Comet Assay: Multifaceted Options for Studies of Plant Stress Response
Abstract
:1. Introduction
2. Causes, Consequences, and Repair of DNA Lesions
3. Methods for Precise Detection of Genomic DNA Breakage
4. Comet Test: Basic Principles and Useful Variations
4.1. Basic Principles
4.2. Calibration and Positive Controls
4.3. Different DNA Organization within Comets in Neutral and Alkaline Variants
5. Applications of the Comet Assay in Plant Studies
5.1. Comet Assays in Plant Ecotoxicology and Biological Monitoring
5.2. Comet Assays in Plant Physiological Studies
5.2.1. Use of the Comet Assay in Studies on Plants Exposed to Genotoxic Stress Factors
5.2.2. Use of the Comet Assay in Studies on Plants Exposed to Cytotoxic Stress
6. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Szurman-Zubrzycka, M.; Jędrzejek, P.; Szarejko, I. How do plants cope with DNA damage? A concise review on the DDR pathway in plants. Int. J. Mol. Sci. 2023, 24, 2404. [Google Scholar] [CrossRef]
- Williams, G.M. Methods for evaluating chemical genotoxicity. Annu. Rev. Pharmacol. Toxicol. 1989, 29, 189–211. [Google Scholar] [CrossRef]
- Ostling, O.; Johanson, K.J. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem. Biophys. Res. Commun. 1984, 123, 291–298. [Google Scholar] [CrossRef]
- Koppen, G.; Verschaeve, L. The alkaline comet test on plant cells: A new genotoxicity test for DNA strand breaks in Vicia faba root cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 1996, 360, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, M.; Sofuni, T.; Ishidate, M., Jr. An application of Acridine Orange fluorescent staining to the micronucleus test. Mutat. Res. 1983, 120, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Fiskesjö, G. The Allium test as a standard in environmental monitoring. Hereditas 1985, 102, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Leme, D.M.; Marin-Morales, M.A. Allium cepa test in environmental monitoring: A review on its application. Mutat. Res. 2009, 682, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Gichner, T.; Mukherjee, A.; Velemínský, J. DNA staining with the fluorochromes EtBr, DAPI and YOYO-1 in the comet assay with tobacco plants after treatment with ethyl methanesulphonate, hyperthermia and DNase-I. Mutat. Res. 2006, 605, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Gichner, T.; Znidar, I.; Wagner, E.D.; Plewa, M.J. The use of higher plants in the comet assay. In The Comet Assay in Toxicology, 2nd ed.; Anderson, D., Dhawan, A., Eds.; Royal Society of Chemistry: London, UK, 2009; pp. 98–119. [Google Scholar]
- Dikilitas, M.; Abdurrahim, K.; Fahri, Y. A molecular-based fast method to determine the extent of DNA damages in higher plants and fungi. Afr. J. Biotechnol. 2009, 8, 3118–3127. [Google Scholar]
- Ventura, L.; Giovannini, A.; Savio, M.; Donà, M.; Macovei, A.; Buttafava, A.; Carbonera, D.; Balestrazzi, A. Single Cell Gel Electrophoresis (Comet) assay with plants: Research on DNA repair and ecogenotoxicity testing. Chemosphere 2013, 92, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lanier, C.; Manier, N.; Cuny, D.; Deram, A. The comet assay in higher terrestrial plant model: Review and evolutionary trends. Environ. Pollut. 2015, 207, 6–20. [Google Scholar] [CrossRef]
- Agnihotri, A.; Seth, C.S. Comet Assay: A strong tool for evaluating DNA damage and comprehensive guidelines for plant cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2017, 3, 67–72. [Google Scholar] [CrossRef]
- Collins, A.; Møller, P.; Gajski, G.; Vodenková, S.; Abdulwahed, A.; Anderson, D.; Bankoglu, E.E.; Bonassi, S.; Boutet-Robinet, E.; Brunborg, G.; et al. Measuring DNA modifications with the comet assay: A compendium of protocols. Nat. Protoc. 2023, 18, 929–989. [Google Scholar] [CrossRef] [PubMed]
- Nikolova, I.; Georgieva, M.; Stoilov, L.; Katerova, Z.; Todorova, D. Optimization of Neutral Comet Assay for studying DNA double-strand breaks in pea and wheat. J. BioSci. Biotech. 2013, 2, 151–157. [Google Scholar]
- Pourrut, B.; Pinelli, E.; Mendiola, V.C.; Silvestre, J.; Douay, F. Recommendations for increasing alkaline Comet assay reliability in plants. Mutagenesis 2015, 30, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Bivehed, E.; Hellman, B. Flash-comet assay. Methodsx 2020, 7, 101161. [Google Scholar] [CrossRef] [PubMed]
- Prajapati, P.; Gupta, P.; Kharwar, R.N.; Seth, C.S. Nitric oxide mediated regulation of ascorbate-glutathione pathway alleviates mitotic aberrations and DNA damage in Allium cepa L. under salinity stress. Int. J. Phytorem. 2023, 25, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Zvanarou, S.; Vágnerová, R.; Mackievic, V.; Usnich, S.; Smolich, I.; Sokolik, A.; Yu, M.; Huang, X.; Angelis, K.J.; Demidchik, V. Salt stress triggers generation of oxygen free radicals and DNA breaks in Physcomitrella patens protonema. Environ. Exp. Bot. 2020, 180, 104236. [Google Scholar] [CrossRef]
- Liu, M.Y.; Sun, J.; Wang, K.Y.; Liu, D.; Li, Z.Y.; Zhang, J. Spermidine enhances waterlogging tolerance via regulation of antioxidant defence, heat shock protein expression and plasma membrane H+-ATPase activity in Zea mays. J. Agron. Crop Sci. 2014, 200, 199–211. [Google Scholar] [CrossRef]
- Mancini, A.; Buschini, A.; Restivo, F.M.; Rossi, C.; Poli, P. Oxidative stress as DNA damage in different transgenic tobacco plants. Plant Sci. 2006, 170, 845–852. [Google Scholar] [CrossRef]
- Hu, Y.; Li, J.; Yang, L.; Nan, W.; Cao, X.; Bi, Y. Inhibition of root growth by narciclasine is caused by DNA damage-induced cell cycle arrest in lettuce seedlings. Protoplasma 2014, 251, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, F.E.; Carvalho, M.S.S.; Silveira, G.L.; Correa, F.F.; Cardoso, M.D.G.; Andrade-Vieira, L.F.; Vilela, L.R. Phytotoxicity and cytogenotoxicity of hydroalcoholic extracts from Solanum muricatum Ait. and Solanum betaceum Cav. (Solanaceae) in the plant model Lactuca sativa. Environ. Sci. Pollut. Res. 2019, 26, 27558–27568. [Google Scholar] [CrossRef] [PubMed]
- Koppen, G.; Angelis, K.J. Repair of X-ray induced DNA damages measured by the Comet assay in roots of Vicia faba. Environ. Mol. Mutagen. 1998, 32, 281–285. [Google Scholar] [CrossRef]
- Willing, E.-M.; Piofczyk, T.; Albert, A.; Winkler, J.B.; Schneeberger, K.; Pecinka, A. UVR2 ensures transgenerational genome stability under simulated natural UV-B in Arabidopsis thaliana. Nat. Commun. 2016, 7, 13522. [Google Scholar] [CrossRef] [PubMed]
