Enhancing Fruit Retention and Juice Quality in ‘Kinnow’ (Citrus reticulata) Through the Combined Foliar Application of Potassium, Zinc, and Plant Growth Regulators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Multi-Location Experimental Sites and Soil Physio-Chemical Attributes
2.2. Treatments
2.3. Growth and Yield Data Collection
2.4. Juice Quality and Chemical Analysis
2.5. Statistical Analysis
3. Results
3.1. Kinnow Fruit Quantity and Quality Analyses
3.2. Juice Quality Analyses
3.3. Fruit Juice Nutrient Contents
3.4. Principal Component Analysis
3.5. GGE Biplot Analysis
3.6. GGE Biplot (Which-Won-Where
3.7. Multi-Trait Genotype-Ideotype Index (MGIDI)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaur, H.; Singh, G. Recent trends in Citrus (Citrus spp.) peel utilization: A review. Plant Archives (09725210) 2021, 21, 88–97. [Google Scholar] [CrossRef]
- Cheema, I.A.; Jamali, H.K. Growth of citrus fruits in Pakistan. Amazon. Investig. 2020, 9, 74–81. [Google Scholar] [CrossRef]
- Zeng, L.; Li, P.; Yu, Z.; Nie, Y.; Li, S.; Gao, G.; Huang, D. Spatiotemporal characteristics and influencing factors of water resources’ green utilization efficiency in China: Based on the EBM model with undesirable outputs and SDM model. Water 2022, 14, 2908. [Google Scholar] [CrossRef]
- Nawaz, R.; Nadeem, M.; Abbas, T.; Shah, A.A. Mineral Characterization, fruit and leaf physiology of Citrus reticulata comparative to citrus canker stress in Sargodha, Punjab. 2024. Available online: https://assets-eu.researchsquare.com/files/rs-3912569/v1/8b6a1144-4f1b-49c8-b5a9-0024028d810a.pdf?c=1715722163 (accessed on 20 November 2024).
- Kalcsits, L.; Lotze, E.; Tagliavini, M.; Hannam, K.D.; Mimmo, T.; Neilsen, D.; Neilsen, G.; Atkinson, D.; Casagrande Biasuz, E.; Borruso, L. Recent achievements and new research opportunities for optimizing macronutrient availability, acquisition, and distribution for perennial fruit crops. Agronomy 2020, 10, 1738. [Google Scholar] [CrossRef]
- Anwar, S.; Ashraf, M.Y.; Saleem, M.; Shafiq, F.; Khan, N.; Khan, R.A.; Farid, G.; Ashraf, M. Integrated hormonal and nutrient management promote fruit retention and quality traits of Citrus reticulata. J. Plant Nutr. 2022, 46, 83–100. [Google Scholar] [CrossRef]
- Gosai, S.; Adhikari, S.; Khanal, S.; Poudel, P.B. Effects of plant growth regulators on growth, flowering, fruiting and fruit yield of cucumber (Cucumis sativus L.): A review. Arch. Agric. Environ. Sci. 2020, 5, 268–274. [Google Scholar] [CrossRef]
- Sardans, J.; Peñuelas, J. Potassium control of plant functions: Ecological and agricultural implications. Plants 2021, 10, 419. [Google Scholar] [CrossRef]
- Rahman, S.; Iqbal, M.; Husen, A. Medicinal plants and abiotic stress: An overview. In Medicinal Plants: Their Response Abiotic Stress; Springer: Singapore, 2023; pp. 1–34. [Google Scholar]
- Khan, A.S.; Ali, S.; Anwar, R.; Rehman, R.N.U. Preharvest Factors That Influence Postharvest Losses of Citrus Fruits. In Citrus Production; CRC Press: Boca Raton, FL, USA, 2022; pp. 319–343. [Google Scholar]
- Yang, H.; Fang, R.; Luo, L.; Yang, W.; Huang, Q.; Yang, C.; Hui, W.; Gong, W.; Wang, J. Uncovering the mechanisms of salicylic acid-mediated abiotic stress tolerance in horticultural crops. Front. Plant Sci. 2023, 14, 1226041. [Google Scholar] [CrossRef]
- Godoy, F.; Olivos-Hernández, K.; Stange, C.; Handford, M. Abiotic stress in crop species: Improving tolerance by applying plant metabolites. Plants 2021, 10, 186. [Google Scholar] [CrossRef]
