Botanical Biometrics: Exploring Morphological, Palynological, and DNA Barcoding Variations in White Kwao Krua (Pueraria candollei Grah. ex Benth. and P. mirifica Airy Shaw & Suvat.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials Collection
2.2. Morphological Analyses
2.3. Palynological Analyses
2.4. Molecular Analyses Using DNA Barcoding Technique
2.4.1. DNA Isolation
2.4.2. DNA Amplification of Barcoding Regions and Sequencing
2.4.3. Bioinformation Analysis
3. Results
3.1. Morphological Analysis
3.1.1. Comparison of Morphological Characteristics of Pueraria candollei and P. mirifica
- 1a
- Inflorescence often greater than 30 cm long; stipule often not less than 9 mm; pod glabrous; seed abundant shagreen; hilum ellipsoid. (P. candollei);
- 1b
- Inflorescence often less than 30 cm long; stipule not more than 5 mm; pod hairy; seed sparsely shagreen; hilum oval. (P. mirifica).
3.1.2. Hierarchical Cluster Analysis (HCA) of Morphological Features of Two Botanical Origins of White Kwao Krua: P. candollei and P. mirifica
3.2. Palynological Characters of Pollen Grains of P. candollei and P. mirifica
3.3. DNA Barcoding Analysis
3.3.1. DNA Sequencing Analysis of White Kwao Krua in ITS, matK, rbcL, and trnH-psbA
- Internal Transcribed Spacer sequencing
- 2.
- Maturase K (matK) sequencing
- 3.
- Ribulose-bisphosphate carboxylase gene (rbcL) sequencing
- 4.
- trnH-psbA intergenic spacer sequencing
3.3.2. Principal Coordinate Analysis (PCoA) and Phylogenetic Analysis of White Kwao Krua
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Niyomdham, C. Notes on Thai and Indo-Chinese Phaseoleae (Leguminosae-Papilionoideae). Nord. J. Bot. 1992, 12, 339–346. [Google Scholar] [CrossRef]
- Kongkaew, C.; Scholfield, N.C.; Dhippayom, T.; Dilokthornsakul, P.; Saokaew, S.; Chaiyakunapruk, N. Efficacy and safety of Pueraria candollei var. mirifica (Airy Shaw & Suvat.) Niyomdham for menopausal women: A systematic review of clinical trials and the way forward. J. Ethnopharmacol. 2018, 216, 162–174. [Google Scholar] [PubMed]
- Intharuksa, A.; Kitamura, M.; Peerakam, N.; Charoensup, W.; Ando, H.; Sasaki, Y.; Sirisa-Ard, P. Evaluation of white Kwao Krua (Pueraria candollei Grah. ex Benth.) products sold in Thailand by molecular, chemical, and microscopic analyses. J. Nat. Med. 2020, 74, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Wiriyakarun, S.; Yodpetch, W.; Komatsu, K.; Zhu, S.; Ruangrungsi, N.; Sukrong, S. Discrimination of the Thai rejuvenating herbs Pueraria candollei (White Kwao Khruea), Butea superba (Red Kwao Khruea), and Mucuna collettii (Black Kwao Khruea) using PCR-RFLP. J. Nat. Med. 2013, 67, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Yusakul, G.; Togita, R.; Minami, K.; Chanpokapaiboon, K.; Juengwatanatrakul, T.; Putalun, W.; Tanaka, H.; Sakamoto, S.; Morimoto, S. An indirect competitive enzyme-linked immunosorbent assay toward the standardization of Pueraria candollei based on its unique isoflavonoid, kwakhurin. Fitoterapia 2019, 133, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Chuphol, N.; Nokkaew, N.; Makkliang, F.; Sae-Foo, W.; Phaisan, S.; Putalun, W.; Sakamoto, S.; Yusakul, G. Immunochromatographic assay for miroestrol and deoxymiroestrol, its cross-reactivity, and application in Pueraria mirifica (white Kwao Krua) analysis. Phytochem. Anal. 2023, 34, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Yagi, N.; Nakahashi, H.; Kobayashi, T.; Miyazawa, M. Characteristic chemical components of the essential oil from white kwao krua (Pueraria mirifica). J. Oleo Sci. 2013, 62, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Ratanachamnong, P.; Phivthong-Ngam, L.; Namchaiw, P. Daily White kwao krua dietary supplement alleviates LDL oxidative susceptibility, plasma LDL level and improves vasculature in a hypercholesterolemia rabbit model. J. Tradit. Complement. Med. 2020, 10, 496–503. [Google Scholar] [CrossRef]
- WFO. Pueraria mirifica Airy Shaw & Suvat. 2023. Available online: https://www.worldfloraonline.org/taxon/wfo-0000185099 (accessed on 25 October 2023).