- Sokolova, D.A.; Halych, T.V.; Zhuk, V.V.; Kravets, A.P. Involvement of UV-C-induced genomic instability in stimulation plant long-term protective reactions. J. Plant Physiol. 2024, 293, 154171. [Google Scholar] [CrossRef]
- Agnihotri, A.; Gupta, P.; Dwivedi, A.; Seth, C.S. Counteractive mechanism(s) of salicylic acid in response to lead toxicity in Brassica juncea (L.) Czern. cv. Varuna. Planta 2018, 248, 49–68. [Google Scholar] [CrossRef]
- Castro, C.; Carvalho, A.; Gaivão, I.; Lima-Brito, J. Evaluation of copper-induced DNA damage in Vitis vinifera L. using Comet-FISH. Environ. Sci. Pollut. Res. 2021, 28, 6600–6610. [Google Scholar] [CrossRef]
- Kaya, M.; Çavuşoğlu, K.; Yalçin, E.; Acar, A. DNA fragmentation and multifaceted toxicity induced by high-dose vanadium exposure determined by the bioindicator Allium test. Sci. Rep. 2023, 13, 8493. [Google Scholar] [CrossRef]
- Chen, P.; Sjogren, C.A.; Larsen, P.B.; Schnittger, A. A multilevel response to DNA damage induced by aluminium. Plant J. 2019, 98, 479–491. [Google Scholar] [CrossRef]
- Sakamoto, T.; Tsujimoto-Inui, Y.; Sotta, N.; Hirakawa, T.; Matsunaga, T.M.; Fukao, Y.; Matsunaga, S.; Fujiwara, T. Proteasomal degradation of BRAHMA promotes boron tolerance in arabidopsis. Nat. Commun. 2018, 9, 5285. [Google Scholar] [CrossRef]
- Deli, G. Mechanism of action and use of radiomimetic compounds. Mil. Eng. 2022, 17, 101–115. [Google Scholar] [CrossRef]
- Deli, G. Mechanism of action and use of radiomimetic compounds—Part 2: Radiomimetic substances of bacterial origin. Mil. Eng. 2023, 18, 57–72. [Google Scholar] [CrossRef]
- Tuteja, N.; Ahmad, P.; Panda, B.B.; Tuteja, R. Genotoxic stress in plants: Shedding light on DNA damage, repair and DNA repair helicases. Mutat. Res. 2009, 681, 134–149. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.S.; Anjum, N.A.; Gill, R.; Jha, M.; Tuteja, N. DNA damage and repair in plants under ultraviolet and ionizing radiations. Sci. World J. 2015, 2015, 250158. [Google Scholar] [CrossRef]
- Manova, V.; Gruszka, D. DNA damage and repair in plants—From models to crops. Front. Plant Sci. 2015, 6, 885. [Google Scholar] [CrossRef] [PubMed]
- Azqueta, A.; Stopper, H.; Zegura, B.; Dusinska, M.; Møller, P. Do cytotoxicity and cell death cause false positive results in the in vitro comet assay? Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2022, 881, 503520. [Google Scholar] [CrossRef] [PubMed]
- Nisa, M.U.; Huang, Y.; Benhamed, M.; Raynaud, C. The plant DNA Damage Response: Signaling pathways leading to growth inhibition and putative role in response to stress conditions. Front. Plant Sci. 2019, 10, 653. [Google Scholar] [CrossRef]
- Pedroza-Garcia, J.A.; Xiang, Y.; De Veylder, L. Cell cycle checkpoint control in response to DNA damage by environmental stresses. Plant J. 2022, 109, 490–507. [Google Scholar] [CrossRef]
- Schiml, S.; Fauser, F.; Puchta, H. Repair of adjacent single-strand breaks is often accompanied by the formation of tandem sequence duplications in plant genomes. Proc. Natl. Acad. Sci. USA 2016, 113, 7266–7271. [Google Scholar] [CrossRef]
- Imlay, J.A.; Linn, S. DNA damage and oxygen radical toxicity. Science 1988, 240, 1302–1309. [Google Scholar] [CrossRef]
- Cadet, J.; Wagner, J.R. DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation. Cold Spring Harb. Perspect. Biol. 2013, 5, a012559. [Google Scholar] [CrossRef]
- Cannan, W.J.; Pederson, D.S. Mechanisms and consequences of double-strand DNA break formation in chromatin. J. Cell. Physiol. 2016, 231, 3–14. [Google Scholar] [CrossRef] [PubMed]
- West, C.E.; Waterworth, W.M.; Sunderland, P.A.; Bray, C.M. Arabidopsis DNA double-strand break repair pathways. Biochem. Soc. Trans. 2004, 32, 964–966. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.A.; Conklin, P.A.; Tjahjadi, M.; Missirian, V.; Toal, T.; Brady, S.M.; Britt, A.B. SUPPRESSOR of GAMMA RESPONSE1 links DNA damage response to organ regeneration. Plant Physiol. 2018, 176, 1665–1675. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Amador, M.A.; Abler, M.L.; De Rocher, E.J.; Thompson, D.M.; van Hoof, A.; LeBrasseur, N.D.; Lers, A.; Green, P.J. Identifcation of BFN1, a bifunctional nuclease induced during leaf and stem senescence in Arabidopsis. Plant Physiol. 2000, 122, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Ito, J.; Fukuda, H. ZEN1 is a key enzyme in the degradation of nuclear DNA during programmed cell death of tracheary elements. Plant Cell. 2002, 14, 3201–3211. [Google Scholar] [CrossRef]
- Farage-Barhom, S.; Burd, S.; Sonego, L.; Perl-Treves, R.; Lers, A. Expression analysis of the BFN1 nuclease gene promoter during senescence, abscission, and programmed cell death-related processes. J. Exp. Bot. 2008, 59, 3247–3258. [Google Scholar] [CrossRef]
- Bai, M.; Liang, M.; Huai, B.; Gao, H.; Tong, P.; Shen, R.; He, H.; Wu, H. Ca2+-dependent nuclease is involved in DNA degradation during the formation of the secretory cavity by programmed cell death in fruit of Citrus grandis ‘Tomentosa’. J. Exp. Bot. 2020, 71, 4812–4827. [Google Scholar] [CrossRef]
- Sugiyama, M.; Ito, J.; Aoyagi, S.; Fukuda, H. Endonucleases. Plant Mol. Biol. 2000, 44, 387–397. [Google Scholar] [CrossRef]
- Liang, M.; Bai, M.; Wu, H. Zn2+-dependent nuclease is involved in nuclear degradation during the programmed cell death of secretory cavity formation in Citrus grandis ‘Tomentosa’ fruits. Cells 2021, 10, 3222. [Google Scholar] [CrossRef]
- Shen, H.; Li, Z. DNA double-strand break repairs and their application in plant DNA integration. Genes 2022, 13, 322. [Google Scholar] [CrossRef]
- Yoshiyama, K.O. Recent progress in research on DNA damage responses in animals and plants. Genes Genet. Syst. 2016, 90, 185–186. [Google Scholar] [CrossRef]
- Yoshiyama, K.O.; Kobayashi, J.; Ogita, N.; Ueda, M.; Kimura, S.; Maki, H.; Umeda, M. ATM-mediated phosphorylation of SOG1 is essential for the DNA damage response in Arabidopsis. EMBO 2013, 14, 817–822. [Google Scholar] [CrossRef]
- Collins, A.R. The comet assay for DNA damage and repair: Principles, applications, and limitations. Mol. Biotechnol. 2004, 26, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Einset, J.; Collins, A.R. DNA repair after X-irradiation: Lessons from plants. Mutagenesis 2015, 30, 45–50. [Google Scholar] [CrossRef]
