Intergeneric Transfer of Simple Sequence Repeat Molecular Markers for the Study of Chaenomeles as Fruit Crop Breeding Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Isolation of Genomic DNA
2.2. SSR Genotyping
2.3. Statistical Analysis
3. Results
3.1. Transfer and Application of Malus-Developed SSR Markers in Chaenomeles
3.2. Determining the Genetic Structure of Chaenomeles Germplasm
3.3. Selection of the Lowest Number of Primers Needed for the Discrimination of All Chaenomeles Genotypes
4. Discussion
5. Conclusions
- Overall, the study shows that the 25 adapted Malus SSR markers are suitable for the genetic characterization of Chaenomeles plant material, with the possibility of using a small set of 6 markers for initial screening and then increasing the number of markers to achieve more precise data on the genetic structure and diversity of the chosen germplasm.
- The set of adapted SSR markers effectively distinguishes between Chaenomeles species and confirms the results previously obtained with other molecular markers that C. japonica is genetically closer to C. speciosa and interspecies crosses C. × superba and C. × californica than C. cathayensis. Compared to previously used ones, SSR markers provide high stability and repeatability and are suitable for large-scale genetic research of germplasm or breeding material and for assessing species composition.
- There are few studies on using SSR markers on Chaenomeles cultivars and species; thus, the study sets up the groundwork for further work in the field, which could include not only assessing the genetic diversity of Chaenomeles, but also screening for valuable traits for breeding. Given the limited level of genetic research on Chaenomeles, an additional set of markers will undoubtedly be valuable for the further development of this crop.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, J.; Wang, Y.; Liu, Y.; Xu, C.; Yuan, Q.; Guo, L.; Huang, L. Evolutionary and Phylogenetic Aspects of the Chloroplast Genome of Chaenomeles Species. Sci. Rep. 2020, 10, 11466. [Google Scholar] [CrossRef] [PubMed]
- Rumpunen, K.; Kviklys, D.; Kaufmane, E.; Garkava, L. Breeding Chaenomeles—A New Aromatic Fruit Crop. Acta Hortic. 1998, 484, 211–216. [Google Scholar] [CrossRef]
- Bartish, I.V.; Garkava, L.P.; Rumpunen, K.; Nybom, H. Phylogenetic Relationships and Differentiation among and within Populations of Chaenomeles Lindl. (Rosaceae) Estimated with RAPDs and Isozymes. Theor. Appl. Genet. 2000, 101, 554–563. [Google Scholar] [CrossRef]
- Kaufmane, E.; Ruisa, S. Breeding of New Cultivars of the Fruit Crop Japanese Quince (Chaenomeles japonica) in Latvia. Acta Hortic. 2020, 1281, 51–57. [Google Scholar] [CrossRef]
- Rumpunen, K.; Trajkovski, V.; Bartish, I.; Garkava, L.; Nybom, H.; Laencina, J.; Ros, J.M.; Jordan, M.J.; Hellin, P.; Tigerstedt, P.M.A.; et al. Domestication of Japanese Quince (Chaenomeles japonica). Acta Hortic. 2000, 538, 345–348. [Google Scholar] [CrossRef]