- WFO. Pueraria candollei Wall. ex Benth. 2023. Available online: https://www.worldfloraonline.org/taxon/wfo-0000193845\ (accessed on 25 October 2023).
- Yusakul, G.; Putalun, W.; Udomsin, O.; Juengwatanatrakul, T.; Chaichantipyuth, C. Comparative analysis of the chemical constituents of two varieties of Pueraria candollei. Fitoterapia 2011, 82, 203–207. [Google Scholar] [CrossRef]
- Rani, D.; Kobtrakul, K.; Vimolmangkang, S. Pueraria candollei var. mirifica: A precious source of pharmaceuticals and cosmeceuticals:(TJPS-2020-0283). Thai J. Pharm. Sci. (TJPS) 2022, 46, 1–10. [Google Scholar]
- Udomsin, O.; Juengwatanatrakul, T.; Yusakul, G.; Putalun, W. Chromene stability: The most potent estrogenic compounds in white Kwao Krua (Pueraria candollei var mirifica) crude extract. J. Funct. Foods 2015, 19, 269–277. [Google Scholar] [CrossRef]
- Phaisan, S.; Yusakul, G.; Nuntawong, P.; Sakamoto, S.; Putalun, W.; Morimoto, S.; Tanaka, H. Immunochromatographic assay for the detection of kwakhurin and its application for the identification of Pueraria candollei var. mirifica (Airy Shaw & Suvat.) Niyomdham. Phytochem. Anal. 2021, 32, 503–511. [Google Scholar] [PubMed]
- Yusakul, G.; Udomsin, O.; Juengwatanatrakul, T.; Tanaka, H.; Chaichantipyuth, C.; Putalun, W. High performance enzyme-linked immunosorbent assay for determination of miroestrol, a potent phytoestrogen from Pueraria candollei. Anal. Chim. Acta 2013, 785, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Juengsanguanpornsuk, W.; Yusakul, G.; Kraithong, W.; Putalun, W. Simple preparation and analysis of a phytoestrogen-rich extract of Pueraria candollei var. mirifica and its in vitro estrogenic activity. J. Herb. Med. 2021, 29, 100463. [Google Scholar] [CrossRef]
- Sirisa-Ard, P.; Peerakam, N.; Huy, N.Q.; On, T.; Long, P.T.; Intharuksa, A. Development of anti-wrinkle cream from Pueraria candollei Var. Mirifica (airy shaw and suvat.) Niyomdham,“kwao krua kao” for menopausal women. Int. J. Pharm. Pharm. Sci. 2018, 10, 16–21. [Google Scholar] [CrossRef]
- Maruyama, T.; Kawamura, M.; Kikura-Hanajiri, R.; Goda, Y. Botanical origin of dietary supplements labeled as “kwao keur”, a folk medicine from Thailand. J. Nat. Med. 2014, 68, 220–224. [Google Scholar] [CrossRef]
- Alcántara-Ayala, O.; Oyama, K.; Ríos-Muñoz, C.A.; Rivas, G.; Ramirez-Barahona, S.; Luna-Vega, I. Morphological variation of leaf traits in the Ternstroemia lineata species complex (Ericales: Penthaphylacaceae) in response to geographic and climatic variation. PeerJ 2020, 8, e8307. [Google Scholar] [CrossRef] [PubMed]
- Albarrán-Lara, A.L.; Petit, R.J.; Kremer, A.; Caron, H.; Peñaloza-Ramírez, J.M.; Gugger, P.F.; Dávila-Aranda, P.D.; Oyama, K. Low genetic differentiation between two morphologically and ecologically distinct giant-leaved Mexican oaks. Plant Syst. Evol. 2019, 305, 89–101. [Google Scholar] [CrossRef]
- Korir, N.K.; Han, J.; Shangguan, L.; Wang, C.; Kayesh, E.; Zhang, Y.; Fang, J. Plant variety and cultivar identification: Advances and prospects. Crit. Rev. Biotechnol. 2013, 33, 111–125. [Google Scholar] [CrossRef]