- Gichner, T.; Ptácek, O.; Stavreva, D.A.; Wagner, E.D.; Plewa, M.J. A comparison of DNA repair using the comet assay in tobacco seedlings after exposure to alkylating agents or ionizing radiation. Mutat. Res. 2000, 470, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Durut, N.; Kornienko, A.E.; Schmidt, H.A.; Lettner, N.; Donà, M.; Nordborg, M.; Scheid, O.M. Long noncoding RNAs contribute to DNA damage resistance in Arabidopsis thaliana. Genetics 2023, 225, iyad135. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, R.P.; Kumar, A.; Tyagi, M.B.; Sinha, R.P. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. J. Nucleic Acids 2010, 2010, 592980. [Google Scholar] [CrossRef] [PubMed]
- Eastman, A. Assays for DNA fragmentation, endonucleases, and intracellular pH and Ca2+ associated with apoptosis. Methods Cell Biol. 1995, 46, 41–55. [Google Scholar] [PubMed]
- Wyllie, A.H.; Morris, R.G.; Smith, A.L.; Dunlop, D. Chromatin cleavage in apoptosis: Association with condensed chromatin morphology and dependence on macromolecular synthesis. J. Pathol. 1984, 142, 67–77. [Google Scholar] [CrossRef]
- Reape, T.J.; McCabe, P.F. Apoptotic-like programmed cell death in plants. New Phytol. 2008, 180, 13–26. [Google Scholar] [CrossRef]
- Jiang, A.L.; Cheng, Y.; Li, J.; Zhang, W. A zinc-dependent nuclear endonuclease is responsible for DNA laddering during salt-induced programmed cell death in root tip cells of rice. J. Plant Physiol. 2008, 165, 1134–1141. [Google Scholar] [CrossRef]
- Aleksandrushkina, N.I.; Vanyushin, B.F. Endonucleases and their involvement in plant apoptosis. Russ. J. Plant Physiol. 2009, 56, 291–305. [Google Scholar] [CrossRef]
- Collins, A.R.; Dobson, V.L.; Dusinska, M.; Kennedy, G.; Stetina, R. The comet assay: What can it really tell us? Mutat. Res. 1997, 375, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, F.; Moreno, J.; Cejudo, F.J. The nucellus degenerates by a process of programmed cell death during the early stages of wheat grain development. Planta 2001, 213, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Vardar, F.; Çabuk, E.; Aytürk, Ö.; Aydın, Y. Determination of aluminum induced programmed cell death characterized by DNA fragmentation in Gramineae species. Caryologia 2016, 69, 111–115. [Google Scholar] [CrossRef]
- Yamada, T.; Ichimura, K.; van Doorn, W.G. DNA degradation and nuclear degeneration during programmed cell death in petals of Antirrhinum, Argyranthemum, and Petunia. J. Exp. Bot. 2006, 57, 3543–3552. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.L.; Gao, K.Y.; Cheng, L.S.; Wang, Y.L.; Cheng, Y.K.; Xu, Q.T.; Deng, X.Y.; Li, J.W.; Mei, F.Z.; Zhou, Z.Q. Short-term waterlogging-induced autophagy in root cells of wheat can inhibit programmed cell death. Protoplasma 2021, 258, 891–904. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.P. Apoptosis assessment by the DNA diffusion assay. Methods Mol. Med. 2005, 111, 55–67. [Google Scholar] [PubMed]
- Gavrieli, Y.; Sherman, Y.; Ben-Sasson, S.A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 1992, 119, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Gorczyca, W.; Bruno, S.; Darzynkiewicz, R.J.; Gong, J.; Darzynkiewicz, Z. DNA strand breaks occurring during apoptosis: Their early in situ detection by the terminal deoxynucleotidyl transferase and nick translation assays and prevention by serine protease inhibitors. Int. J. Oncol. 1992, 1, 639–648. [Google Scholar] [CrossRef]
- O’Brien, I.E.; Reutelingsperger, C.P.; Holdaway, K.M. Annexi-V and TUNEL use in monitoring the progression of apoptosis in plants. Cytometry 1997, 29, 28–33. [Google Scholar] [CrossRef]
- Fedoreyeva, L.I.; Lazareva, E.M.; Shelepova, O.V.; Baranova, E.N.; Kononenko, N.V. Salt-induced autophagy and programmed cell death in wheat. Agronomy 2022, 12, 1909. [Google Scholar] [CrossRef]
- Kushalappa, A.C.; Hegde, N.G.; Gunnaiah, R.; Sathe, A.; Yogendra, K.N.; Ajjamada, L. Apoptotic-like PCD inducing HRC gene when silenced enhances multiple disease resistance in plants. Sci. Rep. 2022, 12, 20402. [Google Scholar] [CrossRef]
- Qian, R.; Zhao, H.; Liang, X.; Sun, N.; Zhang, N.; Lin, X.; Sun, C. Autophagy alleviates indium-induced programmed cell death in wheat roots. J. Hazard. Mater. 2022, 439, 129600. [Google Scholar] [CrossRef] [PubMed]
- Barreto Filho, M.M.; Bagatini, I.L.; Durand, P.M. How shall we measure programmed cell death in eukaryotic microalgae? Eur. J. Phycol. 2023, 58, 13–34. [Google Scholar] [CrossRef]
- Kwasniewska, J.; Bara, A.W. Plant Cytogenetics in the Micronuclei Investigation-The Past, Current Status, and Perspectives. Int. J. Mol. Sci. 2022, 23, 1306. [Google Scholar] [CrossRef] [PubMed]
- Macovei, A.; Donà, M.; Carbonera, D.; Balestrazzi, A. DNA diffusion assay applied to plant cells. Methods Mol. Biol. 2018, 1743, 107–115. [Google Scholar] [PubMed]
- Afanasieva, K.; Chopei, M.; Zazhytska, M.; Vikhreva, M.; Sivolob, A. DNA loop domain organization as revealed by single-cell gel electrophoresis. Biochim. Biophys. Acta 2013, 1833, 3237–3244. [Google Scholar] [CrossRef] [PubMed]
- Sestili, P.; Cantoni, O. Osmotically driven radial diffusion of single-stranded DNA fragments on an agarose bed as a convenient measure of DNA strand scission. Free Radic. Biol. Med. 1999, 26, 1019–1026. [Google Scholar] [CrossRef] [PubMed]
- Sestili, P.; Martinelli, C.; Stocchi, V. The fast halo assay: An improved method to quantify genomic DNA strand breakage at the single-cell level. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2006, 607, 205–214. [Google Scholar] [CrossRef]
- Sestili, P.; Calcabrini, C.; Diaz, A.R.; Fimognari, C.; Stocchi, V. The fast-halo assay for the detection of DNA damage. Fast Detect. DNA Damage Methods Protoc. 2017, 1644, 75–93. [Google Scholar]
- Cerda, H.V.; Hofsten, B.V.; Johanson, K.J. Identification of irradiated food by microelectrophoresis of DNA from single cells. Recent. Adv. Detect. Irradiat. Food 1993, 14335, 401–405. [Google Scholar]
- Cerda, H.; Delincée, H.; Haine, H.; Rupp, H. The DNA “Comet Assay” as a rapid screening technique to control irradiated food. Mutation Res. 1997, 375, 167–181. [Google Scholar] [CrossRef]
- Muruzabal, D.; Collins, A.; Azqueta, A. The enzyme-modified comet assay: Past, present and future. Food Chem. Toxicol. 2021, 147, 111865. [Google Scholar] [CrossRef]