- Nage, S.; Kulkarni, U.S.; Undirwade, D.B.; Meshram, N.M.; Sant, S. The species composition, richness and diversity studies of fruit flies captured from the orchard of Nagpur mandarin. Sci. Rep. 2023, 13, 21872. [Google Scholar] [CrossRef]
- Bacelar, E.; Pinto, T.; Anjos, R.; Morais, M.C.; Oliveira, I.; Vilela, A.; Cosme, F. Impacts of climate change and mitigation strategies for some abiotic and biotic constraints influencing fruit growth and quality. Plants 2024, 13, 1942. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.K.; Gurung, G.; Yadav, A.; Laha, R.; Mishra, V.K. Factors associated with citrus fruit abscission and management strategies developed so far: A review. New Zealand J. Crop Hortic. Sci. 2023, 51, 467–488. [Google Scholar] [CrossRef]
- Saini, R.K.; Ranjit, A.; Sharma, K.; Prasad, P.; Shang, X.; Gowda, K.G.M.; Keum, Y.-S. Bioactive compounds of citrus fruits: A review of composition and health benefits of carotenoids, flavonoids, limonoids, and terpenes. Antioxidants 2022, 11, 239. [Google Scholar] [CrossRef] [PubMed]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Department of Agriculture, Circular # 939: Washington DC, USA, 1954. [Google Scholar]
- Simard, R.R. Ammonium acetate-extractable elements. Soil Sampl. Methods Anal. 1993, 1, 39–42. [Google Scholar]
- Soltanpour, P.N.; Schwab, A.P. A new soil test for simultaneous extraction of macro-and micro-nutrients in alkaline soils. Commun. Soil Sci. Plant Anal. 1977, 8, 195–207. [Google Scholar] [CrossRef]
- Estefen, S.F.; Gurova, T.; Leontiev, A. Redistribution of the residual welding stresses. Mar. Syst. Ocean Technol. 2013, 8, 95–100. [Google Scholar] [CrossRef]
- Brewer, S.; Plotto, A.; Bai, J.; Crane, J.; Chambers, A. Evaluation of 21 papaya (Carica papaya L.) accessions in southern Florida for fruit quality, aroma, plant height, and yield components. Sci. Hortic. 2021, 288, 110387. [Google Scholar] [CrossRef]
- Shani, M.Y.; Ahmed, S.R.; Ashraf, M.Y.; Khan, Z.; Cocozza, C.; De Mastro, F.; Gul, N.; Pervaiz, S.; Abbas, S.; Nawaz, H. Nano-Biochar Suspension Mediated Alterations in Yield and Juice Quality of Kinnow (Citrus reticulata L.). Horticulturae 2023, 9, 521. [Google Scholar] [CrossRef]
- Ashraf, M.Y.; Yaqub, M.; Akhtar, J.; Khan, M.A.; Ali-Khan, M.; Ebert, G. Control of excessive fruit drop and improvement in yield and juice quality of Kinnow (Citrus deliciosa × Citrus nobilis) through nutrient management. Pak. J. Bot 2012, 44, 259–265. [Google Scholar]
- Yan, W.; Wu, H.X. Application of GGE biplot analysis to evaluate Genotype (G), Environment (E), and G × E interaction on Pinus radiata: A case study. New Zealand J. For. Sci. 2008, 38, 132–142. [Google Scholar]
- Sankar, S.M.; Singh, S.P.; Prakash, G.; Satyavathi, C.T.; Soumya, S.L.; Yadav, Y.; Sharma, L.D.; Rao, A.R.; Singh, N.; Srivastava, R.K. Deciphering genotype-by-environment interaction for target environmental delineation and identification of stable resistant sources against foliar blast disease of pearl millet. Front. Plant Sci. 2021, 12, 656158. [Google Scholar] [CrossRef] [PubMed]
- Ruswandi, D.; Syafii, M.; Maulana, H.; Ariyanti, M.; Indriani, N.P.; Yuwariah, Y. GGE biplot analysis for stability and adaptability of maize hybrids in western region of Indonesia. Int. J. Agron. 2021, 2021, 2166022. [Google Scholar] [CrossRef]
- Chen, L.; Jiang, Y.; Liang, C.; Luo, Y.; Xu, Q.; Han, C.; Zhao, Q.; Sun, B. Competitive interaction with keystone taxa induced negative priming under biochar amendments. Microbiome 2019, 7, 77. [Google Scholar] [CrossRef] [PubMed]