- Akshatha, V.; Giridhar, P.; Ravishankar, G. Morphological diversity in Bixa orellana L. and variations in annatto pigment yield. J. Hortic. Sci. Biotechnol. 2011, 86, 319–324. [Google Scholar] [CrossRef]
- Nasrabadi, H.N.; Nemati, H.; Sobhani, A.; Sharifi, M. Study on morphologic variation of different Iranian melon cultivars (Cucumis melo L.). Afr. J. Agric. Res. 2012, 7, 2764–2769. [Google Scholar]
- Tembe, K.O.; Chemining’wa, G.; Ambuko, J.; Owino, W. Evaluation of African tomato landraces (Solanum lycopersicum) based on morphological and horticultural traits. Agric. Nat. Resour. 2018, 52, 536–542. [Google Scholar] [CrossRef]
- Prohens, J.; Blanca, J.M.; Nuez, F. Morphological and molecular variation in a collection of eggplants from a secondary center of diversity: Implications for conservation and breeding. J. Am. Soc. Hortic. Sci. 2005, 130, 54–63. [Google Scholar] [CrossRef]
- Bunmanop, S.; Sakuanrungsirikul, S.; Manakasem, Y. White Kwao Krua variety classification by botanical characteristics and ISSR-Touchdown PCR technique. Russ. J. Genet. 2011, 47, 819–828. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, J.; Van Haaften, M.; Li, L.; Lu, S.; Wen, W.; Zheng, X.; Pan, J.; Qian, T. Interactions between Diffuse Light and Cucumber (Cucumis sativus L.) Canopy Structure, Simulations of Light Interception in Virtual Canopies. Agronomy 2022, 12, 602. [Google Scholar] [CrossRef]
- Halbritter, H.; Ulrich, S.; Grímsson, F.; Weber, M.; Zetter, R.; Hesse, M.; Buchner, R.; Svojtka, M.; Frosch-Radivo, A.; Halbritter, H. Methods in palynology. In Illustrated Pollen Terminology; Springer: Berlin/Heidelberg, Germany, 2018; pp. 97–127. [Google Scholar]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT; Nucleic acids Symposium Series; Oxford University Press: Oxford, UK, 1999; pp. 95–98. [Google Scholar]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, Y.; Meinhardt, L.W.; Zhang, D.; Cao, B.; Song, L. Accurate cultivar authentication of jujube fruits using nano-fluidic genotyping of single nucleotide polymorphism (SNP) markers. Horticulturae 2022, 8, 792. [Google Scholar] [CrossRef]
- Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef]
- Keung, W.M. Pueraria: The Genus Pueraria; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Anukunwithaya, T.; Poo, P.; Hunsakunachai, N.; Rodsiri, R.; Malaivijitnond, S.; Khemawoot, P. Absolute oral bioavailability and disposition kinetics of puerarin in female rats. BMC Pharmacol. Toxicol. 2018, 19, 25. [Google Scholar] [CrossRef] [PubMed]
- Fritz, M.A.; Rosa, S.; Sicard, A. Mechanisms underlying the environmentally induced plasticity of leaf morphology. Front. Genet. 2018, 9, 478. [Google Scholar] [CrossRef]
- Suwanvijitr, T.; Kaewmuangmoon, J.; Cherdshewasart, W.; Chanchao, C. Morphometric and genetic variation in Pueraria mirifica cultivars across Thailand. Pak. J. Bot. 2010, 42, 97–109. [Google Scholar]
- Attar, F.; Esfandani-Bozchaloyi, S.; Mirtadzadini, M.; Ullah, F. Taxonomic identification in the tribe Cynoglosseae (Boraginaceae) using palynological characteristics. Flora 2018, 249, 97–110. [Google Scholar] [CrossRef]