- Olive, P.L.; Banáth, J.P. The comet assay: A method to measure DNA damage in individual cells. Nat. Protoc. 2006, 1, 23–29. [Google Scholar] [CrossRef]
- Wu, J.H.; Jones, N.J. Assessment of DNA interstrand crosslinks using the modified alkaline comet assay. Genet. Toxicol. Princ. Methods 2012, 817, 165–181. [Google Scholar]
- Shaposhnikov, S.; Frengen, E.; Collins, A.R. Increasing the resolution of the comet assay using fluorescent in situ hybridization—A review. Mutagenesis 2009, 24, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Townsend, T.A.; Parrish, M.C.; Engelward, B.P.; Manjanatha, M.G. The development and validation of EpiComet-Chip, a modified high-throughput comet assay for the assessment of DNA methylation status. Environ. Mol. Mutagen. 2017, 58, 508–521. [Google Scholar] [CrossRef] [PubMed]
- Vodenkova, S.; Azqueta, A.; Collins, A.; Dusinska, M.; Gaivao, I.; Møller, P.; Opattova, A.; Vodicka, P.; Godschalk, R.W.L.; Langie, S.A. An optimized comet-based in vitro DNA repair assay to assess base and nucleotide excision repair activity. Nat. Protoc. 2020, 15, 3844–3878. [Google Scholar] [CrossRef] [PubMed]
- Dunkenberger, L.; Reiss, K.; Del Valle, L. Comet Assay for the Detection of Single and Double-Strand DNA Breaks. In Immunohistochemistry and Immunocytochemistry, 1st ed.; Del Valle, L., Ed.; Humana: New York, NY, USA, 2022; Volume 2422, pp. 263–269. [Google Scholar]
- Ji, Y.; Karbaschi, M.; Abdulwahed, A.; Quinete, N.S.; Evans, M.D.; Cooke, M.S. A high-throughput Comet assay approach for assessing cellular DNA damage. J. Vis. Exp. 2022, 10, e63559. [Google Scholar] [CrossRef]
- Walsh, K.D.; Kato, T.A. Alkaline comet assay to detect DNA damage. Methods Mol. Biol. 2023, 2519, 65–72. [Google Scholar]
- Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 1988, 175, 184–191. [Google Scholar] [CrossRef]
- Santos, C.L.; Pourrut, B.; Ferreira de Oliveira, J.M. The use of comet assay in plant toxicology: Recent advances. Front. Genet. 2015, 6, 216. [Google Scholar] [CrossRef] [PubMed]
- Charzyńska, M.; Simeonova, E.; Sikora, A.; Mostowska, A.; Leśniewska, J. Application of the comet assay in studies of programmed cell death (PCD) in plants. Acta Soc. Bot. Pol. 2000, 69, 101–107. [Google Scholar] [CrossRef]
- Liu, M.; He, X.; Zhuo, R.; Mu, J.; Zhang, D. Functional characterization of a DNA-damage repair/tolerance 100 (DRT100) gene in Sedum alfredii Hance for genome stability maintenance and Cd hypertolerance. Environ. Pollut. 2023, 327, 121546. [Google Scholar] [CrossRef] [PubMed]
- Meschini, R.; Paoletti, E.; Hoshika, Y.; Sideri-Manoka, Z.A.; Dell’Orso, A.; Magni, G.; Kuzminsky, E. Comet assay as an early predictor tool to detect ozone enhanced sensitivity of vegetation in a free-air controlled long-term exposure. Plant Stress 2023, 10, 100236. [Google Scholar] [CrossRef]
- Gichner, T.; Patkova, Z.; Kim, J.K. DNA damage measured by the Comet assay in eight agronomic plants. Bio. Plant. 2003, 47, 185–188. [Google Scholar] [CrossRef]
- Peycheva, E.; Ivanova, E.; Ivanov, S.; Miloshev, G. Improved procedure for Comet assay on active photosynthetic cells from pea plants. Oxid. Commun. 2011, 34, 320–325. [Google Scholar]
- Sotta, N.; Sakamoto, T.; Matsunaga, S.; Fujiwara, T. Abnormal leaf development of rpt5a mutant under zinc deficiency reveals important role of DNA damage alleviation for normal leaf development. Sci. Rep. 2019, 9, 9369. [Google Scholar] [CrossRef] [PubMed]
- Heneberg, P. Four decades of the Comet assay: pH optimum of lysis buffer still needs to be elucidated. Anti-Cancer Agents Med. Chem. 2023, 23, 1910–1915. [Google Scholar] [CrossRef]
- Møller, P.; Azqueta, A.; Sanz-Serrano, J.; Bakuradze, T.; Richling, E.; Bankoglu, E.E.; Stopper, H.; Bastos, V.C.; Langie, S.A.S.; Jensen, A.; et al. Visual comet scoring revisited: A guide to scoring comet assay slides and obtaining reliable results. Mutagenesis 2023, 38, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Møller, P.; Loft, S. Statistical analysis of comet assay results. Front. Genet. 2014, 5, 292. [Google Scholar] [PubMed]
- Møller, P.; Azqueta, A.; Boutet-Robinet, E.; Koppen, G.; Bonassi, S.; Milić, M.; Gajski, G.; Costa, S.; Teixeira, J.P.; Pereira, C.; et al. Minimum Information for Reporting on the Comet Assay (MIRCA): Recommendations for describing comet assay procedures and results. Nat. Protoc. 2020, 15, 3817–3826. [Google Scholar] [CrossRef] [PubMed]
- Møller, P. Measurement of oxidatively damaged DNA in mammalian cells using the comet assay: Reflections on validity, reliability and variability. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2022, 873, 503423. [Google Scholar] [CrossRef]
- Collia, M.; Møller, P.; Langie, S.A.; Vettorazzi, A.; Azqueta, A. Further development of CometChip technology to measure DNA damage in vitro and in vivo: Comparison with the 2 gels/slide format of the standard and enzyme-modified comet assay. Toxicology 2024, 501, 153690. [Google Scholar] [CrossRef] [PubMed]
- Gichner, T.; Plewa, M.J. Induction of somatic DNA damage as measured by single cell gel electrophoresis and point mutation in leaves of tobacco plants. Mutat. Res. Fundam. Mol. Mech. Mutagen. 1998, 401, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Stavreva, D.A.; Ptáček, O.; Plewa, M.J.; Gichner, T. Single cell gel electrophoresis analysis of genomic damage induced by ethyl methanesulfonate in cultured tobacco cells. Mutat. Res. Fundam. Mol. Mech. Mutagen. 1998, 422, 323–330. [Google Scholar] [CrossRef]
- Gichner, T.; Ptáček, O.; Stavreva, D.A.; Plewa, M.J. Comparison of DNA damage in plants as measured by single cell gel electrophoresis and somatic leaf mutations induced by monofunctional alkylating agents. Environ. Mol. Mutagen. 1999, 33, 279–286. [Google Scholar] [CrossRef]
- Angelis, K.J.; McGuffie, M.; Menke, M.; Schubert, I. Adaptation to alkylation damage in DNA measured by the Comet assay. Environ. Mol. Mutagen. 2000, 36, 146–150. [Google Scholar] [CrossRef]
- Jovtchev, G.; Menke, M.; Schubert, I. The comet assay detects adaptation to MNU-induced DNA damage in barley. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2001, 493, 95–100. [Google Scholar] [CrossRef]