- Rohoma Tahir, M.A.; Bilal, H.M.; Saeed, M.S. Impact of foliar application of Zn on growth yield and quality production of citrus: A review. Ind. J. Pure App. Biosci 2020, 8, 529–534. [Google Scholar] [CrossRef]
- Trejo, E.J.O.; Brizzolara, S.; Cardillo, V.; Ruperti, B.; Bonghi, C.; Tonutti, P. The impact of PGRs applied in the field on the postharvest behavior of fruit crops. Sci. Hortic. 2023, 318, 112103. [Google Scholar] [CrossRef]
- Vani, N.U.; Bhagwan, A.; Kumar, A.K.; Sreedhar, M.; Sharath, S.R. Effect of Pre-Harvest Sprays of Plant Growth Regulators and Micronutrients on Fruit Set, Fruit Drop and Fruit Retention of Guava (Psidium guajava L.) cv. Lucknow-49. Ind. J. Pure App. Biosci 2020, 8, 254–261. [Google Scholar] [CrossRef]
- Ferrara, G.; Palasciano, M.; Sarkhosh, A.; Cossio, F.; Babu, K.D.; Mazzeo, A. Orchard establishment and tree management. In The Pomegranate: Botany, Production and Uses; CAB International: Wallingford, UK, 2021; pp. 247–284. [Google Scholar]
- Al-Saif, A.M.; Ali, M.M.; Ben Hifaa, A.B.S.; Mosa, W.F.A. Influence of spraying some biostimulants on yield, fruit quality, oil fruit content and nutritional status of olive (Olea europaea L.) under salinity. Horticulturae 2023, 9, 825. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, V. Physiological disorders in perennial woody tropical and subtropical fruit crops: A review. Indian J. Agric. Sci. 2016, 86, 703–717. [Google Scholar] [CrossRef]
- Nagdeve, S.S.; Raut, M.M.; Balpande, S.S.; Dahale, M.H.; Dhale, R.B.; Dolaskar, U.B.; Manekar, M.R. Assessment of Leaf Nutrient and Fertility Norms for Sweet Orange Under Black Soil in Nagpur District, Maharashtra, India. Available online: https://discovery.researcher.life/article/assessment-of-leaf-nutrient-and-fertility-norms-for-sweet-orange-under-black-soil-in-nagpur-district-maharashtra-india/ca699557b4e33e4d957a266e743fcac2 (accessed on 20 November 2024).
- Ashraf, M.Y.; Ashraf, M.; Akhtar, M.; Mahmood, K.; Saleem, M. Improvement in yield, quality and reduction in fruit drop in kinnow (Citrus reticulata Blanco) by exogenous application of plant growth regulators, potassium and zinc. Pak. J. Bot 2013, 45, 433–440. [Google Scholar]
- Shah, S.H.; Islam, S.; Alamri, S.; Parrey, Z.A.; Mohammad, F.; Kalaji, H.M. Plant growth regulators mediated changes in the growth, photosynthesis, nutrient acquisition and productivity of mustard. Agriculture 2023, 13, 570. [Google Scholar] [CrossRef]
- Yao, H.-L.; Hu, X.-Z.; Li, S.-B.; Wang, H.-T.; Bai, X.-B.; Yang, C. Improvement in Tensile Strength of Mg Alloy After Immersion in SBF by Cold-Sprayed Zn Coating. J. Therm. Spray Technol. 2024, 33, 869–881. [Google Scholar] [CrossRef]
- Majeed, A.; Rashid, I.; Niaz, A.; Ditta, A.; Sameen, A.; Al-Huqail, A.A.; Siddiqui, M.H. Balanced use of zn, Cu, fe, and b improves the yield and sucrose contents of sugarcane juice cultivated in sandy clay loam soil. Agronomy 2022, 12, 696. [Google Scholar] [CrossRef]
- Jain, R.; Singh, A.; Giri, P.; Singh, S.P.; Chandra, A. The impact of sequential application of PGR and PGR+ nutrient combination on growth, physiological and yield attributes of sugarcane. Plant Archives (09725210) 2024, 24, 17–28. [Google Scholar] [CrossRef]
- Mosa, W.F.A.; Sas-Paszt, L.; Gornik, K.; Ali, H.M.; Salem, M.Z.M. Vegetative growth, yield, and fruit quality of guava (Psidium guajava L.) cv. maamoura as affected by some biostimulants. Bioresources 2021, 16, 7379. [Google Scholar] [CrossRef]