- Yao, Q.; Liu, K.-B.; Rodrigues, E.; Fan, D.; Cohen, M. A palynological record of mangrove biogeography, coastal geomorphological change, and prehistoric human activities from Cedar Keys, Florida, USA. Sci. Total Environ. 2023, 859, 160189. [Google Scholar] [CrossRef] [PubMed]
- Bell, K.L.; Burgess, K.S.; Okamoto, K.C.; Aranda, R.; Brosi, B.J. Review and future prospects for DNA barcoding methods in forensic palynology. Forensic Sci. Int. Genet. 2016, 21, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Fazal, H.; Ahmad, N.; Haider Abbasi, B. Identification, characterization, and palynology of high-valued medicinal plants. Sci. World J. 2013, 2013, 283484. [Google Scholar] [CrossRef]
- Ahmad, F.; Hameed, M.; Ahmad, M.S.A. Taxonomic significance of palynological studies for identification of two morphologically similar Malva species. Microsc. Res. Tech. 2022, 85, 2826–2834. [Google Scholar] [CrossRef]
- Tungmunnithum, D.; Renouard, S.; Drouet, S.; Blondeau, J.-P.; Hano, C. A critical cross-species comparison of pollen from Nelumbo nucifera Gaertn. vs. Nymphaea lotus L. for authentication of Thai medicinal herbal tea. Plants 2020, 9, 921. [Google Scholar]
- Khan, A.; Ahmad, M.; Zafar, S.; Abbas, Q.; Arfan, M.; Zafar, M.; Sultana, S.; Ullah, S.A.; Khan, S.; Akhtar, A. Light and scanning electron microscopic observation of palynological characteristics in spineless Astragalus L. (Fabaceae) and its taxonomic significance. Microsc. Res. Tech. 2022, 85, 2409–2427. [Google Scholar] [CrossRef]
- Esposito, F.; Morgado, L.N.; Nunes, T.; Rego, C.; Fernandes, F.; Boieiro, M. Pollen morphology of the endemic genera of the Madeira archipelago, Portugal. Palynology 2023, 47, 2189319. [Google Scholar] [CrossRef]
- Noedoost, F.; Vaezi, J.; Siahkolaee, S.N. Taxonomic investigation of the Xanthium strumarium L. complex (Asteraceae) distributed in Iran inferred from morphological, palynological and molecular data. Biodivers. J. Biol. Divers. 2021, 22, 1961–1974. [Google Scholar] [CrossRef]
- Cartaxo-Pinto, S.; Paulo, G.H.C.; Jackes, B.R.; Gonçalves-Esteves, V.; Mendonça, C.B.F. A palynological perspective on the tribe Viteae of the grape family (Vitaceae). Grana 2022, 61, 27–44. [Google Scholar] [CrossRef]
- Techen, N.; Parveen, I.; Pan, Z.; Khan, I.A. DNA barcoding of medicinal plant material for identification. Curr. Opin. Biotechnol. 2014, 25, 103–110. [Google Scholar] [CrossRef]
- Zhang, Z.P.; Wang, X.Y.; Zhang, Z.; Yao, H.; Zhang, X.M.; Zhang, Y.; Zhang, B.G. The impact of genetic diversity on the accuracy of DNA barcoding to identify species: A study on the genus Phellodendron. Ecol. Evol. 2019, 9, 10723–10733. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liao, B.; Song, J.; Pang, X.; Han, J.; Chen, S. A fast SNP identification and analysis of intraspecific variation in the medicinal Panax species based on DNA barcoding. Gene 2013, 530, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Liu, J.; Gao, M.; Kong, W.; Zhao, Q.; Shi, L.; Wang, Q. Tracing the edible and medicinal plant Pueraria montana and its products in the marketplace yields subspecies level distinction using DNA barcoding and DNA metabarcoding. Front. Pharmacol. 2020, 11, 336. [Google Scholar] [CrossRef]