- Hellína, P.; Vilaa, R.; Jordána, M.J.; Laencinaa, J.; Rumpunen, K.; Rosa, J.M. Characteristics and Composition of Chaenomeles Fruit Juice. In Japanese Quince—Potential Fruit Crop for Northern Europe; Rumpunen, K., Ed.; Department of Crop Science, Swedish University of Agricultural Sciences: Uppsala, Sweden, 2003; pp. 141–148. ISBN 91-631-3765-8. [Google Scholar]
- Urbanavičiūte, I.; Liaudanskas, M.; Bobinas, Č.; Šarkinas, A.; Rezgiene, A.; Viskelis, P. Japanese Quince (Chaenomeles japonica) as a Potential Source of Phenols: Optimization of the Extraction Parameters and Assessment of Antiradical and Antimicrobial Activities. Foods 2020, 9, 1132. [Google Scholar] [CrossRef]
- Krasnova, I.; Ruisa, S.; Segliņa, D. Investigations of the Biochemical Composition of Chaenomeles japonica Fruits. Cheminė Technol. 2007, 4, 16–20. [Google Scholar]
- Rubinskienė, M.; Viškelis, P.; Viškelis, J.; Bobinaitė, R.; Shalkevich, M.; Pigul, M.; Urbonavičienė, D. Biochemical Composition and Antioxidant Activity of Japanese Quince (Chaenomeles japonica) Fruit, Their Syrup and Candied Fruit Slices. Sonininkysté Ir Daržininkysté 2014, 33, 45–52. [Google Scholar]
- Czubinski, J.; Ruško, J.; Górnaś, P. Japanese Quince Seeds as a Promising Rich Source of Proteins and Essential Amino Acids. Plant Foods Hum. Nutr. 2021, 76, 533–535. [Google Scholar] [CrossRef]
- Granados, M.V.; Vila, R.; Laencina, J.; Rumpunen, K.; Ros, J.M. Characteristics and Composition of Chaenomeles Seed Oil. In Japanese Quince—Potential Fruit Crop for Northern Europe; Rumpunen, K., Ed.; Department of Crop Science, Swedish University of Agricultural Sciences: Uppsala, Sweden, 2003; pp. 127–139. [Google Scholar]
- Górnaś, P.; Siger, A.; Segliņa, D. Physicochemical Characteristics of the Cold-Pressed Japanese Quince Seed Oil: New Promising Unconventional Bio-Oil from by-Products for the Pharmaceutical and Cosmetic Industry. Ind. Crops Prod. 2013, 48, 178–182. [Google Scholar] [CrossRef]
- Rumpunen, K.; Kviklys, D.; Kauppinen, S.; Ruisa, S.; Tigerstedt, P.M.A. Breeding Strategies for the Fruit Crop Japanese Quince (Chaenomeles japonica). In Japanese Quince—Potential Fruit Crop for Northern Europe; Rumpunen, K., Ed.; Department of Crop Science, Swedish University of Agricultural Sciences: Uppsala, Sweden, 2003; pp. 59–80. [Google Scholar]
- Kaufmane, E.; Segliņa, D.; Górnaś, P. Japanese Quince (Chaenomeles japonica)—From Field via Lab to Table: The Role of “Green Technologies”. In Latvian Academy of Science-Yearbook 2021; Spārītis, O., Ed.; Zinātne Ltd.: Rīga, Latvia, 2022; pp. 119–121. ISBN 9789934599132. [Google Scholar]
- Amiteye, S. Basic Concepts and Methodologies of DNA Marker Systems in Plant Molecular Breeding. Heliyon 2021, 7, e08093. [Google Scholar] [CrossRef] [PubMed]
- Bartish, I.V.; Rumpunen, K.; Nybom, H. Genetic Diversity in Chaenomeles (Rosaceae) Revealed by RAPD Analysis. Plant Syst. Evol. 1999, 214, 131–145. [Google Scholar] [CrossRef]