- Menke, M.; Chen, I.; Angelis, K.J.; Schubert, I. DNA damage and repair in Arabidopsis thaliana as measured by the comet assay after treatment with different classes of genotoxins. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2001, 493, 87–93. [Google Scholar] [CrossRef]
- Gichner, T. Differential genotoxicity of ethyl methanesulphonate, N-ethyl-N-nitrosourea and maleic hydrazide in tobacco seedlings based on data of the Comet assay and two recombination assays. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2003, 538, 171–179. [Google Scholar] [CrossRef]
- Juchimiuk, J.; Gnys, A.; Maluszynska, J. DNA damage induced by mutagens in plant and human cell nuclei in acellular comet assay. Folia Histochem. Cytobiol. 2006, 44, 127–131. [Google Scholar]
- Georgieva, M.; Stoilov, L. Assessment of DNA strand breaks induced by bleomycin in barley by the comet assay. Environ. Mol. Mutagen. 2008, 49, 381–387. [Google Scholar] [CrossRef]
- Jia, Q.; Dulk-Ras, A.D.; Shen, H.; Hooykaas, P.J.; de Pater, S. Poly (ADP-ribose) polymerases are involved in microhomology mediated back-up non-homologous end joining in Arabidopsis thaliana. Plant Mol. Biol. 2013, 82, 339–351. [Google Scholar] [CrossRef]
- Georgieva, M.; Stoilov, L. Neutral comet profiles: Reliable system for analyses of DNA strand breaks distribution. Genet. Plant Physiol. 2015, 5, 10–14. [Google Scholar]
- Bianchi, J.; Fernandes, T.C.C.; Marin-Morales, M.A. Induction of mitotic and chromosomal abnormalities on Allium cepa cells by pesticides imidacloprid and sulfentrazone and the mixture of them. Chemosphere 2016, 144, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Dos Reis, G.B.D.; Andrade-Vieira, L.F.; Moraes, I.C.; César, P.H.S.; Marcussi, S.; Davide, L.C. Reliability of plant root comet assay in comparison with human leukocyte comet assay for assessment environmental genotoxic agents. Ecotoxicol. Environ. Saf. 2017, 142, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Kyzek, S.; Holubová, L.; Medvecká, V.; Tomeková, J.; Gálová, E.; Zahoranová, A. Cold atmospheric pressure plasma can induce adaptive response in pea seeds. Plasma Chem. Plasma Process. 2019, 39, 475–486. [Google Scholar] [CrossRef]
- Qiu, Z.; Zhu, L.; He, L.; Chen, D.; Zeng, D.; Chen, G.; Qian, Q. DNA damage and reactive oxygen species cause cell death in the rice local lesions 1 mutant under high light and high temperature. New Phytol. 2019, 222, 349–365. [Google Scholar] [CrossRef]
- Aydın, G.; Liman, R. Cyto-genotoxic effects of Pinoxaden on Allium cepa L. roots. J. Appl. Genet. 2020, 61, 349–357. [Google Scholar] [CrossRef]
- Amaç, E.; Liman, R. Cytotoxic and genotoxic effects of clopyralid herbicide on Allium cepa roots. Environ. Sci. Pollut. Res. 2021, 28, 48450–48458. [Google Scholar] [CrossRef]
- Čížková, M.; Slavková, M.; Vítová, M.; Zachleder, V.; Bišová, K. Response of the Green Alga Chlamydomonas reinhardtii to the DNA Damaging Agent Zeocin. Cells 2019, 8, 735. [Google Scholar] [CrossRef]
- Gu, N.; Tamada, Y.; Imai, A.; Palfalvi, G.; Kabeya, Y.; Shigenobu, S.; Ishikawa, M.; Angelis, K.J.; Chen, C.; Hasebe, M. DNA damage triggers reprogramming of differentiated cells into stem cells in Physcomitrella. Nat. Plants 2020, 6, 1098–1105. [Google Scholar] [CrossRef]
- Chen, J.; Stubbe, J. Bleomycins: New methods will allow reinvestigation of old issues. Curr. Opin. Chem. Biol. 2004, 8, 175–181. [Google Scholar] [CrossRef]
- Chankova, S.G.; Dimova, E.; Dimitrova, M.; Bryant, P.E. Induction of DNA double-strand breaks by zeocin in Chlamydomonas reinhardtii and the role of increased DNA double-strand breaks rejoining in the formation of an adaptive response. Radiat. Environ. Biophys. 2007, 46, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Collins, A.R.; Oscoz, A.A.; Brunborg, G.; Gaivão, I.; Giovannelli, L.; Kruszewski, M.; Smith, C.C.; Stetina, R. The comet assay: Topical issues. Mutagenesis 2008, 23, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Brunborg, G.; Eide, D.M.; Graupner, A.; Gutzkow, K.; Shaposhnikov, S.; Kruszewski, M.; Collins, A. Calibration of the comet assay using ionising radiation. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2023, 885, 503560. [Google Scholar] [CrossRef]
- Takizawa, Y.; Kurumizaka, H. Chromatin structure meets cryo-EM: Dynamic building blocks of the functional architecture. Biochim. Biophys. Acta Gene Regul. Mech. 2022, 1865, 194851. [Google Scholar] [CrossRef] [PubMed]
- Tourdot, E.; Grob, S. Three-dimensional chromatin architecture in plants—General features and novelties. Eur. J. Cell Biol. 2023, 102, 151344. [Google Scholar] [CrossRef]
- Meschichi, A.; Rosa, S. Plant chromatin on the move: An overview of chromatin mobility during transcription and DNA repair. Plant J. 2023. [Google Scholar] [CrossRef]
- Jackson, D.A.; Dickinson, P.; Cook, P.R. The size of chromatin loops in HeLa cells. EMBO 1990, 9, 567–571. [Google Scholar] [CrossRef] [PubMed]
- Shaposhnikov, S.A.; Salenko, V.B.; Brunborg, G.; Nygren, J.; Collins, A.R. Single-cell gel electrophoresis (the comet assay): Loops or fragments? Electrophoresis 2008, 29, 3005–3012. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, F.; Cejudo, F.J. Nuclear dismantling events: Crucial steps during the execution of plant programmed cell death. In Plant Programmed Cell Death, 1st ed.; Gunawardena, A.N., McCabe, P.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 163–189. [Google Scholar]
- Afanasieva, K.; Zazhytska, M.; Sivolob, A. Kinetics of comet formation in single-cell gel electrophoresis: Loops and fragments. Electrophoresis 2010, 31, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Afanasieva, K.; Chopei, M.; Sivolob, A. Single nucleus versus single-cell gel electrophoresis: Kinetics of DNA track formation. Electrophoresis 2015, 36, 973–977. [Google Scholar] [CrossRef]
- Chopei, M.; Olefirenko, V.; Afanasieva, K.; Sivolob, A. Inner and outer DNA loops in cell nuclei: Evidence from pulsed-field comet assay. Cytol. Genet. 2022, 56, 313–318. [Google Scholar] [CrossRef]
- Klaude, M.; Eriksson, S.; Nygren, J.; Ahnström, G. The comet assay: Mechanisms and technical considerations. Mutat. Res. 1996, 363, 89–96. [Google Scholar] [CrossRef]
- Angelis, K.J.; Dusinska, M.; Collins, A.R. Single cell gel electrophoresis: Detection of DNA damage at different levels of sensitivity. Electrophoresis 1999, 20, 2133–2138. [Google Scholar] [CrossRef]