- Stanford, A.M.; Harden, R.; Parks, C.R. Phylogeny and biogeography of Juglans (Juglandaceae) based on matK and ITS sequence data. Am. J. Bot. 2000, 87, 872–882. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc. A Guide Methods Appl. 1990, 18, 315–322. [Google Scholar]
- MB, H. Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Mol. Ecol. 1999, 8, 521–522. [Google Scholar]
- Fay, M.F.; Bayer, C.; Alverson, W.S.; de Bruijn, A.Y.; Chase, M.W. Plastid rbcL sequence data indicate a close affinity between Diegodendron and Bixa. Taxon 1998, 47, 43–50. [Google Scholar] [CrossRef]
- Kuzmina, M.L.; Johnson, K.L.; Barron, H.R.; Hebert, P.D. Identification of the vascular plants of Churchill, Manitoba, using a DNA barcode library. BMC Ecol. 2012, 12, 25. [Google Scholar] [CrossRef]
Morphological Characters | Our Research | Published Data [1,35] | ||
---|---|---|---|---|
P. candollei | P. mirifica | P. candollei | P. mirifica | |
Hairiness | glabrous | densely pubescence | sparsely hairy or glabrous | Densely pubescence |
Inflorescence length (cm) | 72.0–77.0 | 25.0–35.0 | 30-up to 80 | Up to 30 |
Flower length (mm) | 17.6–19.8 | 17.9–18.2 | 18–20 | 13–15 |
Calyx length (mm) | 8.1–9.0 | 6.4–7.1 | 8–12 | 5–8 |
Pod | glabrous | densely pubescence | rather glabrous | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charoensup, W.; Intharuksa, A.; Yanaso, S.; Khamnuan, S.; Chansakaow, S.; Sirisa-ard, P.; Jantrawut, P.; Ditchaiwong, C.; Chaemcheun, K. Botanical Biometrics: Exploring Morphological, Palynological, and DNA Barcoding Variations in White Kwao Krua (Pueraria candollei Grah. ex Benth. and P. mirifica Airy Shaw & Suvat.). Horticulturae 2024, 10, 162. https://doi.org/10.3390/horticulturae10020162
Charoensup W, Intharuksa A, Yanaso S, Khamnuan S, Chansakaow S, Sirisa-ard P, Jantrawut P, Ditchaiwong C, Chaemcheun K. Botanical Biometrics: Exploring Morphological, Palynological, and DNA Barcoding Variations in White Kwao Krua (Pueraria candollei Grah. ex Benth. and P. mirifica Airy Shaw & Suvat.). Horticulturae. 2024; 10(2):162. https://doi.org/10.3390/horticulturae10020162
Chicago/Turabian StyleCharoensup, Wannaree, Aekkhaluck Intharuksa, Suthira Yanaso, Suthiwat Khamnuan, Sunee Chansakaow, Panee Sirisa-ard, Pensak Jantrawut, Charan Ditchaiwong, and Kesorn Chaemcheun. 2024. "Botanical Biometrics: Exploring Morphological, Palynological, and DNA Barcoding Variations in White Kwao Krua (Pueraria candollei Grah. ex Benth. and P. mirifica Airy Shaw & Suvat.)" Horticulturae 10, no. 2: 162. https://doi.org/10.3390/horticulturae10020162
APA StyleCharoensup, W., Intharuksa, A., Yanaso, S., Khamnuan, S., Chansakaow, S., Sirisa-ard, P., Jantrawut, P., Ditchaiwong, C., & Chaemcheun, K. (2024). Botanical Biometrics: Exploring Morphological, Palynological, and DNA Barcoding Variations in White Kwao Krua (Pueraria candollei Grah. ex Benth. and P. mirifica Airy Shaw & Suvat.). Horticulturae, 10(2), 162. https://doi.org/10.3390/horticulturae10020162