- Bartish, I.V.; Rumpunen, K.; Nybom, H. Combined Analyses of RAPDs, CpDNA and Morphology Demonstrate Spontaneous Hybridization in the Plant Genus Chaenomeles. Heredity 2000, 85, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, Y.; Nagaho, I.; Bang, S.W.; Matsuzawa, Y. Classification of Flowering Quince Cultivars (Genus Chaenomeles) Using Random Amplified Polymorphic DNA Markers. Breed Sci. 2000, 50, 139–142. [Google Scholar] [CrossRef]
- Zang, D.K.; Chen, H.; Zheng, L.; Guo, X.F. Analysis on the Phylogenetic Relationship of Elite Cultivars in Chaenomeles Using AFLP. Sci. Silvae Sin. 2009, 45, 39–43. [Google Scholar]
- He, J.; Fan, J.; Li, S.; Huang, B.; Ban, X.; Wang, Y. Genetic Variability of Cultivated Chaenomeles speciosa (Sweet) Nakai Based on AFLP Analysis. Biochem. Syst. Ecol. 2014, 57, 445–450. [Google Scholar] [CrossRef]
- Garkava, L.P.; Rumpunen, K.; Bartish, I.V. Genetic Relationships in Chaenomeles (Rosaceae) Revealed by Isozyme Analysis. Sci. Hortic. 2000, 85, 21–35. [Google Scholar] [CrossRef]
- Dar, A.A.; Mahajan, R.; Sharma, S. Molecular Markers for Characterization and Conservation of Plant Genetic Resources. Indian J. Agric. Sci. 2019, 89, 1755–1763. [Google Scholar] [CrossRef]
- Shao, W.; Huang, S.; Zhang, Y.; Jiang, J.; Li, H. Comparative Transcriptomics Provides a Strategy for Phylogenetic Analysis and SSR Marker Development in Chaenomeles. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef]
- Yamamoto, T.; Kimura, T.; Sawamura, Y.; Kotobuki, K.; Ban, Y.; Hayashi, T.; Matsuta, N. SSRs Isolated from Apple Can Identify Polymorphism and Genetic Diversity in Pear. Theor. Appl. Genet. 2001, 102, 865–870. [Google Scholar] [CrossRef]
- Yamamoto, T.; Kimura, T.; Soejima, J.; Sanada, T.; Ban, Y.; Hayashi, T. Identification of Quince Varieties Using SSR Markers Developed from Pear and Apple. Breed Sci. 2004, 54, 239–244. [Google Scholar] [CrossRef]
- Khoramdel Azad, M.; Nasiri, J.; Abdollahi, H. Genetic Diversity of Selected Iranian Quinces Using SSRs from Apples and Pears. Biochem. Genet. 2013, 51, 426–442. [Google Scholar] [CrossRef] [PubMed]
- Vanwynsberghe, L.; Decq, L.; Keulemans, J. Transferability of Malus × domestica Microsatellite Markers to Other Species and Genera of the Maloideae Subfamily. Acta Hortic. 2009, 839, 567–574. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Qi, H.; Guo, Q.M.; Sun, Z.Y.; Zhou, F.Q.; Li, S.B. Analysis of Genetic Diversity in Chaenomeles Using Apple EST-SSRs. Biotechnol. Bull. 2016, 32, 93–98. [Google Scholar]
- Wang, Y.; Huang, Z.; Ma, W.; Liu, J.; Tian, L.; Zhou, Y.; Shang, F.; Guo, P. Comparative Pollen Morphology of the Genus Chaenomeles Lindl. (Rosaceae): Diagnostic Features and Implications for Taxonomy. Diversity 2023, 15, 960. [Google Scholar] [CrossRef]
- Campbell, C.S.; Donoghue, M.J.; Baldwin, B.G.; Wojciechowski, M.F. Phylogenetic Relationships in Maloideae (Rosaceae): Evidence from Sequences of the Internal Transcribed Spacers of Nuclear Ribosomal DNA and Its Congruence with Morphology. Am. J. Bot. 1995, 82, 903–918. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, D.; Qiao, P.; Wang, Y.; Wu, P.; Wang, K.; Guo, L.; Huang, L.; Zhou, S. Phylogeny of Genera in Maleae (Rosaceae) Based on Chloroplast Genome Analysis. Front. Plant Sci. 2024, 15, 1367645. [Google Scholar] [CrossRef]