- Alias, C.; Feretti, D.; Benassi, L.; Zerbini, I.; Zani, C.; Sorlini, S. Tools for monitoring toxicological and genotoxicological changes in a drinking water treatment plant in Northeast Italy. Water Environ. J. 2023, 37, 81–94. [Google Scholar] [CrossRef]
- Gendron, A.D.; Lacaze, É.; Taranu, Z.E.; Gouge, R.; Larbi-Youcef, Y.; Houde, M.; André, C.; Gagné, F.; Triffault-Bouchet, G.; Giroux, I. The Comet assay, a sensitive biomarker of water quality improvement following adoption of beneficial agricultural practices? Environ. Toxicol. Chem. 2023, 42, 2201–2214. [Google Scholar] [CrossRef] [PubMed]
- Maluszynska, J.; Juchimiuk, J. Plant genotoxicity: A molecular cytogenetic approach in plant bioassays. Arh. Hig. Rada Toksikol. 2005, 56, 177–184. [Google Scholar] [PubMed]
- Kumaravel, T.S.; Vilhar, B.; Faux, S.P.; Jha, A.N. Comet assay measurements: A perspective. Cell Biol. Toxicol. 2009, 25, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Hasanovic, M.; Cetkovic, T.; Pourrut, B.; Klacar, L.C.; Omanovic, M.H.; Durmic-Pasic, A.; Haveric, S.; Haveric, A. Air pollution in Sarajevo, Bosnia and Herzegovina, assessed by plant comet assay. Mutagenesis 2023, 38, 43–50. [Google Scholar] [CrossRef]
- Liman, R.; Ciğerci, İ.H.; Öztürk, N.S. Determination of genotoxic effects of Imazethapyr herbicide in Allium cepa root cells by mitotic activity, chromosome aberration, and comet assay. Pestic. Biochem. Physiol. 2015, 118, 38–42. [Google Scholar] [CrossRef]
- Liman, R.; Özkan, S. Cytotoxicity and genotoxicity in Allium cepa L. root meristem cells exposed to the herbicide penoxsulam. CBUJOS 2019, 15, 221–226. [Google Scholar] [CrossRef]
- Ozel, C.A.; Unal, F.; Avuloglu-Yilmaz, E.; Erikel, E.; Mirici, S.; Yuzbasioglu, D. Determination of genotoxic damages of picloram and dicamba with comet assay in Allium cepa rooted in tissue culture and distilled water. Mol. Biol. Rep. 2022, 49, 11273–11280. [Google Scholar] [CrossRef] [PubMed]
- Kozak, J.; West, C.E.; White, C.; da Costa-Nunes, J.A.; Angelis, K.J. Rapid repair of DNA double strand breaks in Arabidopsis thaliana is dependent on proteins involved in chromosome structure maintenance. DNA Repair. 2009, 8, 413–419. [Google Scholar] [CrossRef]
- McArt, D.G.; McKerr, G.; Saetzler, K.; Howard, C.V.; Downes, C.S.; Wasson, G.R. Comet sensitivity in assessing DNA damage and repair in different cell cycle stages. Mutagenesis 2010, 25, 299–303. [Google Scholar] [CrossRef]
- Wentzel, J.F.; Gouws, C.; Huysamen, C.; van Dyk, E.; Koekemoer, G.; Pretorius, P.J. Assessing the DNA methylation status of single cells with comet assay. Anal. Biochem. 2010, 400, 190–194. [Google Scholar] [CrossRef]
- Böhmdorfer, G.; Wierzbicki, A.T. Control of chromatin structure by long noncoding RNA. Trends Cell Biol. 2015, 25, 623–632. [Google Scholar] [CrossRef]
- Kamisugi, Y.; Schaefer, D.G.; Kozak, J.; Charlot, F.; Vrielynck, N.; Hola, M.; Angelis, K.J.; Cuming, A.C.; Nogue, F. MRE11 and RAD50, but not NBS1 are essential for gene targeting in the moss Physcomitrella patens. Nucleic Acids Res. 2012, 40, 3496–3510. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, Z.; Wang, W.; Sun, Q. Primase promotes the competition between transcription and replication on the same template strand resulting in DNA damage. Nat. Commun. 2024, 15, 1–16. [Google Scholar]
- Manova, V.; Georgieva, R.; Georgieva, M.; Nikolova, I.; Gecheff, K.; Stoilov, L. DNA and chromosomal damage as a hallmark of the induced genomic instability in barley. Genet. Plant Physiol. 2015, 5, 231–246. [Google Scholar]
- Daza, P.; Torreblanca, J.; Moreno, F.J. The comet assay differentiates efficiently and rapidly between genotoxins and cytotoxins in quiescent cells. Cell Biol. Int. 2004, 28, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, E.A.; Harbi, H.F.A.; Aref, N. Radioprotective efficacy of zinc oxide nanoparticles on γ-ray-induced nuclear DNA damage in Vicia faba L as evaluated by DNA bioassays. J. Radiat. Res. Appl. Sci. 2019, 12, 423–436. [Google Scholar] [CrossRef]
- Taha, E.; Shoaib, R. Impact of gamma irradiation on tomato, and pepper growth parameters, phytochemical, nematode infectivity and detection of DNA damage by comet assay. J. Plant Prot. Pathol. 2021, 12, 599–608. [Google Scholar] [CrossRef]
- Wise, S.; Holmes, A.; Wise, J. Hexavalent chromium-induced DNA Damage and repair mechanisms. Rev. Environ. Health 2008, 23, 39–57. [Google Scholar] [CrossRef] [PubMed]
- Dutta, S.; Mitra, M.; Agarwal, P.; Mahapatra, K.; De, S.; Sett, U.; Roy, S. Oxidative and genotoxic damages in plants in response to heavy metal stress and maintenance of genome stability. Plant Signal. Behav. 2018, 13, e1460048. [Google Scholar] [CrossRef]
- Noor, I.; Sohail, H.; Sun, J.; Nawaz, M.A.; Li, G.; Hasanuzzaman, M.; Liu, J. Heavy metal and metalloid toxicity in horticultural plants: Tolerance mechanism and remediation strategies. Chemosphere 2022, 303, 135196. [Google Scholar] [CrossRef]
- Mansoor, S.; Ali, A.; Kour, N.; Bornhorst, J.; AlHarbi, K.; Rinklebe, J.; Abd El Moneim, D.; Ahmad, P.; Chung, Y.S. Heavy metal induced oxidative stress mitigation and ROS scavenging in plants. Plants 2023, 12, 3003. [Google Scholar] [CrossRef] [PubMed]
- Rucińska, R.; Sobkowiak, R.; Gwóźdź, E.A. Genotoxicity of lead in lupin root cells as evaluated by the comet assay. Cell Mol. Biol. Lett. 2004, 9, 519–528. [Google Scholar] [PubMed]
- Agnihotri, A.; Seth, C.S. Does jasmonic acid regulate photosynthesis, clastogenecity, and phytochelatins in Brassica juncea L. in response to Pb-subcellular distribution? Chemosphere 2019, 243, 125361. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Eslava, J.; Gómez-Arroyo, S.; Risueño, M.C.; Testillano, P.S. The effects of organophosphorus insecticides and heavy metals on DNA damage and programmed cell death in two plant models. Environ. Pollut. 2018, 240, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.; Zhang, X.; Zhu, Y.G.; Zhao, F.J. Arsenate-induced toxicity: Effects on antioxidative enzymes and DNA damage in Vicia faba. Environ. Toxicol. Chem. 2008, 27, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Surgun-Acar, Y. Estimation of arsenic-induced genotoxicity in melon (Cucumis melo) by using RAPD-PCR and comet assays. Bot. Serbica 2021, 45, 97–106. [Google Scholar] [CrossRef]