- Ali, I.; Abbasi, N.A.; Hafiz, I. Application of calcium chloride at different phenological stages alleviates chilling injury and delays climacteric ripening in peach fruit during low-temperature storage. Int. J. Fruit Sci. 2021, 21, 1040–1058. [Google Scholar] [CrossRef]
- Khalil, H.A.; El-Ansary, D.O.; Ahmed, Z.F.R. Mitigation of salinity stress on pomegranate (Punica granatum L. cv. Wonderful) plant using salicylic acid foliar spray. Horticulturae 2022, 8, 375. [Google Scholar] [CrossRef]
- Kaur, A.; Kaur, N.; Singh, H.; Murria, S.; Jawanda, S.K. Efficacy of plant growth regulators and mineral nutrients on fruit drop and quality attributes of plum cv. Satluj purple. Plant Physiol. Rep. 2021, 26, 541–547. [Google Scholar] [CrossRef]
- Hiteshbhai, R.; Johar, V.; Singh, V. Effect of plant growth regulators on fruit set and quality of kinnow mandarin (Citrus reticulata Blanco). Environ. Ecol. 2023, 41, 7–12. [Google Scholar]
- Moradinezhad, F.; Ranjbar, A. Foliar application of fertilizers and plant growth regulators on pomegranate fruit yield and quality: A review. J. Plant Nutr. 2024, 47, 797–821. [Google Scholar] [CrossRef]
- Hussein, A.S.; Ibrahim, R.A.; Eissa, M.A. Exogenous pre-harvest application of abscisic and jasmonic acids improves fruit quality by enhancing sugar synthesis and reducing acidity in pomegranate (Punica granatum L. cv. Wonderful). J. Soil Sci. Plant Nutr. 2023, 23, 2237–2246. [Google Scholar] [CrossRef]
- Wang, J.; Lu, Y.; Zhang, X.; Hu, W.; Lin, L.; Deng, Q.; Xia, H.; Liang, D.; Lv, X. Effects of Potassium-Containing Fertilizers on Sugar and Organic Acid Metabolism in Grape Fruits. Int. J. Mol. Sci. 2024, 25, 2828. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Zhao, C.; Shi, H.; Liao, Y.; Xu, F.; Du, H.; Xiao, H.; Zheng, J. Nutrients and bioactives in citrus fruits: Different citrus varieties, fruit parts, and growth stages. Crit. Rev. Food Sci. Nutr. 2023, 63, 2018–2041. [Google Scholar] [CrossRef] [PubMed]
- Yener, H.; Altuntaş, Ö. Effects of potassium fertilization on leaf nutrient content and quality attributes of sweet cherry fruits (Prunus avium L.). J. Plant Nutr. 2021, 44, 946–957. [Google Scholar] [CrossRef]
- Siddique, M.A.; Saqib, M.; Abbas, G.; Wahab, H.A.; Ahmad, N.; Khalid, M.; Akhtar, J. Foliar and soil-applied micronutrients improve yield and quality of Kinnow (Citrus reticulata Blanco). Pak. J. Agric. Sci. 2020, 57, 1539–1547. [Google Scholar]
- Kumar, A.; Singh, H.; Pathania, S. Potassium fertigation improved growth, yield and quality of kinnow mandarin in potassium rich soils. Commun. Soil Sci. Plant Anal. 2022, 53, 1767–1776. [Google Scholar] [CrossRef]
- Kumar, M.; Arya, R.K.; Kumar, M.; Gaur, R.K.; Sharma, S. Evaluation of Aonla Varieties Under Semi-Arid Conditions of Haryana. Ekin J. Crop Breed. Genet. 2021, 7, 139–144. [Google Scholar]
- Rahmati, S.; Azizi-Nezhad, R.; Pour-Aboughadareh, A.; Etminan, A.; Shooshtari, L. Analysis of Genotype-by-Environment Interaction Effect in Barely genotypes Using AMMI and GGE biplot methods. Heliyon 2024, 10, e38131. [Google Scholar] [CrossRef]
- Liaquat, M.; Ali, I.; Ahmad, S.; Malik, A.M.; Ashraf, H.M.Q.; Parveen, N.; Tareen, M.J.; Saeed, T.; Shah, S.H.; Zulfiqar, B. Efficiency of exogenous zinc sulfate application reduced fruit drop and improved antioxidant activity of ‘Kinnow’mandarin fruit. Braz. J. Biol. 2021, 83, e244593. [Google Scholar]