- Hokanson, S.C.; Szewc-McFadden, A.K.; Lamboy, W.F.; McFerson, J.R. Microsatellite (SSR) Markers Reveal Genetic Identities, Genetic Diversity and Relationships in a Malus × domestica Borkh. Core Subset Collection. Theor. Appl. Genet. 1998, 97, 671–683. [Google Scholar] [CrossRef]
- Liebhard, R.; Gianfranceschi, L.; Koller, B.; Ryder, C.D.; Tarchini, R.; van de Weg, E.; Gessler, C. Development and Characterisation of 140 New Microsatellites in Apple (Malus × domestica Borkh.). Mol. Breed. 2002, 10, 217–241. [Google Scholar] [CrossRef]
- Vinatzer, B.A.; Patocchi, A.; Tartarini, S.; Gianfranceschi, L.; Sansavini, S.; Gessler, C. Isolation of Two Microsatellite Markers from BAC Clones of the Vf Scab Resistance Region and Molecular Characterization of Scab-Resistant Accessions in Malus Germplasm. Plant Breed. 2004, 123, 321–326. [Google Scholar] [CrossRef]
- Smouse, R.P.P.; Peakall, R. GenAlEx 6.5: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research—An Update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar]
- Falush, D.; Stephens, M.; Pritchard, J.K. Inference of Population Structure Using Multilocus Genotype Data: Linked Loci and Correlated Allele Frequencies. Genetics 2003, 164, 1567–1587. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of Population Structure Using Multilocus Genotype Data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the Number of Clusters of Individuals Using the Software STRUCTURE: A Simulation Study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef]
- Jakobsson, M.; Rosenberg, N.A. CLUMPP: A Cluster Matching and Permutation Program for Dealing with Label Switching and Multimodality in Analysis of Population Structure. Bioinformatics 2007, 23, 1801–1806. [Google Scholar] [CrossRef]
- Ramasamy, R.K.; Ramasamy, S.; Bindroo, B.B.; Naik, V.G. STRUCTURE PLOT: A Program for Drawing Elegant STRUCTURE Bar Plots in User Friendly Interface. Springerplus 2014, 3, 1–3. [Google Scholar] [CrossRef]
- Caroli, S.; Santoni, S.; Ronfort, J. AMaCAID: A Useful Tool for Accurate Marker Choice for Accession Identification and Discrimination. Mol. Ecol. Resour. 2011, 11, 733–738. [Google Scholar] [CrossRef]
- Moskalets, T.Z.; Moskalets, V.V.; Vovkohon, A.H.; Shevchuk, O.A.; Matviichuk, O.A. Modern Breeding and Cultivation of Unpopular Fruits and Berries in Ukraine. Ukr. J. Ecol. 2019, 3, 180–188. [Google Scholar]
- Ruisa, S. Breeding of Japanese Quince (Chaenomeles japonica) and Evaluation of the Promising Genotypes for Fruit Production. Proc. Latv. Acad. Sci. 1995, 110, 5–6. [Google Scholar]
- Kauppinen, S.; Kviklys, D.; Rumpunen, K.; Stanys, V.; Svensson, M. Propagation of Japanese Quince (Chaenomeles japonica) Plants; Department of Crop Science, Swedish University of Agricultural Sciences: Uppsala, Sweden, 2003; pp. 81–92. ISBN 91-631-3765-8. [Google Scholar]
- Patzak, J.; Paprštein, F.; Henychová, A.; Sedlák, J. Comparison of Genetic Diversity Structure Analyses of SSR Molecular Marker Data within Apple (Malus × domestica) Genetic Resources. Genome/Natl. Res. Counc. Can. = Génome/Cons. Natl. De Rech. Can. 2012, 55, 647–665. [Google Scholar] [CrossRef]