- Naf’I, A.L.E.K.; Khalil, M.I. Estimation of DNA damage in the roots of Allium cepa exposed to heavy metals using the comet assay. Revis. Bionatura 2022, 7, 70. [Google Scholar]
- Isayenkov, S.V.; Maathuis, F.J. Plant salinity stress: Many unanswered questions remain. Front. Plant Sci. 2019, 10, 80. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, H.; Song, C.; Zhu, J.K.; Shabala, S. Mechanisms of plant responses and adaptation to soil salinity. Innovation 2020, 1, 100017. [Google Scholar] [CrossRef]
- Demidchik, V.; Cuin, T.A.; Svistunenko, D.; Smith, S.J.; Miller, A.J.; Shabala, S.; Sokolik, A.; Yurin, V. Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: Single-channel properties, genetic basis and involvement in stress-induced cell death. J. Cell Sci. 2010, 123, 1468–1479. [Google Scholar] [CrossRef]
- Sui, W.; Guo, K.; Li, L.; Liu, S.; Takano, T.; Zhang, X. Arabidopsis Ca2+-dependent nuclease AtCaN2 plays a negative role in plant responses to salt stress. Plant Sci. 2019, 281, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.; Vishwakarma, K.; Hossen, M.S.; Kumar, V.; Shackira, A.M.; Puthur, J.T.; Abdi, G.; Sarraf, M.; Hasanuzzaman, M. Potassium in plants: Growth regulation, signaling, and environmental stress tolerance. Plant Physiol. Biochem. 2022, 172, 56–69. [Google Scholar] [CrossRef]
- Alamri, S.A.; Siddiqui, M.H.; Al-Khaishany, M.Y.; Khan, M.N.; Ali, H.M.; Alakeel, K.A. Nitric oxide-mediated cross-talk of proline and heat shock proteins induce thermotolerance in Vicia faba L. Environ. Exp. Bot. 2019, 161, 290–302. [Google Scholar] [CrossRef]
- Xia, S.; Liu, H.; Cui, Y.; Yu, H.; Rao, Y.; Yan, Y.; Zeng, D.; Hu, J.; Zhang, G.; Gao, Z.; et al. UDP-N-acetylglucosamine pyrophosphorylase enhances rice survival at high temperature. New Phytol. 2022, 233, 344–359. [Google Scholar] [CrossRef]
- Han, S.H.; Park, Y.J.; Park, C.M. HOS1 activates DNA repair systems to enhance plant thermotolerance. Nat. Plants 2020, 6, 1439–1446. [Google Scholar] [CrossRef]
- Siddiqui, M.H.; Alamri, S.A.; Al-Khaishany, M.Y.; Al-Qutami, M.A.; Ali, H.M.; Khan, M.N. Sodium nitroprusside and indole acetic acid improve the tolerance of tomato plants to heat stress by protecting against DNA damage. J. Plant Interact. 2017, 12, 177–186. [Google Scholar] [CrossRef]
- Siddiqui, M.H.; Alamri, S.A.; Al-Khaishany, M.Y.; Al-Qutami, M.A.; Ali, H.M.; Al-Whaibi, M.H.; Al-Wahibi, M.S.; Alharby, H.F. Mitigation of adverse effects of heat stress on Vicia faba by exogenous application of magnesium. Saudi J. Biol. Sci. 2018, 25, 1393–1401. [Google Scholar] [CrossRef]
- Xi, Y.; Han, X.; Zhang, Z.; Joshi, J.; Borza, T.; Aqa, M.M.; Zhang, B.; Yuan, H.; Wang-Pruski, G. Exogenous phosphite application alleviates the adverse effects of heat stress and improves thermotolerance of potato (Solanum tuberosum L.) seedlings. Ecotoxicol. Environ. Saf. 2020, 190, 110048. [Google Scholar] [CrossRef]
- Gupta, P.; Seth, C.S. Nitrate supplementation attenuates As(V) toxicity in Solanum lycopersicum L. cv Pusa Rohini: Insights into As(V) sub-cellular distribution, photosynthesis, nitrogen assimilation, and DNA damage. Plant Physiol. Biochem. 2019, 139, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Bent, A.F. Microbial pathogens trigger host DNA double-strand breaks whose abundance is reduced by plant defense responses. PLoS Pathog. 2014, 10, e1004030. [Google Scholar] [CrossRef] [PubMed]
- Cerovska, N.; Plchova, H.; Vaculik, P.; Moravec, T.; Gichner, T. Potato virus X induces DNA damage in leaf nuclei of the host plant Nicotiana tabacum L. var. xanthi. Biol. Plant 2014, 58, 783–787. [Google Scholar] [CrossRef]
- Ray, S.; Mondal, S.; Chowdhury, S.; Kundu, S. Differential responses of resistant and susceptible tomato varieties to inoculation with Alternaria solani. Physiol. Mol. Plant Pathol. 2015, 90, 78–88. [Google Scholar] [CrossRef]
- Ramos, R.S.; Spampinato, C.P. Deficiency of the Arabidopsis mismatch repair MSH6 attenuates Pseudomonas syringae invasion. Plant Sci. 2023, 332, 111713. [Google Scholar] [CrossRef]
- Saha, P.; Mukherjee, A.; Biswas, A.K. Modulation of NaCl induced DNA damage and oxidative stress in mungbean by pretreatment with sublethal dose. Biol. Plant 2015, 59, 139–146. [Google Scholar] [CrossRef]
- Zahra, J.; Nazim, H.; Faiza, I.; Zeng, J.; Tahir, A.; Zhang, G. Physiological and antioxidant responses of cultivated and wild barley under salt stress. Plant Soil Environ. 2020, 66, 334–344. [Google Scholar] [CrossRef]
- Gupta, P.; Seth, C.S. Interactive role of exogenous 24 Epibrassinolide and endogenous NO in Brassica juncea L. under salinity stress: Evidence for NR-dependent NO biosynthesis. Nitric Oxide 2020, 97, 33–47. [Google Scholar] [CrossRef] [PubMed]
- Sihi, S.; Bakshi, S.; Maiti, S.; Nayak, A.; Sengupta, D.N. Analysis of DNA polymerase λ activity and gene expression in response to salt and drought stress in Oryza sativa indica rice cultivars. J. Plant Growth Regul. 2022, 41, 1499–1515. [Google Scholar] [CrossRef]
- Oney-Birol, S. Exogenous L-carnitine promotes plant growth and cell division by mitigating genotoxic damage of salt stress. Sci. Rep. 2019, 9, 17229. [Google Scholar] [CrossRef] [PubMed]
- Omar, S.A.; Elsheery, N.I.; Pashkovskiy, P.; Kuznetsov, V.; Allakhverdiev, S.I.; Zedan, A.M. Impact of Titanium Oxide Nanoparticles on Growth, Pigment Content, Membrane Stability, DNA Damage, and Stress-Related Gene Expression in Vicia faba under Saline Conditions. Horticulturae 2023, 9, 1030. [Google Scholar] [CrossRef]
- Kiran, K.R.; Deepika, V.B.; Swathy, P.S.; Prasad, K.; Kabekkodu, S.P.; Murali, T.S.; Satyamoorthy, K.; Muthusamy, A. ROS-dependent DNA damage and repair during germination of NaCl primed seeds. J. Photochem. Photobiol. B 2020, 213, 112050. [Google Scholar] [CrossRef] [PubMed]
- Dell’Orso, A.; Kuzminsky, E.; Bermejo-Bermejo, V.; Ruiz-Checa, R.; Amo, R.A.D.; Meschini, R. DNA integrity and ecophysiological responses of Spanish populations of Ulmus glabra to increasing ozone levels. Ecotoxicology 2021, 30, 1098–1107. [Google Scholar] [CrossRef] [PubMed]
