, Z. Effect of magnesium application on the fruit coloration and sugar accumulation of navel orange (Citrus sinensis Osb.). Sci. Hortic. 2022, 304, 111282. [Google Scholar] [CrossRef]
- Ghesmati, M.; Moradinezhad, F. Effect of foliar application of iron and zinc micronutrients on yield and quality properties of sour cherry fruit (Prunus cerasus L.). J. Hortic. Sci. 2019, 33, fa322. [Google Scholar]
- Wojcik, P.; Wojcik, M. Effect of boron fertilization on sweet cherry tree yield and fruit quality. J. Plant Nutr. 2006, 29, 1755–1766. [Google Scholar] [CrossRef]
- Nagy, P.T.; Thurzó, T.; Szabó, Z.; Nyéki, J. Impact of boron foliar fertilization on annual fluctuation of B in sweet cherry leaves and fruit quality. Int. J. Hortic. Sci. 2008, 14, 27–30. [Google Scholar] [CrossRef]
- Alloway, B. Zinc in Soils and Crop Nutrition. In International Zinc Association and International Fertilizer Association; International Zinc Association: Brussels, Belgium, 2008; p. 16. [Google Scholar]
- Marschner, H. Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Swietlik, D. Zinc nutrition of fruit trees by foliar sprays. Acta. Hortic. 2002, 93, 123–129. [Google Scholar] [CrossRef]
Fruit Post-Storage Attributes | Effective Predictors Among Soil, Leaf, Fruitlet, and At-Harvest Fruit Data |
---|---|
Dry matter | Harvested fruit dry matter (0.44), Fruitlet Ca (0.22), Leaf B (0.21), Leaf Ca (0.21) |
Cherry weight | Leaf Zn (0.51), Harvested fruit Cu (0.28), Leaf Ca (0.24) |
Firmness | Harvested fruit titratable acidity (0.23), Leaf Ca (0.19), Fruitlet N (0.17), Fruitlet B (0.15) |
pH | Leaf Fe (0.45), Leaf Ca (0.36) |
Titratable acidity | Harvested fruit Cu (0.45), Fruitlet N (0.39), Harvested fruit color (0.33), Harvested fruit Ca (0.19), Leaf Zn (0.19) |
Total Soluble Solids | Harvested fruit dry matter (0.32), Leaf Fe (0.28), Soil Ca (0.26), Harvested fruit total soluble solids (0.14) |
TA/TSS | Harvested fruit total soluble solids (0.44), Leaf Zn (41), Leaf Ca (0.28) |
Color | Harvested fruit color (0.21), Soil Mg (0.17), Fruitlet Mg (0.16) |
Slip skin | Harvested fruit stem browning (0.74), Harvested fruit slip skin (0.45), Fruitlet N (0.13) |
Stem browning | Leaf Ca (0.35), Harvested fruit stem browning (0.24), Leaf N (0.24), Harvested fruit Russet (0.19) |
Pitting | Harvested fruit slip skin (0.52), Harvested fruit stem browning (0.28), Leaf Ca (0.09) |
Pebbling | Harvested fruit pebbling (0.39), Harvested fruit weight (0.25), Leaf Ca (0.21), Harvested fruit B (0.20) |
Russet | Harvested fruit Ca (0.37), Harvested fruit stem browning (0.26), Harvested fruit russet (0.22), Fruitlet Ca (0.12) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharifi, M.; Wolk, W.; Asefpour Vakilian, K.; Xu, H.; Slamka, S.; Fong, K. Integrating Soil, Leaf, Fruitlet, and Fruit Nutrients, Along with Fruit Quality, to Predict Post-Storage Quality of Staccato Sweet Cherries. Horticulturae 2024, 10, 1230. https://doi.org/10.3390/horticulturae10111230
Sharifi M, Wolk W, Asefpour Vakilian K, Xu H, Slamka S, Fong K. Integrating Soil, Leaf, Fruitlet, and Fruit Nutrients, Along with Fruit Quality, to Predict Post-Storage Quality of Staccato Sweet Cherries. Horticulturae. 2024; 10(11):1230. https://doi.org/10.3390/horticulturae10111230
Chicago/Turabian StyleSharifi, Mehdi, William Wolk, Keyvan Asefpour Vakilian, Hao Xu, Stephanie Slamka, and Karen Fong. 2024. "Integrating Soil, Leaf, Fruitlet, and Fruit Nutrients, Along with Fruit Quality, to Predict Post-Storage Quality of Staccato Sweet Cherries" Horticulturae 10, no. 11: 1230. https://doi.org/10.3390/horticulturae10111230
APA StyleSharifi, M., Wolk, W., Asefpour Vakilian, K., Xu, H., Slamka, S., & Fong, K. (2024). Integrating Soil, Leaf, Fruitlet, and Fruit Nutrients, Along with Fruit Quality, to Predict Post-Storage Quality of Staccato Sweet Cherries. Horticulturae, 10(11), 1230. https://doi.org/10.3390/horticulturae10111230