- Garkava-Gustavsson, L.; Mujaju, C.; Sehic, J.; Zborowska, A.; Backes, G.M.; Hietaranta, T.; Antonius, K. Genetic Diversity in Swedish and Finnish Heirloom Apple Cultivars Revealed with SSR Markers. Sci. Hortic. 2013, 162, 43–48. [Google Scholar] [CrossRef]
- Urrestarazu, J.; Miranda, C.; Santesteban, L.G.; Royo, J.B. Genetic Diversity and Structure of Local Apple Cultivars from Northeastern Spain Assessed by Microsatellite Markers. Tree Genet Genomes 2012, 8, 1163–1180. [Google Scholar] [CrossRef]
- Larsen, B.; Toldam-Andersen, T.B.; Pedersen, C.; Ørgaard, M. Unravelling Genetic Diversity and Cultivar Parentage in the Danish Apple Gene Bank Collection. Tree Genet Genomes 2017, 13, 1–12. [Google Scholar] [CrossRef]
- Potts, S.M.; Han, Y.; Khan, M.A.; Kushad, M.M.; Rayburn, A.L.; Korban, S.S. Genetic Diversity and Characterization of a Core Collection of Malus Germplasm Using Simple Sequence Repeats (SSRs). Plant Mol. Biol. Rep. 2012, 30, 827–837. [Google Scholar] [CrossRef]
- Khachtib, Y.; Zinelabidine, L.H.; Bouda, S.; Hamdali, H.; Hammada, S.; Haddioui, A. Genetic Characterization of Cultivated Apple (Malus × domestica Borkh.) in Morocco Using Microsatellite (SSR) Markers. Ecol. Genet. Genom. 2022, 23, 100122. [Google Scholar] [CrossRef]
- Miteca, H.; Castro, M.H.; Meneses, M.; Prat, L.; Muñoz, C.; Hinrichsen, P. Validation of a Minimal Panel of Microsatellite Markers for Blueberry Cultivar Identification and Frequency of Spontaneous Mutations. Chil. J. Agric. Res. 2024, 84, 28–42. [Google Scholar] [CrossRef]
- Kaufmane, E.; Rumpunen, K. Pollination, Pollen Tube Growth and Fertilization in Chaenomeles japonica (Japanese Quince). Sci. Hortic. 2002, 94, 257–271. [Google Scholar] [CrossRef]
- Kaufmane, E.; Ruisa, S.; Karklina, K. The Effects of Pollinizers, Pollen and Pistil Quality, and Fruit Set of Japanese Quince (Chaenomeles japonica) Cultivars and Perspective Hybrids. In Proceedings of the Acta Horticulturae; International Society for Horticultural Science: Leuven, Belgium, 2023; pp. 621–627. [Google Scholar]
Sample No. | Sample Name | Species | Source |
---|---|---|---|
cd 087 | Abava | C. japonica | Cultivar bred by A. Tīcs in Pūre, Latvia (started in 1951). |
cd 067 | Ada | C. japonica | |
cd 084 | Agra | C. japonica | |
cd 068 | Alfa | C. japonica | |
cd 085 | Anta | C. japonica | |
cd 092 | Arta | C. japonica | |
cd 086 | Tīca 45 | C. japonica | |
cd 072 | 4-6 | C. japonica | Plant material bred as open-pollinated hybrids by S. Ruisa at the LatHort in the 1980s, using plant material sourced from the best seedlings gathered from Latvian commercial orchards, as well as plant material developed by breeder P. Sukatnieks. Cultivar ‘Rasa’ is registered in Latvia. |
cd 070 | 4-22 | C. japonica | |
cd 071 | 7-25 | C. japonica | |
cd 078 | 8-139 | C. japonica | |
cd 073 | 9-11 | C. japonica | |
cd 075 | 9-44 | C. japonica | |
cd 079 | 10-17 | C. japonica | |
cd 081 | 11-45 | C. japonica | |