- Yüzügüllü, O.; Fajraoui, N.; Liebisch, F. Soil Texture and Ph Mapping Using Remote Sensing and Support Sampling. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 12685–12705. [Google Scholar] [CrossRef]
Parameters | Layyah | Faisalabad | Sargodha |
---|---|---|---|
Soil texture | Sandy-loam | Clay-loam | Clay-loam |
Soil saturation (%) | 26.25 | 37.50 | 37.00 |
ECe (dS m−1) | 1.74 | 0.93 | 1.85 |
pH | 8.42 | 7.84 | 7.94 |
Sodium adsorption ratio (mmol ½ L-1/2) | 1.98 | 0.96 | 2.02 |
Organic matter (%) | 0.15 | 0.18 | 0.25 |
NO3 –N (mg kg−1) | 19.00 | 18.90 | 17.50 |
Available phosphorus (mg kg−1) | 6.15 | 7.25 | 10.48 |
Sodium (mg kg−1) | 94.50 | 72.00 | 141.00 |
Calcium + Magnesium (meq kg−1) | 4.82 | 5.07 | 5.25 |
Zinc (mg kg−1) | 0.33 | 0.68 | 0.50 |
Potassium (mg kg−1) | 8.60 | 16.85 | 20.15 |
Carbonates (meq kg−1) | Nil | Nil | Nil |
Bicarbonates (meq kg−1) | 5.40 | 4.70 | 6.00 |
Irrigation water analysis | |||
EC (dS m−1) | 1.58 | 1.02 | 1.40 |
pH | 8.20 | 8.15 | 8.20 |
Residual sodium carbonate | 1.20 | 1.50 | 1.70 |
Sodium (mg L−1) | 78.0 | 54.0 | 75.0 |
Chloride (meq L−1) | 2.20 | 2.00 | 1.90 |
Potassium (mg L−1) | 9.00 | 7.00 | 10.0 |
Calcium + Magnesium (meq kg−1) | 4.20 | 3.00 | 3.50 |
Carbonates (meq kg−1) | Nil | Nil | Nil |
Bicarbonates (meq kg−1) | 5.40 | 4.50 | 5.20 |
SAR (meq L−1) | 2.34 | 1.92 | 2.47 |
CO | DF | FSI | PT | FD | FW | JV | pH | EC | TSS | CA | AA | TSS/Acid | N | P | K |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S | 2 | 0.27 *** | 71.67 *** | 2 *** | 29,578 *** | 897 *** | 0.026 ns | 1.6 *** | 29.9 *** | 0.1 *** | 1943.6 *** | 329.6 *** | 0.04 *** | 0.07 *** | 1.2 *** |
T | 8 | 0.01 *** | 2.4 *** | 451 ** | 9644 *** | 801 *** | 0.028 ns | 0.2 *** | 5.8 *** | 0.1 *** | 37.1 *** | 38.7 *** | 0.21 *** | 0.77 *** | 2.7 *** |
S × T | 16 | 0.002 *** | 0.41 *** | 19 *** | 1145 *** | 42.5 *** | 0.024 ns | 0.1 *** | 0.9 *** | 0.003 *** | 6.9 *** | 1.8 *** | 0.01 *** | 0.01 *** | 0.08 *** |
Error | 108 | 0.001 | 0.02 | 0.2 | 119.3 | 3.7 | 0.03 | 0.02 | 0.01 | 0.0002 | 0.2 | 0.06 | 0.001 | 0.001 | 0.005 |
Total | 134 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arshad, I.; Saleem, M.; Akhtar, M.; Shani, M.Y.; Farid, G.; Jarecki, W.; Ashraf, M.Y. Enhancing Fruit Retention and Juice Quality in ‘Kinnow’ (Citrus reticulata) Through the Combined Foliar Application of Potassium, Zinc, and Plant Growth Regulators. Horticulturae 2024, 10, 1245. https://doi.org/10.3390/horticulturae10121245
Arshad I, Saleem M, Akhtar M, Shani MY, Farid G, Jarecki W, Ashraf MY. Enhancing Fruit Retention and Juice Quality in ‘Kinnow’ (Citrus reticulata) Through the Combined Foliar Application of Potassium, Zinc, and Plant Growth Regulators. Horticulturae. 2024; 10(12):1245. https://doi.org/10.3390/horticulturae10121245
Chicago/Turabian StyleArshad, Iqra, Muhammad Saleem, Muhammad Akhtar, Muhammad Yousaf Shani, Ghulam Farid, Wacław Jarecki, and Muhammad Yasin Ashraf. 2024. "Enhancing Fruit Retention and Juice Quality in ‘Kinnow’ (Citrus reticulata) Through the Combined Foliar Application of Potassium, Zinc, and Plant Growth Regulators" Horticulturae 10, no. 12: 1245. https://doi.org/10.3390/horticulturae10121245
APA StyleArshad, I., Saleem, M., Akhtar, M., Shani, M. Y., Farid, G., Jarecki, W., & Ashraf, M. Y. (2024). Enhancing Fruit Retention and Juice Quality in ‘Kinnow’ (Citrus reticulata) Through the Combined Foliar Application of Potassium, Zinc, and Plant Growth Regulators. Horticulturae, 10(12), 1245. https://doi.org/10.3390/horticulturae10121245