- Abdelmigid, H.M.; Morsi, M.M. Cytotoxic and molecular impacts of allelopathic effects of leaf residues of Eucalyptus globulus on soybean (Glycine max). J. Genet. Eng. Biotechnol. 2017, 15, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, P.J.; Rippa, S.; Rossez, Y.; Perrin, Y. Acylcarnitines participate in developmental processes associated to lipid metabolism in plants. Planta 2016, 243, 1011–1022. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, S.K.; de Azevedo Soares, V.; Dantas, E.F.O.; dos Santos, L.W.O.; da Silva Gomes, D.; Henschel, J.M.; Batista, D.S. Exogenous carnitine application enhances the growth of culantro (Eryngium foetidum) plants. Vegetos 2023, 36, 393–399. [Google Scholar] [CrossRef]
- Babula, P.; Adam, V.; Kizek, R.; Sladký, Z.; Havel, L. Naphthoquinones as allelochemical triggers of programmed cell death. EEB 2009, 65, 330–337. [Google Scholar] [CrossRef]
- Kantidze, O.L.; Velichko, A.K.; Luzhin, A.V.; Razin, S.V. Heat stress-induced DNA damage. Acta Naturae 2016, 8, 75–78. [Google Scholar] [CrossRef]
- Farooq, M.A.; Zhang, X.; Zafar, M.M.; Ma, W.; Zhao, J. Roles of reactive oxygen species and mitochondria in seed germination. Front. Plant Sci. 2021, 12, 781734. [Google Scholar] [CrossRef]
- Pagano, A.; Araújo, S.D.S.; Macovei, A.; Leonetti, P.; Balestrazzi, A. The seed repair response during germination: Disclosing correlations between DNA repair, antioxidant response, and chromatin remodeling in Medicago truncatula. Front. Plant Sci. 2017, 8, 1972. [Google Scholar] [CrossRef]
- Kubalová, I.; Schmidt Černohorská, M.; Huranová, M.; Weisshart, K.; Houben, A.; Schubert, V. A protocol to expand plant nuclei. Methods Cell Biol. 2021, 161, 197–216. [Google Scholar]
Stress Factor | Plant Species/Organ | Version of the Comet Assay | Type of Data Processing | Reference |
---|---|---|---|---|
Predominantly genotoxic stress factors | ||||
Heat | leaves of Vicia faba | neutral | visual assessment of comet shape | [176] |
leaves and roots of Nicotiana tabacum var. xanthi | alkaline | Komet version 3.1, Kinetic Imaging Ltd., Liverpool, UK | [8] | |
leaves of Oryza sativa | alkaline | visual scoring (four classes of damaged DNA) | [177] | |
Arabidopsis thaliana seedlings | neutral | Casp-1.2.3b2 software | [178] | |
leaves of Lycopersicon esculentum | neutral | ImageJ version 1.54h | [179] | |
leaves of Vicia faba | neutral | visual assessment of comet shape | [180] | |
leaves of Solanum tuberosum | neutral | TriTek CometScore™ (version 1.5, Sumerduck, VA, USA) | [181] | |
Heavy metals | roots of Brassica juncea | alkaline | CASP software | [166] |
roots of Brassica juncea | alkaline | Carl Zeiss Axiovision software (Special Edition 64 Rel. 4.9.1) | [27] | |
leaves of Vitis vinifera | alkaline | visual scoring (four classes of damaged DNA) followed by FISH | [28] | |
roots of Vicia faba and Allium cepa | alkaline | Comet Assay IV (Perceptive Instruments) | [167] | |
leaves of 30-day-old Solanum lycopersicum | alkaline | CASP software | [182] | |
root tips of Allium cepa | neutral | Comet Assay Software (CASP-version 1.2.3b) | [29] | |
root tips of Lupinus luteus | alkaline | Scion Image analysis system | [165] | |
the roots and shoots of Cucumis melo seedlings | alkaline | visual scoring and ranking into classes 0–4 (non-damaged–maximally damaged) | [169] | |
High light + heat | leaves of Oryza sativa | neutral | CASP software | [123] |
Pathogen | leaves of Arabidopsis thaliana | neutral | TriTek CometScore software (Tritek Co., Sumerduck, VA, USA) | [183] |
leaves of Nicotiana tabacum var. xanthi | alkaline | Komet v. 3.1, Kinetic Imaging, Liverpool, UK | [184] | |
leaves of Lycopersicon esculentum | alkaline | Tritek Comet score version 1.5 | [185] | |
Arabidopsis thaliana seedlings | neutral | CometScore software (Tritek Co, Sumerduck, VA, USA) | [186] | |
Cytotoxic stress factors | ||||
Salt stress | shoots and roots of Vigna radiata seedlings | alkaline | Komet 5.5 (Kinetic imaging, Andor Technology) | [187] |
leaves of Hordeum vulgare seedlings | neutral | CASP software (Comet Assay Software Project) | [188] | |
leaves of Brassica juncea | alkaline | CASP software (Comet Assay Software Project) | [189] | |
shoots of 8 d and 12 d old seedlings of Oryza sativa | neutral | CASP software (Comet Assay Software Project) | [190] | |
root tip cells and 7 d old seedlings of Hordeum vulgare | alkaline | OpenComet v1.3.1 Software | [191] | |
leaves of 32-day-old Vicia faba | alkaline | Komet 5 software (Liverpoo1, UK) | [192] | |
roots of Allium cepa | alkaline | Carl Zeiss Axiovision software | [18] | |
germinated seeds of Solanum melongena | neutral | CaspLab software | [193] | |
protonema of Physcomitrella patens | neutral (with and without unwinding step before electrophoresis) | Comet module of LUCIA cytogenetics software suite (LIM, Praha, Czech Republic) | [19] | |
Flooding | root tips of Zea mays seedlings | alkaline | not indicated | [20] |
Oxidative stress (Ozone; H2O2) | leaves of 70-day-old Nicotiana tabacum | alkaline | Comet assay III, version 3.0; Perceptive Instruments Ltd., UK | [21] |
leaf protoplasts of Arbutus unedo and Populus maximowiczii Henry × berolinensis | alkaline | Comet Assay III, Perceptive Instruments, UK | [99] | |
leaves of 4-year-old Ulmus glabra seedlings | alkaline | Comet Assay III, Perceptive Instruments, UK | [194] | |
Allelochemicals | leaves of Glycine max | alkaline | Komet Version 3.1. Kinetic Imaging, Liverpool, UK | [195] |
root tips of Lactuca sativa seedlings | alkaline | CASP software | [22] | |
roots of Lactuca sativa seedlings | alkaline | scoring with the classification of comets into 0 to 4 according to shape | [23] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tyutereva, E.V.; Strizhenok, A.D.; Kiseleva, E.I.; Voitsekhovskaja, O.V. Comet Assay: Multifaceted Options for Studies of Plant Stress Response. Horticulturae 2024, 10, 174. https://doi.org/10.3390/horticulturae10020174
Tyutereva EV, Strizhenok AD, Kiseleva EI, Voitsekhovskaja OV. Comet Assay: Multifaceted Options for Studies of Plant Stress Response. Horticulturae. 2024; 10(2):174. https://doi.org/10.3390/horticulturae10020174
Chicago/Turabian StyleTyutereva, Elena V., Aleksei D. Strizhenok, Elizaveta I. Kiseleva, and Olga V. Voitsekhovskaja. 2024. "Comet Assay: Multifaceted Options for Studies of Plant Stress Response" Horticulturae 10, no. 2: 174. https://doi.org/10.3390/horticulturae10020174
APA StyleTyutereva, E. V., Strizhenok, A. D., Kiseleva, E. I., & Voitsekhovskaja, O. V. (2024). Comet Assay: Multifaceted Options for Studies of Plant Stress Response. Horticulturae, 10(2), 174. https://doi.org/10.3390/horticulturae10020174