cd 074 | 17-20 | C. japonica | |
cd 076 | 19-94 | C. japonica | |
cd 077 | 19-4 | C. japonica | |
cd 080 | 19-94 | C. japonica | |
cd 093 | Dobeles 2-29 | C. japonica | |
cd 100 | Rasa (Clone 1) | C. japonica | |
cd 103 | Rasa (Clone 2) | C. japonica | |
cd 096 | Rasa (Clone 3) | C. japonica | |
cd 088 | Rasa (Clone 4) | C. japonica | |
cd 115 | C9 | C. japonica | Plant material bred during common Latvian–Swedish–Lithuanian breeding program (1992–2002). Cultivars ‘Darius’ and ‘Rondo’ are registered in Latvia. |
cd 083 | C10 | C. japonica | |
cd 066 | C12 | C. japonica | |
cd 082 | C13 | C. japonica | |
cd 062 | C16 | C. japonica | |
cd 063 | C19 | C. japonica | |
cd 064 | C20 | C. japonica | |
cd 069 | C26 | C. japonica | |
cd 065 | C27 | C. japonica | |
cd 099 | Darius (Clone 1) | C. japonica | |
cd 102 | Darius (Clone 2) | C. japonica | |
cd 097 | Darius (Clone 3) | C. japonica | |
cd 098 | Rondo (Clone 1) | C. japonica | |
cd 101 | Rondo (Clone 2) | C. japonica | |
cd 095 | Rondo (Clone 3) | C. japonica | |
cd 114 | SR1-1 | C. japonica | Plant material was bred as open-pollinated hybrids by S. Ruisa at the LatHort and selected in 2017–2023, using plant material sourced from the best seedlings gathered from Latvian commercial orchards, as well as plant material developed during common Latvian–Swedish–Lithuanian breeding program. |
cd 108 | SR1-1a | C. japonica | |
cd 107 | SR1-2 | C. japonica | |
cd 104 | SR1-3 | C. japonica | |
cd 112 | SR1-4 | C. japonica | |
cd 105 | SR1-4a | C. japonica | |
cd 110 | SR1-5 | C. japonica | |
cd 109 | SR1-5a | C. japonica | |
cd 111 | SR1-6 | C. japonica | |
cd 106 | SR2-0 | C. japonica | |
cd 113 | SR2-9 | C. japonica | |
cd 116 | Brūvelis | C. japonica | Unknown origin genotypes from A. Brūvelis farm. |
cd 117 | Brūvelis B | C. japonica | |
cd 089 | R.Indrāna 1 | C. japonica | Unknown origin genotypes from R. Indrāns farm. |
cd 090 | R.Indrāna 2 | C. japonica | |
cd 094 | R.Indrāna 3 | C. japonica | |
cd 091 | R.Indrāna 4 | C. japonica | |
cd 119 | Brilliant | C. speciosa | Collected as a leaf sample from the National Botanic Garden (NBD), Latvia (https://nbd.gov.lv/en/, accessed on 10 September 2024). |
cd 120 | Scarlet | C. speciosa | |
cd 122 | C. californica | C. × californica | |
cd 118 | Chaenomeles superba | C. × superba | |
cd 121 | Pink Trail | C. × superba | |
cd 123 | Vermillion | C. × superba | |
cd 124 | Crimson and Gold | C. × superba | |
cd 125 | Stanford Red | C. × superba | |
cd126 | Sample #1 | C. cathayensis | Received as a seed sample from the University Botanical Garden of Strasbourg, France (http://jardin-botanique.unistra.fr/, accessed on 10 September 2024). |
cd127 | Sample #2 | C. cathayensis | |
cd128 | Sample #3 | C. cathayensis | |
cd129 | Sample #4 | C. cathayensis | |
cd130 | Sample #5 | C. cathayensis | |
cd131 | Sample #6 | C. cathayensis | |
cd132 | Sample #7 | C. cathayensis | |
cd133 | Sample #8 | C. cathayensis | |
cd134 | Sample #9 | C. cathayensis | |
cd135 | Sample #10 | C. cathayensis |
Locus | Annealing Temperature, °C | Locus Characteristics * | ||||||
---|---|---|---|---|---|---|---|---|
Na | Ne | I | Ho | He | F | Allele Range, bp | ||
CH01a09 | 54 | 9 | 3.977 | 1.712 | 0.500 | 0.749 | 0.332 | 183–223 |
CH01d03 | 54 | 7 | 1.585 | 0.754 | 0.122 | 0.369 | 0.670 | 108–140 |
CH03d01 | 54 | 7 | 3.514 | 1.485 | 0.541 | 0.715 | 0.244 | 119–167 |
CH05e03 | 54 | 13 | 6.058 | 2.022 | 0.676 | 0.835 | 0.191 | 161–202 |
CH-Vf1 | 54 | 16 | 7.275 | 2.254 | 0.726 | 0.863 | 0.158 | 170–218 |
CH01d09 | 54 | 12 | 3.688 | 1.733 | 0.583 | 0.729 | 0.200 | 142–168 |
CH03d10 | 56 | 7 | 2.978 | 1.420 | 0.581 | 0.664 | 0.125 | 220–234 |
CH01f03b | 56 | 11 | 4.348 | 1.702 | 0.676 | 0.770 | 0.122 | 113–136 |
CH04f06 | 56 | 11 | 3.873 | 1.702 | 0.635 | 0.742 | 0.144 | 107–158 |
CH01F02 | 54 | 11 | 4.751 | 1.847 | 0.563 | 0.790 | 0.286 | 183–205 |
CH01h02 | 56 | 6 | 3.289 | 1.368 | 0.181 | 0.696 | 0.741 | 88–136 |
CH01g05 | 58 | 11 | 6.088 | 2.013 | 0.784 | 0.836 | 0.062 | 84–106 |
CH02c02b | 54 | 11 | 3.885 | 1.649 | 0.554 | 0.743 | 0.254 | 96–108 |
CH02g01 | 54 | 10 | 3.841 | 1.612 | 0.592 | 0.740 | 0.200 | 161–192 |
CH02a03 | 54 | 4 | 2.129 | 0.915 | 0.473 | 0.530 | 0.108 | 123–151 |
CH03b10 | 54 | 6 | 1.899 | 1.012 | 0.486 | 0.473 | −0.028 | 168–196 |
CH03b06 | 54 | 12 | 5.012 | 1.868 | 0.703 | 0.800 | 0.122 | 152–172 |
CH03g06 | 54 | 13 | 5.394 | 2.010 | 0.338 | 0.815 | 0.585 | 106–118 |
CH04g07 | 54 | 10 | 4.817 | 1.807 | 0.250 | 0.792 | 0.684 | 91–153 |
CH05h05 | 54 | 6 | 3.347 | 1.463 | 0.662 | 0.701 | 0.056 | 92–162 |
CH05c06 | 54 | 11 | 6.301 | 1.998 | 0.592 | 0.841 | 0.297 | 135–174 |
CH05d03 | 54 | 7 | 3.258 | 1.380 | 0.437 | 0.693 | 0.370 | 156–192 |
CH05a02_a | 54 | 5 | 3.877 | 1.442 | 0.699 | 0.742 | 0.059 | 173–229 |
CH05g11 | 54 | 11 | 2.738 | 1.292 | 0.973 | 0.635 | −0.533 | 137–161 |
CH05g07 | 54 | 16 | 7.274 | 2.209 | 0.739 | 0.863 | 0.143 | 125–157 |
Average: | 9.72 | 4.208 | 1.627 | 0.563 | 0.725 | 0.224 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lācis, G.; Kārkliņa, K.; Bartulsons, T.; Kaufmane, E. Intergeneric Transfer of Simple Sequence Repeat Molecular Markers for the Study of Chaenomeles as Fruit Crop Breeding Material. Horticulturae 2024, 10, 1233. https://doi.org/10.3390/horticulturae10111233
Lācis G, Kārkliņa K, Bartulsons T, Kaufmane E. Intergeneric Transfer of Simple Sequence Repeat Molecular Markers for the Study of Chaenomeles as Fruit Crop Breeding Material. Horticulturae. 2024; 10(11):1233. https://doi.org/10.3390/horticulturae10111233
Chicago/Turabian StyleLācis, Gunārs, Katrīna Kārkliņa, Toms Bartulsons, and Edīte Kaufmane. 2024. "Intergeneric Transfer of Simple Sequence Repeat Molecular Markers for the Study of Chaenomeles as Fruit Crop Breeding Material" Horticulturae 10, no. 11: 1233. https://doi.org/10.3390/horticulturae10111233
APA StyleLācis, G., Kārkliņa, K., Bartulsons, T., & Kaufmane, E. (2024). Intergeneric Transfer of Simple Sequence Repeat Molecular Markers for the Study of Chaenomeles as Fruit Crop Breeding Material. Horticulturae, 10(11), 1233. https://doi.org/10.3390/horticulturae10111233